
An Application of Entity Life Modeling to Incremental
Reengineering of Fortran Reactive Program Components

F. G. Patterson, Jr.
Jean-Jacques Moortgat

Technical Report No. ISSE-TR-94-108
School of Information Technology and Engineering

George Mason University
Fairfax, Virginia 22032

Abstract.
This paper describes a case study in which the Entity Life Modeling (ELM)

[1] technique is used to reconstruct a single module from a legacy FORTRAN
application. The architecture of the module changed as a result of entity
identification and mode analysis. Concurrent aspects of the problem domain were
identified and modeled as concurrent tasks. To interface with the greater part of
the software system that was not reconstructed, an interface object was created.
The interface object may be regarded as scaffolding that will be discarded when
neighboring increments of the system are reengineered. The reengineered
increment has a highly maintainable design that is characteristic of complete
systems constructed using the ELM methodology.

I. Introduction .

Reengineering is the process of reusing old programs to generate
replacements. Traditionally, reengineering has meant modifying code that has only
imperfect or incomplete specification-level and design-level information. Such
maintenance includes: perfective maintenance, performed to realize new
requirements level changes to the software product; adaptive maintenance,
performed to allow software to continue to function in a new operational
environment; and corrective maintenance, performed to remove the causes of
software failures [2].

Reengineering begins with a decision on whether it is more economical to
discard or to maintain old software that no longer meets the requirements of the
users. The new environment may contain new hardware and software products that
are incompatible with the old software. The user may have new requirements for
additional functionality. It simply may be a propitious time for adding new
capabilities. In any case the result is the same in that there is a need for adaptive
and perfective maintenance on a program that is difficult to maintain. Before
addressing new requirements, the old software may be analyzed and its components
made reusable to support the required adaptive and perfective maintenance. We call
this process reconstructive maintenance.

Reconstructive maintenance itself is neither perfective nor adaptive.
Reconstructive maintenance effects a change in software development methodology
which may fundamentally alter the software design architecture. A related concept
is restructuring, which "actually changes the code by transforming ill-structured
code into well-structured code[, focusing] solely on the source code" [3]. While this
activity might be generalized to other life cycle activities [4], the concept is too
restrictive for our purposes.

Definitions of reengineering: narrow and broad.

Reengineering, also known as both renovation and reclamation, is the
examination and alteration of a subject system to reconstitute it in a new form and
the subsequent implementation of the new form [4]. The reengineering event,
therefore, may be narrowly defined as the revision of the old software to allow
necessary adaptive and perfective maintenance. In this way the old software is
reengineered for immediate reuse. In this paper, this process is referred to as
reconstructive maintenance. Success can be measured using reusability metrics and
measures, such as those proposed by Fonash [5]. Broadly defined, reengineering
includes all of these activities. The cost of reengineering that is to be compared to
the cost of new development is not only the cost of reengineering the old software,
but also the cost of the perfective and adaptive maintenance that is necessary to
meet new requirements.

2

Reconstructive maintenance has a reverse engineering element and a forward
engineering element. The core of reverse engineering technology is the abstraction
of code into design concepts [6]. From this point we can both work backward to
specification and work forward, through re-specification and redesign, to a better
implementation [7, 8]. This can be difficult, however, when code has been
fragmented through optimization or repeated maintenance, scattering clues to the
design throughout the implementation. The cost of the reengineering activity
depends partly upon the cost of the reverse engineering that is required during
reconstructive maintenance.

Reconstructive maintenance will almost certainly be guided by some elements
of adaptive maintenance, whether the source is to be reengineered incrementally or
all at once. This is because a target environment will be chosen that not only
facilitates interfaces to other software, but also supports a particular development
methodology well, such as object-oriented design. For example, the new target
environment may include a new programming language, a new graphical user
interface, or a new host computer.

The overall reengineering process is depicted in Figure 1. The starting point
is the code that is to be reengineered, shown on the left hand side of the Figure.

3

Information may already exist at the design and specification levels. If not, then
some degree of reverse engineering may be necessary to provide complete
information to support the reengineering activity. The finished product is the code
on the right hand side, together with design and specification level documentation,
upon which immediate perfective and adaptive maintenance may be performed.

Figure 2

Reverse Engineering is the process
of analyzing a subject system to identify the
system's components and their
interrelationships and create representations
of the system in another form or at a higher
level of abstraction. The core of reverse
engineering technology is the abstraction of
code into design concepts. From the design
point we can work upward to specification,
as illustrated in Figure 2. To meet our needs,
reverse engineering must be performed at

least to the extent required to identify elements of our forward engineering model.

Incremental Reengineering.

When it is not possible to reengineer an entire system, incremental
reengineering may be an attractive solution that offers help in conserving both
present and future resources. The selection of the increment is of critical
importance in the management cost of the initial reengineering effort. Moreover,
improper selection may decrease the level of maintainability of the software, leading
to high maintenance cost.

There is a Pareto rule [9] that applies to software maintenance that says that
20% of the code is targeted for maintenance 80% of the time. Other things being
equal, it is the critical 20% that should be reengineered to support a high level of

4

future perfective maintenance. On the other hand, there may be many other reasons
for selecting one part of the code over another. For example: immediate and
extensive maintenance may be pending for some part of the code; there may be
known, but unresolved errors in some part of the code; or some part of the code is
of outside origin (e.g., is commercial off-the-shelf, or classified, or developed by
others for another unrelated application and reused), and it is desired to reconstruct
it for improved maintainability. Apart from these considerations, however, it is
desirable to choose functions with few interfaces to reengineer.

Booch [10] lists quality factors in object-oriented methodology for interfaces
that are consistent with good object-oriented design. There he states that a design
should be loosely coupled.

few many

large

small

significance to cost of future maintenance

significance
to cost of
present
maintenance

Figure 3. Two-dimensional View of Interface Coupling

As shown in the Figure 3, there is a
two dimensional aspect to interface
coupling. The number of interfaces may be
few or many. The size of the interfaces may
be small or large.

In the case when there are many
interfaces, we can look at the two possible
cases, viz, partial reengineering and total
reengineering. First, if we are doing
incremental reengineering, because each

increment captures and repackages part of the function-oriented architecture, we
tend to leave program interfaces intact among increments. In effect, there is a
tendency to propagate dependencies, since most of the legacy architecture is
retained. Second, in the case where reengineering of the entire software product is
performed, a large number of interfaces tends to represent information about many
objects. This translates into many interfaces in the object-oriented design. Thus,
whether incremental or total reengineering is performed, a large number of
interfaces in the function-oriented design tends to create a large number of interfaces
in the object-oriented design [11].

5

Furthermore, a large number of interfaces in the software means that the
software will be more difficult to change since there are more potential side effects.
This is indicative of low adaptability. According to Sommerville, "For optimum
adaptability, a component should be self-contained. A component may be loosely
coupled in that it only cooperates with other components via message
 passing. This is not the same as being self-contained as the component may rely on
other components, such as system functions or error handling functions.
Adaptations to the component may involve changing parts of the component which
rely on external functions so the specification of these external functions must also
be considered by the modifier.... To be completely self-contained, a component
should not use other components which are externally defined. However, this is
contrary to good practice, which suggests that existing components should be
reused" [12].

There are two aspects of coupling in the FORTRAN programs that have been
examined in this work. One is the list of parameters passed between subroutines.
The other is the variables stored in FORTRAN COMMON blocks that are shared
between subroutines. The interface between any two subroutines, consisting of
passed parameters and global variables, may be arbitrarily large and complex,
depending upon the number of variables and the complexity of their data types
involved in the interface. As a subordinate theme of this paper, we assert that there
should be few interfaces and small interfaces among objects in our reengineered
product. By few interfaces, we mean that the reengineered increment exchanges
data with a small number of other program units. By small interfaces, we refer to
the number of variables and the complexity of their types in a given interface. In
reaching this goal, we believe that we can apply Booch's criterion to the functions
that we select for encapsulation in a newly formed object in our reconstruction
effort.

6

II. Case Study: Application of ELM to the GOFOR System.

Entity-Life Modeling is a method of software engineering that has elements in
common with both function-oriented and object-oriented methods. As in object-
oriented design methods, the first step is the identification of objects from the
problem domain, the identification of object attributes and operations belonging to
each object, and the design of class structures that encapsulate state information and
export attributes to other objects as needed. ELM departs from object-oriented
methods in its ability to manage the timing and ordering of events as in some
function-oriented methods. Threads of execution are defined wherein entities
exhibit sequential behavior by operating on objects, perhaps concurrently with other
entities.

The application of ELM to reengineering involves the identification of entities
and their threads of execution just as in forward engineering complete systems.
Some reverse engineering may be necessary to identify objects and their behaviors.

The steps in the application of ELM to incremental reengineering may be
listed as follows:

1. Identification of entities
2. Identification of concurrent tasks
3. Creation of Buhr diagrams
4. Design of interface objects
5. Composition of state transition diagrams

In general it may be necessary to reverse engineer the legacy code to accomplish
steps 1, 2, and 5. Steps 1, 2, 3, and 5 represent the steps that are customarily used
in the ELM technique. We added step 4, necessary to allow the reengineered
increment to communicate with the remaining legacy software.

7

The GOFOR System.

For this case study the NASA Goddard Space Flight Center (GSFC)
furnished a copy of a FORTRAN system which was developed using a function-
oriented development model. We received a copy of the Geostationary Operational
Environment Satellite-I (GOES-I) Simulator Support in FORTRAN (GOFOR)
software. GOFOR is the attitude dynamics and control system part of the much
larger GOES Simulation System (GSS). We were given the GOFOR code on a
diskette, together with the Detailed Design Document. We also received telephone
access to a programmer at GSFC who is familiar with the system.

We reduced the amount of code we attempted to restructure by looking only
into a single subsystem of the GOFOR system, the Attitude and Orbital Control
Subsystem (AOCS), and choosing part of the subsystem. The AOCS was chosen
for several reasons: (1) It is one of the two "deliverable" subsystems in the
software model; the others may be regarded as scaffolding software needed to test
the two deliverable subsystems. (2) It is the most complex and the most changed
over its life cycle to date; therefore, the benefits from increasing the reusability of
this program unit will tend to amortize the reengineering cost more quickly. (3)
The interfaces to the AOCS are limited to one other subsystem, although the
interface is not small, since the two subsystems share a large number of Common
block variables. In addition, we noted several subroutines with more than ten
formal parameters required for normal operation. (4) The GOFOR Detailed Design
Document (DDD) has a reasonable level of documentation available to assist in
understanding the relationships among the program units that compose the AOCS.
This greatly assisted our reverse engineering effort.

The GOFOR program code is composed of thirty files, containing a main
program, twenty-six subroutines, and three "include" files containing data structure
definitions, all written in the FORTRAN 77 programming language. The system
was developed on and designed to run on a Vax 11/780 computer at GSFC. Two
sources of program documentation were supplied with the program code. They are
the "GOFOR Detailed Design Document" and the internal program documentation
in the form of a prologue of comment statements at the beginning of each file.

8

The first step in incremental reconstructive maintenance is the identification
of the subset [13] of the program that will be affected and the identification of the
objects within that subset. We intended to reconstruct a subsystem from the
GOFOR software system and to record the origins of global data and its relationship
to the objects that are chosen for the reconstructed object-oriented design. First, we
intended to reverse engineer from the FORTRAN code to identify COMMON
blocks and their contents and the role of each data element found. In addition, other
sources of global data were to be identified and analyzed. The next step was the
forward engineering step of identifying the new object's attributes and operations.

The GOFOR system is functionally divided into five subsystems as follows:

 Truth Model (TM) which contains the integration of the rigid body
dynamics and all attitude sensor and actuator models

 The Attitude and Orbit Control Subsystem (AOCS) which contains the
control logic necessary to duplicate each spacecraft control mode and
also represents the logic transitions between various control modes.
AOCS receives attitude sensor output from the TM and sends thruster
commands to the TM.

 The Profile Program (PP) which models the environment of the
spacecraft and pre-calculates a profile data set for use by the simulator.

 The Simulation Driver (SD) is the execution driver for the simulator. It
accepts user input, controls and manages the execution, and generates
output data file for plot generation.

 The Plot Generator (PG) is run after simulation is completed to
generate printer and CRT plots and tabular reports.

The GOFOR Detailed Design Document (DDD).
9

GSFC furnished a preliminary version of the DDD, which contains an
introduction, an overview of the system, and a description of five "subsystems,"
each of which comprises a proper subset of the thirty program files. Each
subsystem design description provides a list of the major functions in the subsystem,
a high-level interface block diagram, a structure chart, a high-level description of
each subsystem component, and a list of the subroutines involved. Since publishing
the document, which was never revised, the code has undergone extensive
modifications, including the addition of entire modules and the addition of new
functions and new data.

As a practical matter of procedure, GSFC defines FORTRAN COMMON
blocks in include (".INC") files. Three ".INC" files were included in the source
code that we obtained. We quickly noted that more than three file names were
included in some of the subroutines. Using the UNIX tool grep, we listed out all of
the include statements in the GOFOR system and counted twenty-nine such files.

We found that we were able to reverse engineer at a high level the program
code, and to find correspondence to the external documentation, to provide a
satisfactory preliminary picture, in the form of a high level, annotated DFD, of what
processes pass what data and when.

Description of the AOCS.
The AOCS is a collection of FORTRAN subroutines and COMMON block

data elements that perform the function shown in Text Box 1.

10

C METHOD:
C -------
C
C CREATE COMMONS
C DECLARE VARIABLES
C
C CALL SENPRO TO PROCESS ATTITUDE SENSOR DATA
C CALL CONTRL TO SELECT AOCS CONTROL MODE
C CALL ATTCON TO PROCESS CONTROL LAW FOR ASSOCIATED MODE
C CALL VCOILD TO PROCESS THRUSTER COMMAND GENERATION
C
C RETURN
C END

Text Box 1

Subroutines SENPRO, CONTRL, ATTCON, and VCOILD are all called by
subroutine AOCS. Each of these four subroutines, in turn, calls other subroutines.
The flow of control is controlled by the control mode of the AOCS and the attitude
sensor data. The control mode is, in turn, controlled by the attitude sensor data and
by the user. The output from AOCS is a set of commands and settings for
thrusters, magnetic torquers, and momentum wheels. Reorganizing this information
and abstracting a bit, we can view the AOCS interface [14] to the Truth Module
Subsystem (TM) as shown in Figure 4.

Figure 411

Description of the interface.

In terms of the software, the AOCS interfaces only with TM. This is a total
of one interface (two if input and output are counted separately). Thus, our criterion
of bounding an increment with a small number of interfaces is satisfied. In terms of
the "real world" objects represented by the software, however, the TM is not a
single interface, since the attributes of many objects on board the space craft are
being simulated. For example, the input interface (Sensor Data COMMON block)
represents five types of sensors, each more useful in some operational modes than in
others. Since modes are very important to AOCS, a real world view of TM would
show five input interfaces. We took the view that the software is the real world for
the purposes of incremental reengineering. Only a full reengineering of the code in
its entirety would reverse engineer back into the reality. Thus, we treated the
interface as a single complex input into AOCS from TM. Likewise, the types and
numbers of thrusters that are commanded by the AOCS represent an increase in the
number of elements in a single interface (i.e., the size of the interface), not an
increase in the number of interfaces.

The AOCS Super-Object.

The decision to reengineer incrementally, limiting the scope to the AOCS
subsystem, requires that the AOCS Object be functionally equivalent to the AOCS
Subsystem that it replaces (see right-hand side of Figures 4 and 5). Moreover, until
such time that further incremental reengineering is performed, the AOCS Object
must interface with its software environment in exactly the same way as the AOCS
Subsystem that it replaces. The primary environment for AOCS is supplied by TM
and by FORTRAN COMMON blocks; therefore, the AOCS object must interface
to its environment in the same way through COMMON blocks and parameters.
Internally, the AOCS object may be redesigned as necessary.

12

Figure 5

The AOCS object is an interface to the rest of the program, and it is a
boundary around a set of objects: a super-object. This is essentially the same as the
role played by the function-oriented AOCS subsystem, which is a boundary around
a collection of FORTRAN subroutines. The ideas are different, however, in that the
AOCS object may be eliminated when reengineering of the entire GOFOR system is
complete, since the AOCS object is scaffolding for a previous increment and which
is no longer needed. Thus, the purpose of the AOCS object is to provide the
interface to the function-oriented remainder of the GOFOR software. Its function is
to maintain the state of the interface and to transmit and receive information to and
from the interface.

A global table was prepared that contained most of the elements of the
interface found in FORTRAN COMMON blocks. The table was created, using
UNIX grep, from comment statements in the FORTRAN code. The common
blocks were left intact, since, as noted above, the interface was out-of-scope for this
incremental reengineering effort. However, some of the elements of the interface
were folded into objects within the AOCS super-object as attributes of those
objects.

The AOCS Objects.

13

The AOCS structure charts were analyzed to determine the architecture,
functionality, and control structure of each of the internal modules. The AOCS is
mode driven, in that each mode has specialized functions to be performed, based
upon certain sensor information, and based upon attitude control laws and thruster
control laws associated with each mode. Thruster commands are output based upon
the inputs and the mode. Most of the inputs were documented in the global table
described above. AOCS subroutine parameters are used to initialize the AOCS.
We designed the AOCS object as shown in the high level Buhr [1, 15] diagram in
Figure 5.

Figure 5

Each object in the
AOCS super-object is the
owner of a portion of the
data that was previously
found only at the interface
between AOCS and TM.
In our design, an input task,
Sensor Data Object,
continuously reads the
input data and computes
limit data and other
parameters that are need by
the other objects in the

AOCS. The Sensor Data Object can detect error conditions in the sensor readings.
When problems are detected, the Sensor Data Object can determine that the mode
of operation needs to be changed and send a message to the Mode Object which, in
turn, changes the mode of operation accordingly. We modeled the Mode Guard as a
task, since mutual exclusion to this critical variable is important. There are eight
modes of operation identified in the DDD according to whether the spacecraft is
monitoring the earth or the sun, is in safe mode, is out of contact with the signal
from the ground control, etc. In each mode of operation, the four objects behave in
a mode-specific way. An example is included in Appendix A. We developed state
transition diagrams based on the analysis of the modes of operation.

14

Encapsulation of interface information.
Each of the four objects encapsulates state information, control law

information, and a command generator for making adjustments to the flight
characteristics of the spacecraft. To test our hypothesis that COMMON block
information in the function-oriented design will be allocated to objects in the object-
oriented design, we used the common block descriptions information found in the
DDD. For each variable in the list, we were able to add the variable to one of three
lists: (1) variables (attributes) owned by an object in AOCS; (2) variables owned by
TM, usually simulated hardware objects; or (3) variables that were not allocated to
list 1 or list 2.

List 1. As a result of analysis, list 1 contained primarily commands
bound for the simulated magnetic torquer, the momentum wheel, or the
thrusters. These commands were generated by subroutines in the
original module AOCS and were written into common blocks for the
consumption of TM. This is reasonable, since TM contains all of the
(simulated) commandable hardware. We were able to allocate all of
these commands to objects in our object-oriented design.

List 2. Sensor readings and commands from ground control were
allocable to this list, since the readings and commands are attributes of
hardware and ground objects simulated in TM.

List 3. List three contained problems that were difficult to solve until it
was observed that if the unidentified parameters are not found upon
searching the AOCS and TM source code, then the parameters must
belong to the simulation driver (SD) or some other module in the larger
system. In a complete object-oriented reconstruction of the system,
these interface objects would be part of some object in some other part
of the architecture. The point is that the items on List 3 are not part of
the TM-to-AOCS interface at all and are, therefore, out-of-scope.

We were able affirmatively to answer the question of whether a single very
large, complex, heterogeneous interface was entirely allocable to objects in the

15

object-oriented redesign. Large interfaces tend to become internalized as attributes
of program objects and may or may not be transmitted across object boundaries.
Because of this, reengineering of future increments will not need to deal with the
large interface. On the other hand, the number of interfaces is very important in
incremental reconstruction, since interface objects must be constructed for every
interface to the reconstructed portion of the software.

16

III. Conclusions.

1. The choice of increment greatly affects the product. In bounding an
increment to reconstruct, we were mindful of two costs: the cost of the
reconstruction activity itself (this increment) and the cost of future
reconstructive maintenance (future increments). We noted in this paper
several factors that influence the choice.

First, the "80-20 rule" might add cost to present reconstruction for any
of a number of reasons. For example, the code that usually is needful of
maintenance may be highly complex, either inherently or because repeated
maintenance has obfuscated the semantics of the code; the code may be
tightly coupled with other code with potential maintenance side effects; or the
code may be the implementation of a poor design or a poor requirements
specification. In all of these cases, we believe that the high present cost of
reconstruction is a good investment in that future maintenance of all kinds
will be more successful and less costly.

Secondly, we noted that the code that is already scheduled for
adaptive, perfective, or corrective maintenance might be included in the
present increment. This has the advantage of reducing the cost of the
scheduled maintenance, thus partially amortizing the cost of reconstruction
beginning immediately. However the increment should be highly cohesive.
Otherwise, the effect is to reconstruct two more or less unrelated
increments.

Thirdly, it was noted that the increment to be reconstructed should
have interfaces to few program units outside its boundary. This is because
the size and complexity of the interface object that must be created to
connect the reconstructed increment to the remainder of the system is largely
a function of the number of interfaces that must be established. A second
reason is related to the potential for causing unwanted side effects in the
remainder of the system as a result of future maintenance activities. It was
noted that the size of these few interfaces was largely irrelevant to the cost of
future maintenance, although more expensive in terms of building the

17

interface object, since the elements of the interface will be partitioned into
object attributes and encapsulated within object boundaries in the
reconstructed increment.

2. The ELM method is modified for reconstruction by the addition of the
construction of the interface object. To interface with the greater part of the
software system that was not reconstructed, an interface object was created.
The interface object may be regarded as scaffolding that will be discarded
when neighboring increments of the system are reengineered. Thus, the
interface object performs a secondary maintenance function by acting as a
road map for reengineering the next increment.

3. The architecture of the reengineered increment is different from its
predecessor as a result of entity identification and mode analysis. We believe
that ELM provided a degree of fidelity to the problem domain that was not
achieved by the structured design method originally used to develop
GOFOR. ELM lends itself well to a problem such as AOCS where there are
well defined entities, well defined processes that affect the entities, and
aspects of processing that are concurrent.

Additionally, ELM enabled us to design a sampler task for the sensors and a
guardian task for the mode control. ELM's State Transition Diagrams
depicted the attitude control modes in a way that's closer to how the
spacecraft attitude control actually works (i.e., events occur that activate
modes depending on the spacecraft's location or attitude). ELM's Buhr
diagrams help us design concurrent aspects of the problem such as the sensor
sampler and mode guardian tasks that we have described.

4. To accomplish mode analysis, it was necessary to go to the code. The
structure charts from the DDD and the text associated with it did not provide
enough detail to develop the state transition diagrams or the Buhr diagram for
our reengineered design. For example, Text Box 2 presents source code from
the AOCS system. This type of code appears in each of the current mode
subroutines for AOCS. The subroutines are reading from COMMON blocks
and using data from the sensor processing routine to determine if transition is

18

needed from one mode to another (e.g., to Sun Acquisition Mode). Condition
statements are used to check several different flags that are passed to the
routine. Based on these flags, which provide information on the spacecraft's
position, and on control laws, automatic transition occurs from one state to
another. Considerable analysis of the source code enabled us to find threads
in the processing which we reengineered into state transition diagrams. In
doing so we improved our understanding of how to group processes with the
data that affects them.

5. To accomplish object identification it was necessary to go to the interfaces
and partition them into candidate objects. As noted above, AOCS had a
single interface to external code, the interface with TM. The single interface
was accomplished through several named FORTRAN COMMON blocks
which contained information about the objects in the problem domain. The
elements of the interface were partitioned as candidates for objects. This
technique was carried out and validated as a technique for finding objects for
the entire GOFOR code in another effort.

6. To identify entities it was necessary to reverse engineer back to
requirements. Although we were able to identify objects through examining
the interface and to relate functions to objects by examination of the code, we
do not believe that candidate entities could have been identified without an
understanding of the problem domain. Our minimal understanding of the
sensors and effector hardware upon which the simulation was based was the
principal data that we drew upon in identifying concurrent sequential
behavior.

19

C
C*** ORMODEL TWO AUTOMATIC MODE TRANSITIONS
C

IF (.NOT. (SAFMOD .OR. (SAFMOD_F .AND. AUTSAF))) THEN
IF (INIT_SUNACQ) THEN

MODE = 3
ENDIF

C
IF (XSIT_CMPLET) MODE = 5
IF (AEARTH) THEN

MODE = 4
ENDIF

C
IF (MODE .EQ. 4) THEN ! EARTH ACQUISITION

C
IF (NO_PREVIOUS_EARTH_PRESENCE) THEN

C NO PREVIOUS EARTH SIGNAL
C

IF (EARTH(1) .OR. EARTH(2)) THEN
NO_PREVIOUS_EARTH_PRESENCE = .FALSE.

ELSE
C
C EARTH ACQ CMDED BUT NO EARTH PRESENT
C FOR ROLL EARTH ACQUISITION
C

IF (.NOT. EARTH(2).AND. .NOT. EARTH(2)
.AND. SUBMODE .EQ. 0) THEN

NEARTH = .TRUE.
AEARTH = .FALSE.
INIT_SUNACQ = .FALSE.

C NORMAL SUN ACQUISITION MODES
MODE = 3

C AUTO TRANSITION TO SUN ACQUISITION

Text Box 2

Summary.

The result was a product that
a. encapsulated state information in objects, reducing coupling,
b. realized timing requirements of the original code,
c. identified and utilized opportunities for concurrency, and
d. modeled in software with high fidelity the hardware entities in

the problem domain, thus yielding a high level of cohesion.

20

APPENDIX A .

The following example shows how processing is dependent upon the current mode
of the system.

AOCS MODES:
- RATE DAMPING MODE

- SUN ACQUISITION MODE

- EARTH ACQUISITION MODE

- NORMAL ON-ORBIT MODE

- STATION -KEEPING MODE

- BACK -UP STATION -KEEPING MODE

- STATION -KEEPING TRANSITION
MODE
- SAFE MODE

As an example, we have done the
following analysis for the Earth Acquisition
mode (EARACQ). This mode occurs when
the spacecraft's position is incorrect in relation
to the Earth. An incorrect position is recorded
by the Earth Sensor Assemblies (ESA),
CASSA and DSSA and the spacecraft rate is

recorded with the DIRA sensor. The recording of this sensor information is
modeled in the Truth Model (TM). This information is sent to the AOCS. The
AOCS goes into an earth acquisition mode to correct the position and rate.

The following arguments are passed to EARACQ:

ARGUMENT LIST:
ARGUMENT I/ O TYPE DIM DESCRIPTION

-------- --- ---- --- -----------
IDDNUM I I *4 1 LOGICAL UNIT NUMBER FOR DEBUG

IDDWRT I " 1 DEBUG FLAG

TCYCL I R *8 1 AOCS CYCLE TIME (SEC)
CASANG I R *4 3 CASSA ANGLES (ROLL/ PITCH/ YAW)
ESANG I " 2 ESA ANGLES (1 : ROLL; 2 : PITCH)
DSANG I " 2 DSS ANGLES (2 : ALFA; 1 : BETA)
DIRANG I " 3 DIRA ANGLES (ROLL/ PITCH/ YAW)
DIRRAT I " 3 DIRA RATES (ROLL/ PITCH/ YAW)
IOUT O I *4 3 THRUSTER COMMAND PULSE

EARTH I L *1 2 EARTH PRESENCE FLAG

WSPEED I R *4 3 WHEEL SPEEDS (2 MOM., 1 REC)
WHLSAF I L *1 1 WHEELS IN SAFE MODE

WHLVLT O R *4 3 WHEEL TORQUE COMMAND VOLTAGE

The logic is as follows:

21

EARTH ACQUISITION AXIS CONTROL LOOPS:
COMPUTE INPUT POSITION ERROR BASED ON POSITION SWITCHES
DO FOR EACH AXIS

CALCULATE FILTERED BIAS - CORRECTED POSITION ERROR

CALL LIMITR TO FILTERIZE BIAS - CORRECTED POSITION ERROR

CALCULATE FILTERED BIAS - CORRECTED RATE FROM DIRA RATE

COMPUTE FINAL POSITION & RATE ERROR COMMAND
CALL DBAND TO CHECK WHETHER OR NOT SIGNAL IS WITHIN

DEADBAND REGION
CALL PWPF TO PRODUCE THRUSTER CONTROL COMMAND

END DO FOR
CALL WHLCTL

Additionally, the position switches and rate biases are set relative to the positioning
of the spacecraft as seen below:

EARTH ACQUISITION PHASE CONTROL:
DO CASE - SUBMODE

CASE 1 : ROLL EARTH ACQUISITION
 SET POSITION SWITCHES

CASE 2 : PITCH/YAW CALIBRATION
 SET POSITION SWITCHES

CASE 3 : DIRA ATTITUDE REFERENCE
 SET POSITION SWITCHES

CASE 4 : PITCH EARTH ACQUISITION
 SET POSITION SWITCHES
END DO CASE

22

References

[1] B. Sanden, Software Systems Construction with Examples in Ada. Englewood Cliffs, New Jersey:
Prentice Hall, 1994.

[2] E. B. Swanson, "The Dimensions of Maintenance," Proc. 2nd International Conf. on Software
Engineering, vol. IEEE Catalog No. 76CH1125 4 C, pp. 492-497, 1976.

[3] S. L. Pfleeger, Software engineering: the production of quality software, 2nd ed. New York:
Macmillan Publishing Company, 1991.

[4] E. J. Chikofsky and J. H. Cross II, "Reverse Engineering and Design Recovery: A Taxonomy,"
IEEE Software, pp. 11-12, 1990.

[5] P. M. Fonash, "Metrics for Reusable Software Code Components," Ph.D. Dissertation, George
Mason University (Fairfax, Virginia), 1993.

[6] R. N. Britcher and J. J. Craig, "Using Modern Design Practices to Update Aging Software
Systems," IEEE Software, vol. 3, pp. 16-24, 1986.

[7] G. W. Jones, Software Engineering. New York: John Wiley & Sons, Inc., 1990.

[8] V. A. Berzins and Luqi, Software engineering with abstractions. Reading, Massachusetts:
Addison-Wesley Publishing Company, Inc., 1991.

[9] H. M. Sneed, "Economics of Software Re-engineering," Journal of Software Maintenance:
Research and Practice, John Wiley & Sons, Ltd., vol. 3, pp. 163-182, 1991.

[10] G. Booch, Software engineering with Ada. Redwood City, California: Benjamin/Cummings, 1987.

[11] B. Meyer, Object-Oriented Software Construction. New York: Prentice Hall, 1988.

[12] I. Sommerville, Software Engineering, 4th ed. Wokingham, England: Addison-Wesley Publishing
Company, Inc., 1992.

[13] E. S. Garnett and J. A. Mariani, "Software reclamation," Software Engineering Journal, pp. 185-
191, May. 1990.

[14] I. Jacobson and F. Lindstrom, "Re-engineering of old systems to an object-oriented architecture,"
Proc. OOPSLA-91, pp. 340-350, 1991.

[15] R. J. A. Buhr, Practical Visual Techniques in System Design: with Applications. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1990.

23

