
Experiments with Data Flow and Mutation Testing

A. Je�erson O�utt �

Jie Pan�

Tong Zhang

Department of ISSE

George Mason University

Fairfax, VA 22030

phone: 703-993-1654

email: ofut@isse.gmu.edu

Kanupriya Tewary

Department of Computer Science

Clemson University

Clemson, SC 29643-1906

kanu@cs.clemson.edu

February 1994

Abstract

This paper presents two experimental comparisons of data 
ow and mutation testing. These two
techniques are widely considered to be e�ective for unit-level software testing, but can only be analytically
compared to a limited extent. We compare the techniques by evaluating the e�ectiveness of test data
developed for each. For a number of programs, we develop ten independent sets of test data; �ve to
satisfy the mutation criterion, and �ve to satisfy the all-uses data 
ow criterion. These test sets are
developed using automated tools, in a manner consistent with the way a test engineer would apply these
testing techniques. We use these test sets in two separate experiments. First we apply a \cross scoring",
by measuring the e�ectiveness of the test data that was developed for one technique in terms of the other
technique. Second, we investigate the ability of the test sets to �nd faults. We place a number of faults
into each of our subject programs, and measure the number of faults that are detected by the test sets.
Our results indicate that while both techniques are e�ective, mutation-adequate test sets are closer to
satisfying data 
ow, and detect more faults.

1 INTRODUCTION

Mutation testing and data 
ow testing are two powerful unit testing techniques whose relative merits are

not well understood. Extensive research has been done to develop both techniques, and although substantial

technical problems remain to be solved for them to be used in practical situations, both techniques o�er

substantial potential for improving the testing process, resulting in higher quality software. Both techniques

are white box in nature [Whi87] and require large amounts of computational and human resources (although

recent engineering advances are reducing both types of cost). Although experience has led us to believe

there is signi�cant overlap between the two techniques, they have not been successfully compared on either

�Partially supported by the National Science Foundation under grant CCR-93-11967.

1



an analytical or experimental basis. We attempt the comparison using two experiments. First, we compare

mutation and the all-uses data 
ow criterion to see whether either method covers the other in the sense

of how close test data sets that satisfy one technique come to satisfying the other. Second, we compare

mutation and all-uses by executing faulty versions of programs and comparing how many faults are found

by test data sets that satisfy each technique.

Our results lead us to believe that while mutation o�ers more stringent testing than data 
ow does,

both techniques provide bene�ts the other lacks. Our eventual goal is to �nd a way to test software that

provides the advantages of both techniques, either by combining the two techniques or by deriving a new

technique that o�ers the power of both mutation and data 
ow testing.

The remainder of this section includes a short discussion on the notion of test adequacy criteria, provides

overviews of mutation and data 
ow testing and reviews related research. Subsequent sections present

our analytical results, and discuss our experimental procedures and results. The programs are listed in

Appendices A and B, and the faulty programs are in Appendix C.

1.1 Adequacy Criteria

There are two aspects of any testing process. The �rst is test data generation, which may be manual,

automated, or a combination of both. The second aspect of a testing process is the stopping rule, or

adequacy of the generated test data. Early researchers in mutation de�ned adequacy as follows: a test set

is adequate if, for every fault in the program being tested, there is a test case in the test set that detects

that fault [DLS78, BA82]. Budd and Angluin de�ned adequacy with respect to a given criterion [BA82], and

Weyuker [Wey86] extended this to de�ne an adequacy criterion to be a predicate that is used to determine

when the program has been tested enough.

By Frankl and Weyuker's de�nition, a criterion C1 includes another criterion C2 if and only if for

every program, any test set T that satis�es C1 also satis�es C2 [FW88]. This is similar to the de�nition

of subsumption given by Clarke et al.: A criterion C1 subsumes a criterion C2 if and only if every set of

execution paths P that satis�es C1 also satis�es C2 [CPRZ85]. A more recent de�nition for analytically

comparing two criteria is that of properly covers [FW93b]. In this paper, we will use Frankl and Weyuker's

de�nition of inclusion.

2



1.2 Data Flow Testing

Rapps and Weyuker [RW82, RW85] de�ne a family of data 
ow path selection criteria and examine the

relationships among them. A program unit P is considered to be an individual subprogram (main program,

procedure, or function). A subprogram is decomposed into a set of basic blocks, which are maximal sequences

of simple statements with one entry point such that if the �rst statement is executed, all statements in the

block will be executed. The subprogram is represented by a control 
ow graph, CFG, in which the nodes are

basic blocks and the edges correspond to possible 
ow of control between basic blocks.

A data de�nition of a variable is a location where a value is stored into memory (assignment, input,

etc.), and a data use is a location where the value of the variable is accessed. Uses are subdivided into 2

types: a computation use (c-use) directly a�ects a computation or is an output, and a predicate use (p-use)

directly a�ects the 
ow of control. c-uses are considered to be on the nodes in the CFG and p-uses are on

the edges. A de�nition-clear subpath for a variable X through the CFG is a sequence of nodes that do not

contain a de�nition of X.

Frankl and Weyuker de�ne seven data 
ow criteria. In this paper, we only consider all-uses, because

empirical evidence shows that the all-uses criterion is e�ective and low in cost (in terms of the number of

test cases), compared to the other data 
ow criteria [FW88, FW93a, Wey89]. All-uses requires that for each

de�nition of a variableX in P , the set of paths executed by the test set T contains a de�nition-clear subpath

from the de�nition to all reachable c-uses and p-uses of X.

One di�culty with applying data 
ow techniques is that of unexecutable subpaths. The de�nition-clear

subpaths that are used in data 
ow testing are based on the CFG, which is a static representation of the

program, and it may not be possible to execute all of the subpaths. Frankl and Weyuker [FW88] suggest

modi�cations to the data 
ow criteria so that they satisfy the applicability property. An adequacy criterion C

is applicable if and only if for every program P there exists at least one test set that is adequate for the criteria

and the program [Wey86]. An applicable criterion excludes subpaths that cannot be executed. Unfortunately,

it is undecidable whether a particular set of subpaths is executable, so recognition of unexecutable subpaths

is typically done by hand.

1.3 Mutation Testing

Mutation is a fault-based testing technique introduced by DeMillo et al. [DLS78] and Hamlet [Ham77].

Mutation testing is based on the assumption that a program will be well tested if all simple faults are

3



detected and removed. The coupling e�ect [DLS78, O�92] states that complex faults are coupled to simple

faults in such a way that a test data set that detects all simple faults in a program will detect most complex

faults.

Simple faults are introduced into the program by mutation operators. Each change or mutation created

by a mutation operator is encoded in a mutant program. A mutant is killed by a test case that causes it to

produce incorrect output. A test case that kills a mutant is considered to be e�ective at �nding faults in the

program, and the mutants it kills are not executed against later test cases. Equivalent mutants are mutant

programs that are functionally equivalent to the original program and therefore cannot be killed by any test

case. Like unexecutable subpaths, determination of equivalent mutants is usually done by hand. The goal of

mutation is to �nd test cases that kill all non-equivalent mutants; a test set that does so is adequate relative

to mutation.

1.4 Review of Related Work

Although there has been much informal discussion on the relative strengths of mutation and data 
ow testing,

we know of only two attempts to compare the two techniques. Budd compared mutation with data 
ow

testing on an intuitive basis [Bud81]. He suggested that mutation is a stronger testing technique because it

makes erroneous data 
ow possibilities emerge as non-equivalent mutants. Test cases that kill these mutants

force the data 
ow criterion to be satis�ed. No theoretical or experimental evidence was provided to support

these arguments.

Later studies were done by Mathur and Wong [Mat91, MW93]. They conducted experimental compar-

isons of All-du-pairs data 
ow testing with mutation testing, by generating test data by hand to satisfy both

criteria and compare the scores. They used one set of test cases per program and did not record equivalent

mutants and unexecutable subpaths. This study indicated that mutation-adequate test sets were closer to

being data 
ow-adequate than data 
ow-adequate test sets were to being mutation-adequate.

Recently, Tewary [Tew94] has devised algorithms for inserting faults into programs using the program

dependence graph. These algorithms were demonstrated by inserting faults into programs and comparing the

fault detection ability of mutation and data 
ow testing. She found that when the faults involved changes

to the control dependence relations in the program dependence graph, the mutation-adequate and data


ow-adequate test sets were almost equally e�ective in detecting the faults. However, this result combined

with earlier coverage experiments [MW93], suggests that since data 
ow-adequate test sets are not 100%

mutation adequate, data 
ow testing may not be as e�ective as mutation testing in detecting faults that are

4



simple syntactic changes to the program (as opposed to faults that are structural changes).

2 HYPOTHESES

We have compared mutation and data 
ow in two di�erent ways. First, it seems reasonable to suppose

that if test sets created for one technique also satisfy another technique, then the second technique can

be considered to be redundant, and only the �rst technique needs to be satis�ed. Thus, we have tried to

determine if mutation-adequate test sets always cover data 
ow, and vice versa. Second, an independent and

perhaps more practically useful question is whether tests sets created for a testing technique will actually

�nd faults in programs.

For our comparison, we have formulated the following hypotheses:

Hypothesis 1: Test data sets that are adequate for mutation testing are nearly adequate for
all-uses data 
ow.

Hypothesis 2: Test data sets that are adequate for all-uses data 
ow testing are nearly ade-
quate for mutation.

Hypothesis 3: Test data sets that are adequate for all-uses data 
ow and mutation analysis
will �nd most faults in programs.

Hypothesis 4: Test data sets that are adequate for mutation analysis will �nd more faults in
programs than test sets that are adequate for all-uses data 
ow

3 EXPERIMENTAL PROCEDURE

For our experiments, we chose 10 program units that cover a range of applications. These programs range in

size from 10 to 29 executable statements, have from 183 to 3010 mutants, and have from 10 to 101 DU-pairs.

These programs vary from having simple to quite complicated control 
ow graphs and data 
ow structures.

The programs are described in Table 1. For each program, we give a short description and the number of

executable Fortran statements. We also give the number of DU-pairs (both predicate and computation)

and the number of infeasible DU-pairs, and the number of mutants and equivalent mutants. Because of the

nature of the two techniques, programs typically have many more mutants than DU-pairs. There also tends

to be a lot of overlap in the test cases in the sense that one test case will usually kill many mutants, and

often cover several DU-pairs. The Fortran versions of these programs are in Appendix A; the C versions are

in Appendix A.

We used three tools for our experimentation. The Mothra mutation system automates the process of

mutation testing by creating and executing mutants, managing test cases, and computing the mutation

5



Program Description Statements DU-pairs Infeasible Mutants Equivalent

Bub Bubble sort on an integer array 11 29 1 338 35
Cal Days between two dates 29 28 0 3010 236
Euclid Greatest common divisor (Euclid's) 11 10 1 196 24
Find Partitions an array 28 100 13 1022 75
Insert Insertion sort on an integer array 14 29 1 460 46
Mid Median of three integers 16 30 0 183 13
Pat Pattern matching 17 55 3 513 61
Quad Real roots of quadratic equation 10 15 0 359 31
Trityp Classi�es triangle types 28 101 14 951 109
Warshall Transitive closure of a matrix 11 44 0 305 35

Table 1: Experimental Programs.

score. We used all twenty-two Mothra mutation operators [KO91] for this experiment. To generate test data

to satisfy mutation, we used Godzilla, an automated constraint-based test case generator that is integrated

with Mothra [DO91]. For the data 
ow analysis part of the experiment we used ATAC, a data 
ow tool for

C programs developed by Bellcore [HL92]. ATAC implements all-uses by having the requirement that, if a

predicate uses the same variable in more than one condition, each condition must be evaluated separately.

There is no test data generation tool associated with ATAC, thus we generated test data to satisfy all-uses

by using a special-purpose random test data generator of our own devising. This tool repetitively generated

test cases, keeping test cases that covered new DU-pairs, and throwing away test cases that did not. We

feel that these methods of generating test data are realistic in the sense that if a coverage-based criterion is

used, they are reasonable ways that test engineers might be expected to generate test data in practice.

Since Mothra tests Fortran-77 programs and ATAC tests C programs, we had to translate each program

into both languages. We started with Fortran versions of the programs, and �rst made sure that the programs

did not use any features of Fortran-77 that would not translate directly into C. Then we hand-translated the

programs into C, taking care to use as direct a translation as possible so as not to introduce any variance into

our results by using di�erent programs. We tested our translations by running both versions on every test

case that we generated, and comparing the outputs of the two versions. As described below, this amounted

to a total of 10 di�erent test sets per program.

Both mutation and data 
ow have problems with unrealizable requirements. Mutation systems create

equivalent mutants, which cannot be killed, and data 
ow systems ask for infeasible DU-pairs to be covered.

For each program, as part of our preparation, we identi�ed all equivalent mutants and infeasible DU-pairs

by hand.

For each program, we generated test sets that were mutation-adequate and test sets that were data


ow-adequate. To avoid any bias that could be introduced by any particular test set, we generated �ve

6



independent test sets for each criteria. Thus, for each program, we had ten test sets; �ve mutation-adequate

test sets, and �ve data 
ow-adequate test sets, for a total of 100 test sets for our ten programs. We consider

a minimum test case set for a criterion to contain the smallest number of cases necessary to satisfy the

criterion, and a minimal test case set to be a satisfying set such that if any test case was removed, the

set would no longer satisfy the criterion. We eliminated redundant test cases (by incrementally adding test

cases, and only keeping those that contributed to satisfying the criteria) until we had minimal test sets, but

did not attempt to create minimum test sets. The minimal test case sets are shown in Appendices D and E.

4 COVERAGE MEASUREMENT EXPERIMENTATION

The method of comparison used in our �rst experiment was to generate test data that satis�ed one criterion

and then measure how close it came to satisfying the other criterion. We de�ne coverage as the amount

by which a test set that is adequate for a program with respect to criterion A satis�es criterion B. Thus

coverage of criterion A by criterion B is 100% if and only if a test set that is adequate for criterion A is

also adequate for criterion B. More formally, let A and B be two adequacy criteria, and FA(T; P ) and

FB(T; P ) be the functions that measure whether a test set T for a program P is adequate for the criteria.

Let TA be a set of test data that is adequate with respect to criterion A and TB be a set of test data that is

adequate with respect to criterion B. Then the coverage of criterion A by criterion B is FA(TB ; P ) and the

coverage of criterion B by criterion A is FB(TA; P ). Since a criterion covers itself, FA(TA; P ) = 100% and

FB(TB ; P ) = 100%.

Our coverage measure for mutation is the mutation score. IfMt is the total number of mutants generated

for a program,Mk is the number of mutants killed by a set of test cases T , andMq is the number of equivalent

mutants for the program being tested, then the mutation score is:

MS(P; T ) =
Mk

Mt �Mq

: (1)

We de�ne the data 
ow score of a test set as follows. If Dt is the total number of DU-pairs for the

program being tested, Ds is the number of DU-pairs that have been satis�ed by the test set and Di is the

number of DU-pairs that can never be satis�ed because of unexecutable subpaths, then the data 
ow score

is:

DFS(P; T ) =
Ds

Dt �Di

: (2)

The mutation score of a test set that is data 
ow adequate will give us the coverage of mutation by

data 
ow. Similarly, the data 
ow score of a test set that is mutation adequate will give us the coverage of

7



Test Set Test Set Test Set Test Set Test Set
Program 1 2 3 4 5 Average
Bub 94.06 95.38 98.02 97.03 98.02 96.50
Cal 72.89 80.54 72.96 67.91 70.00 72.86
Euclid 94.15 95.32 97.66 97.08 95.32 95.51
Find 94.40 94.72 90.18 94.30 94.83 93.69
Insert 98.55 98.55 98.55 98.31 99.52 93.69
Mid 81.76 81.18 79.41 82.35 80.59 81.06
Pat 66.37 81.64 89.38 62.17 92.70 78.45
Quad 89.94 89.33 90.24 89.94 89.63 89.82
Trityp 84.44 85.63 83.73 83.97 83.49 84.25
Warshall 99.26 94.81 99.26 88.89 94.81 95.41

Table 2: FM (TD):Mutation Scores of Data Flow-Adequate Test Sets

data 
ow by mutation. For our experiment, if the mutation criterion is denoted by M and the data 
ow

criterion is denoted by D, then FM is a function that computes the mutation score for a set of test data using

Equation 1 and FD is a function that computes the data 
ow score for a set of test data using Equation 2.

We compute values of FM(TD ; P ) and FD(TM ; P ) for each program in our sample set over several test case

sets.

4.1 Coverage Scores

We computed the coverage measurements by calculating the mutation scores of each of the �ve data 
ow-

adequate test sets and the data 
ow scores of each of the �ve mutation-adequate test sets as described above.

The programs were run on a Sun 4 SPARC workstation running SunOS version 4.1.1. The mutation scores

of the data 
ow-adequate test sets are shown in Table 2, and the data 
ow scores of the mutation-adequate

test sets are shown in Table 3. The scores for each of the �ve test sets are shown, as well as the average

mutation and data 
ow scores.

All the data 
ow scores were very high, and the mutation scores were very high except for a couple of

programs. In neither case, however, can we conclude that the test sets are adequate for the other criterion.

Thus, we must conclude that our hypotheses 1 and 2 are incorrect. The average mutation scores of the data


ow-adequate test sets was 88.66, and the average data 
ow scores of the mutation-adequate test sets was

98.99. The mutation-adequate tests covered all but one or two DU-pairs for all ten programs. Thus, it does

appear that by satisfying mutation, we have in some sense come close to satisfying data 
ow, but we do not

know the bene�ts of \almost" satisfying a testing criterion. We also could not �nd a pattern among the

mutants not killed by the data 
ow-adequate test sets, so we see no way to make a general statement about

what might be missing in such test sets.

8



Test Set Test Set Test Set Test Set Test Set
Program 1 2 3 4 5 Average
Bub 100.00 100.00 100.00 100.00 100.00 100.00
Cal 100.00 100.00 100.00 100.00 100.00 100.00
Euclid 100.00 100.00 100.00 100.00 100.00 100.00
Find 100.00 98.85 98.85 98.85 98.85 99.08
Insert 96.43 96.43 96.43 96.43 92.86 95.71
Mid 100.00 100.00 100.00 100.00 100.00 100.00
Pat 100.00 98.08 100.00 100.00 100.00 99.62
Quad 100.00 100.00 100.00 100.00 100.00 100.00
Trityp 100.00 100.00 100.00 100.00 100.00 100.00
Warshall 95.45 95.45 95.45 95.45 95.45 95.45

Table 3: FD(TM ):Data Flow Scores for Mutation-Adequate Test Sets

5 FAULT DETECTION EXPERIMENTATION

To further assess the relative merits of the testing techniques, we inserted several faults into each of the

programs, and evaluated the test sets based on the number of faults detected by them. So as to avoid any

bias, we introduced faults according to the following considerations:

1. faults must not be equivalent to mutants; otherwise the mutation-adequate test data would by de�nition

detect them,

2. faults should not be N-order mutants (else the coupling e�ect would indicate that mutation-based test

cases should �nd the fault, biasing our results in favor of mutation),

3. the faults should not have a high failure rate, or the detection becomes trivial.

A general outline of our fault creation procedure is that for each program statement, we attempted to:

1. create multiple related transpositions of variables (e.g., substituting one variable for another through-

out, or exchanging the use of two variables),

2. modify multiple, related, arithmetic or relational operators,

3. change precedence of operation (i.e., by changing parenthesis),

4. delete a conditional or iterative clause,

5. change conditional expressions by adding extra conditions,

6. change the initial values and stop conditions of iteration variables.

The changes were only applied when a change did not violate one of our considerations. For the most part,

these resulted in faults that appear to realistic in the sense that they look like mistakes that programmers

9



typically make. None of the faults were found by all test cases. Additionally, neither criterion seemed biased

towards any of our fault types in the sense that the criterion always found faults of that type. The actual

faults are shown in Appendix C.

To gather the results, we inserted each fault separately, creating N incorrect versions of each program.

This allowed us to always know which fault a test case detected when the faulty program failed. The data

are shown in Table 4. The Mutation column gives the number of faults detected by the mutation-adequate

test cases, averaged over the �ve sets of data for each program, and the Data Flow column gives the number

of faults detected by the data 
ow-adequate test cases, averaged over the �ve sets of data for each program.

The mutation sets detected all the faults for six of our ten programs, and the least percentage of faults

detected was 67% for Find. The data 
ow sets detected all the faults for two programs, and as few as 15%

for one program (Insert). On average, the mutation sets detected 92% of the faults, versus only 76% of the

faults for the data 
ow sets. Thus, our data support both hypotheses 3 and 4.

Program Faults Mutation Data Flow
Bub 5 1.00 0.92
Cal 10 0.98 0.56
Euclid 6 0.83 0.83
Find 6 0.67 0.47
Insert 4 0.75 0.15
Mid 5 1.00 1.00
Pat 6 1.00 0.87
Quad 6 1.00 1.00
Trityp 7 1.00 0.86
Warshall 5 1.00 0.92
TOTALS 60 0.92 0.76

Table 4: Number of Faults Found by Mutation-Adequate and Data Flow-Adequate Test Data

6 TEST SET SIZE

Table 5 gives the average number of test cases for the mutation-adequate test sets and the data 
ow-adequate

test sets for each program. The most obvious observation is that in most cases, mutation requires many

more test cases than data 
ow does. Weyuker [Wey90] discusses comparing the costs of testing criteria based

on the number of test cases. With the ability to automatically generate test data, this cost is somewhat less

important during initial testing, although the cost of examining the outputs still makes the size a factor.

Additionally, the number of test cases is still important during regression testing.

10



Mutation Data Flow
Program Adequate Adequate
Bub 6.6 1.4
Cal 36.0 6.2
Euclid 4.0 1.0
Find 14.0 6.2
Insert 3.8 3.0
Mid 24.6 6.0
Pat 26.4 5.8
Quad 13.4 2.0
Trityp 51.4 14.0
Warshall 4.8 3.2

Table 5: Average Number of Test Cases Per Set

7 CONCLUSIONS

For our programs, the mutation scores for the data 
ow-adequate test sets are reasonably high, with an

average coverage of mutation by data 
ow of 88.66%. While this implies that a program tested with the

all-uses data 
ow criterion has been tested to a level close to mutation-adequate, it may still have to be

tested further to obtain the testing strength a�orded by mutation.

The mutation-adequate test data however, comes very close to covering the data 
ow criterion. The

average coverage of data 
ow by mutation is 98.99% for our ten programs. We can infer that a program

that has been completely tested with mutation analysis methods will usually be very close to having been

tested to the all-uses data 
ow criterion { within one or two DU-pairs of being complete. On the other hand,

mutation required more test cases in almost every case than data 
ow testing did, providing a cost to bene�t

tradeo� between the two techniques.

These conclusions are supported by the faults that the test sets detected. Although both mutation-

adequate and data 
ow-adequate detected signi�cant percentages of the faults, the mutation-adequate test

sets detected an average of 16% more faults than the data 
ow-adequate test sets. The di�erence was as

high as 60% for one program.

Of course, these experiments have limitations that are di�cult to avoid in this area. The number and

size of programs is limited, and there is no way to be sure that the faults are representative. Because our

experimental subjects (programs, faults, and test data) are not generated randomly, and there is no way

to judge how representative they are, we are limited in our ability to use statistical analysis tools to make

claims of signi�cance. The fact that our results are similar to those of other researchers, using di�erent

procedures, makes it seem likely that the results are valid.

11



Although the ability to automatically generate test data means that requiring large numbers of test cases

is not as expensive as if generated manually (although the cost of the verifying the outputs and recognizing

equivalent mutants or infeasible DU-pairs will still be present), smaller test sets will still save e�ort during

regression testing. If our results can be considered to be applicable to all programs, as well as the programs

we investigated, then it seems that mutation o�ers more coverage, but at a higher cost, a tradeo� that must

be considered when choosing a test methodology.

8 ACKNOWLEDGMENTS

It is a pleasure to acknowledge Bellcore, and speci�cally Bob Horgan and Saul London, for the use of the

testing tool ATAC and for support using it.

References

[BA82] T. A. Budd and D. Angluin. Two notions of correctness and their relation to testing. Acta

Informatica, 18(1):31{45, November 1982.

[Bud81] T. A. Budd. Mutation analysis: Ideas, examples, problems, and prospects in computer program
testing. In B. Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages 129{
148. North-Holland, 1981.

[CPRZ85] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A comparison of data 
ow path
selection criteria. In Proceedings of the Eighth International Conference on Software Engineering,
pages 244{251, London UK, August 1985. IEEE Computer Society.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

[DO91] R. A. DeMillo and A. J. O�utt. Constraint-based automatic test data generation. IEEE Trans-

actions on Software Engineering, 17(9):900{910, September 1991.

[FW88] P. G. Frankl and E. J. Weyuker. An applicable family of data 
ow testing criteria. IEEE

Transactions on Software Engineering, 14(10):1483{1498, October 1988.

[FW93a] P. G. Frankl and S. N. Weiss. An experimental comparison of the e�ectiveness of bran testing
data 
ow testing. IEEE Transactions on Software Engineering, 19(8):774{787, August 1993.

[FW93b] P. G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting ability of testing methods.
IEEE Transactions on Software Engineering, 19(3):202{213, March 1993.

[Ham77] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on Software

Engineering, 3(4), July 1977.

[HL92] J. R. Horgan and S. London. ATAC: A data 
ow coverage testing tool for C. In Proceedings of

the Symposium of Quality Software Development Tools, pages 2{10, New Orleans LA, May 1992.

12



[KO91] K. N. King and A. J. O�utt. A Fortran language system for mutation-based software testing.
Software{Practice and Experience, 21(7):685{718, July 1991.

[Mat91] Aditya P. Mathur. On the relative strengths of data 
ow and mutation based test adequacy crite-
ria. Technical report SERC-TR-94-P, Software Engineering Research Center, Purdue University,
West Lafayette IN, March 1991.

[MW93] Aditya P. Mathur and Weichen E. Wong. An empirical evaluation of mutation and data 
ow-
based test adequacy criteria. Technical report SERC-TR-135-P, Software Engineering Research
Center, Purdue University, West Lafayette IN, March 1993.

[O�92] A. J. O�utt. Investigations of the software testing coupling e�ect. ACM Transactions on Software

Engineering Methodology, 1(1):3{18, January 1992.

[RW82] S. Rapps and E. J. Weyuker. Data 
ow analysis techniques for test data selection. In Software

Engineering 6th International Conference. IEEE Computer Society Press, 1982.

[RW85] S. Rapps and W. J. Weyuker. Selecting software test data using data 
ow information. IEEE

Transactions on Software Engineering, 11(4):367{375, April 1985.

[Tew94] K. Tewary. An approach to fault classi�cation and fault seeding using the program dependence
graph. Master's thesis, Department of Computer Science, Clemson University, Clemson SC, 1994.

[Wey86] E. J. Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on Software

Engineering, 12:1128{1138, December 1986.

[Wey89] E. J. Weyuker. How good is data 
ow testing? Technical report, NYU, 1989.

[Wey90] E. J. Weyuker. The cost of data 
ow testing: An empirical study. IEEE Transactions on Software

Engineering, 16(2):121{128, February 1990.

[Whi87] L. J. White. Software testing and veri�cation. In Marshall C. Yovits, editor, Advances in Com-

puters, volume 26, pages 335{390. Academic Press, Inc, 1987.

13


