
Logical Design for Temporal Databases with Multiple Temporal Types

X. Sean Wang�y, Claudio Bettini�z, Alexander Brodskyy, Sushil Jajodia� y

ISSE Technical Report: ISSE-TR-94-111

ABSTRACT

The purpose of good database logical design is to eliminate data redundancy and inser-

tion and deletion anomalies. In order to achieve this objective for temporal databases, the

notions of temporal types and temporal functional dependencies (TFDs) are introduced. A

temporal type is a monotonic mapping from ticks of time (represented by positive integers)

to time sets (represented by subsets of reals) and is used to capture various standard and

user-de�ned calendars. A TFD is a proper extension of the traditional functional depen-

dency and takes the form X �!� Y , meaning that there is a unique value for Y during

one tick of the temporal type � for one particular X value. An axiomatization for TFDs

is given. Since a �nite set of TFDs usually implies an in�nite number of TFDs, we intro-

duce the notion of and give an axiomatization for a �nite closure to e�ectively capture a

�nite set of implied TFDs that are essential to the logical design. Temporal normalization

procedures with respect to TFDs are then given. More speci�cally, temporal Boyce-Codd

normal form (TBCNF) that eliminates all data redundancies, and temporal third normal

form (T3NF) that allows dependency preservation, are de�ned. Both normal forms are

proper extensions of their traditional counterparts, BCNF and 3NF. Decomposition algo-

rithms are presented that give lossless TBCNF decompositions and lossless, dependency

preserving, T3NF decompositions.

�Partly supported by an ARPA grant, administered by the O�ce of Naval Research under grant number N0014-92-J-

4038.
yDepartment of Information and Software Systems Engineering, George Mason University, Fairfax, VA 22030. Email:

fxywang,brodsky,jajodiag@isse.gmu.edu.
zDipartimento di Scienze dell'Informazione, Universit�a degli Studi di Milano, Via Comelico 39/41, 20135 Milano, Italy.

Email: bettini@dsi.unimi.it. Part of the work was performed while this author was visiting GMU.

Contents

1 Introduction 1

2 Temporal Types and Modules 6

2.1 Temporal types : 6

2.2 Temporal modules : 8

3 Temporal Functional Dependencies 9

3.1 Inference axioms for TFDs : 11

3.2 Closure of Attributes : 17

4 Temporal Normalization 19

5 Temporal BCNF 25

5.1 Decomposing temporal module schemes into TBCNF : 26

6 Preservation of Dependencies 29

7 Temporal third normal form 32

7.1 Decomposing temporal module schemes into T3NF : 32

8 Conclusion 35

Appendix 38

A.1 Proof of Theorem 3 : 38

A.2 Proof of Theorem 5 : 41

A.3 Proof of Theorem 6 : 45

i

List of Figures

1 A typical instance of the relation ACCOUNTS : 2

2 A decomposition of the instance in Figure 1 : 3

3 Algorithm for computing X
+
. : 18

4 Algorithm for TBCNF decomposition. : 27

5 The cop function (types not to scale). : 30

6 Algorithm for T3NF decomposition. : 34

ii

1 Introduction

In the database area a large body of knowledge has been developed for addressing the problem of logical

design:

Given a body of data and constraints on the data to be represented in a database, how do

we decide on a suitable logical structure for these data?

In the relational context, the problem of logical design can be restated as follows: How do we produce

a database scheme (a collection of relation schemes) with certain desirable properties? Central to the

design of database schemes is the idea of a data dependency which is a constraint on the allowable rela-

tions corresponding to a relation scheme. Functional dependencies (FDs) are widely used dependencies

in the framework of logical design (cf. [9]).1 A collection of known functional and other dependencies

serve as input to the database design.

The purpose of good database design is to avoid the problems of data redundancy, potential in-

consistency, insertion anomalies, and deletion anomalies. Consider a relation with attributes AcctNo,

Bank-branch and Bank-address and FDs AcctNo! Bank-branch and Bank-branch! Address. Al-

though each bank branch has a unique address (since Bank-branch ! Address holds), the repetition

of the address of a bank branch with every account in that branch is redundant in the relation. If, by

mistake, we update the address of a branch in one tuple, but forget to do so in another, inconsistency

arises. Furthermore, since AcctNo is the primary key, we cannot insert an address for a new bank

branch that does not currently have at least one account. Finally, if the last account in a bank branch

is deleted, we unintentionally lose track of its address. To resolve these problems, the relation (AcctNo,

Bank-branch, Address) must be decomposed into two relations: (AcctNo, Bank-branch) with the

FD AcctNo! Bank-branch and (Bank-branch, Address) with the FD Bank-branch! Address. In

addition to being free of redundancy related problems cited above, the decomposition has several very

desirable properties: (1) it is lossless in the sense that the original relation can be reconstructed by

taking the natural join of the two projections and, thus, no information is lost; (2) the decomposition

preserves the FDs in the sense that the FDs associated with the schemes in the decomposition are

equivalent (identical in our example) to those associated with the original scheme; and (3) the two

schemes are in Boyce-Codd normal form (BCNF), the strongest normal form in terms of FDs as the

only dependencies. We should note that it is not always possible to derive a lossless, FD preserving

1Other dependencies such as multivalued dependencies, join dependencies and tuple-generating dependencies have also

been considered [9], but they are outside the scope of our discussion here.

1

decomposition such that all its schemes are in BCNF; a lossless, FD preserving decomposition into

schemes in the third normal form (3NF), which is slightly weaker than BCNF, can always be achieved

(cf. [9]).

Temporal Dimension of Logical Design

The introduction of time adds a new dimension to the normalization problem. To illustrate, consider a

temporal relation ACCOUNTS that records for each bank transaction the account number (AcctNo), trans-

action amount (Amount), account balance (Balance), accumulated interest for the month (AccumInt),

and time of the transaction (Time). Accumulated interest is calculated at the annual rate of 5% every

day, at the beginning of each day (but not accrued to the account until the end of the month). There-

fore, the value of AccumInt does not change within each day, although it may change from one day to

the next. The values of Time are timestamps consisting of the date (month/day/year) concatenated

with the time of the day (up to seconds) of the transaction. We assume that for each account, every

transaction is assigned a unique timestamp. A typical instance of ACCOUNTS is shown in Figure 1.

AcctNo Amount Balance AccumInt Time

1001 +1000 1000 0.00 3/3/93:09:01:00

1001 �500 500 0.14 3/4/93:10:01:55

1001 +200 700 0.14 3/4/93:11:00:00

1001 �315 385 0.14 3/4/93:12:19:03

1001 �255 130 0.14 3/4/93:18:00:00

1001 �10 120 0.19 3/7/93:09:00:00

1001 +100 220 0.19 3/7/93:12:01:40

Figure 1: A typical instance of the relation ACCOUNTS

Clearly, ACCOUNTS contains redundant information, since the same value for AccumInt is repeated

several times within one day. Since the only FD associated with ACCOUNTS is AcctNo, Time !

Amount, Balance, AccumInt, the scheme is in BCNF, in spite of the evident redundancy. The source

of the redundancy here is that AccumInt for a particular AcctNo does not change within the same day.

Since the underlying time in ACCOUNTS is second, not day, the above constraint cannot be captured

by a traditional FD. Clearly, the structure of time must be taken into account if we wish to meet the

objectives of logical design.

2

The central idea in our work is that we incorporate multiple temporal types in the de�nition of tem-

poral functional dependencies and, consequently, in the de�nition of temporal normal forms, temporal

lossless decomposition property, and dependency preservation property. Our design methodology based

on these concepts will require that ACCOUNTS be decomposed into two relations TRANSACTION-INFO and

ACCUM-INTEREST, as shown in Figure 2. Note that the TRANSACTION-INFO relation is stored in terms of

second and ACCUM-INTEREST relation is stored in terms of day in Figure 2. Clearly both relations are

free of data redundancy and other related anomalies.

AcctNo Amount Balance Time

1001 +1000 1000 3/3/93:09:01:00

1001 �500 500 3/4/93:10:01:55

1001 +200 700 3/4/93:11:00:00

1001 �315 385 3/4/93:12:19:03

1001 �255 130 3/4/93:18:00:00

1001 �10 120 3/7/93:09:00:00

1001 +100 220 3/7/93:12:01:40

AcctNo AccumInt Day

1001 0.00 3/3/93

1001 0.14 3/4/93

1001 0.19 3/7/93

(a) TRANSACTION-INFO (b) ACCUM-INTEREST

Figure 2: A decomposition of the instance in Figure 1

It is important to note that the result of the decomposition that eliminates data redundancy may

have to include temporal types that, unlike in the above example, do not appear in the initial temporal

schemes and constraints. Such would be the case if we had week and month instead of second and day

in the above example.

Contributions

We introduce a general notion of a temporal type which is, intuitively, a mapping from ticks of time

(represented by positive integers) to time sets (represented by subsets of reals). By de�nition, this

mapping is monotonic, that is, time sets corresponding to larger ticks must have larger values. Thus

various time units (days, weeks, months, years) of di�erent calendars can be viewed as temporal types,

as well as user de�ned types such as library opening hours, class meetings and so on.

We next present our notion of temporal functional dependencies (TFDs) which requires that un-

3

derlying temporal type be designated. An example of a TFD is AcctNo �!day AccumInt which states

that AccumInt of a speci�c AcctNo cannot change within a day. Note that a TFD may designate any

temporal type (day in the TFD), independent of the temporal type used to store the corresponding

temporal relation (it could be stored, e.g., in seconds or hours).

A sound and complete axiomatization for TFDs is developed. Unfortunately, unlike in the case of

traditional FDs, there is usually an in�nite number of TFDs implied from a given �nite set F . To

overcome this problem, we introduce the notion of a �nite closure of TFDs, and develop sound and

complete axiomatization to e�ectively compute �nite closures.

The property of lossless decomposition is similar to the traditional one in that it is possible to

reconstruct the original temporal relation from its projections. However, the traditional natural join

operation turns out to be insu�cient for this purpose (e.g., it is not clear how we should join the

relations in Figure 2 to recover the original ACCOUNTS relation in Figure 1), and we need to introduce

new temporal join, projection, and union operators that incorporate temporal types, which are then

used in the de�nition of temporal lossless decomposition.

The central part of the paper gives the de�nitions of temporal BCNF (TBCNF) and temporal 3NF

(T3NF) and algorithms for achieving TBCNF and T3NF decompositions. Intuitively, a scheme R

with temporal type � is in TBCNF if every non-trivial TFD X �!� Y is (1) a temporal superkey of

the scheme (this is analogous to the requirement for traditional BCNF), and (2) there is no temporal

redundancy due to the fact that two di�erent time ticks of � belong to the same time tick of �.

To understand the motivation behind the second condition, consider two temporal tuples t and t0

that agree on X and whose time ticks in terms of � belong to the same time tick of �. Because of

X �!� Y we can conclude that the Y values of t and t0 must also coincide. Since this information can

be implied, we have redundancy that we would like to avoid.

A decomposition algorithm is given that renders lossless decomposition of any temporal scheme into

schemes that are in TBCNF. We discuss the preservation of temporal functional dependencies in the

decompositions of the temporal schemes. Analogous to the traditional relational theory, the decompo-

sition of temporal schemes into TBCNF may not preserve TFDs. Therefore, we give the de�nition of

temporal 3NF (T3NF), and present an algorithm that provides lossless, dependency-preserving, T3NF

decomposition.

4

Related Work

There has been work on normal forms for temporal relations, including �rst temporal normal form [8],

time normal form [6], P and Q normal forms [5], and temporal extensions of traditional normal forms

in [3]. However, none of these takes the structure of time into account and, therefore, cannot treat the

redundancy related problems such as those in the ACCOUNTS example.

The work in [3] is closest to ours in that we both consider dependencies and normalization for

a general, not some specialized, temporal data model. Moreover, the temporal extensions in both

satisfy the following properties which are fundamental to the traditional normalization theory [3]: (1)

dependencies are intentional, not extensional properties, (2) normal forms are properties de�ned solely

in terms of the dependencies that are intended to be satis�ed, (3) normal forms are properties of stored

(base) relations only, and (4) FDs and normal forms are de�ned independently of the representation of

a relation. The normal forms in [8, 6, 5] do not satisfy one or more of these properties [3].

Conceptually, [3] views each temporal relation as a collection of snapshot relations. Since each

snapshot is a relation in the conventional (nontemporal) relational model, the usual notions of FDs,

multivalued dependencies and normal forms are applied. Thus, for example, according to [3] a temporal

relation satis�es an FD if each snapshot satis�es the given FD. Likewise, a temporal relation is in

Boyce-Codd temporal normal form (BCTNF) if each snapshot is in BCNF. Returning to the ACCOUNTS

relation in Figure 1, since every transaction for an account is assigned a unique timestamp, FD AcctNo

! Amount Balance AccumInt is valid in every snapshot and, therefore, ACCOUNTS is in BCTNF according

to [3], in spite of the evident redundancy and other related anomalies in ACCOUNTS.

Organization of the Paper

The rest of the paper is organized as follows. In Section 2, the temporal types are de�ned and temporal

modules are reviewed. TFDs are introduced in Section 3. Also presented in Section 3 are the sound

and complete axioms and �nite closures of TFDs. Temporal normalization is discussed in Section 4,

in which lossless decompositions and related notions are introduced. TBCNF and its decomposition

algorithm is presented in Section 5. Dependency preserving decompositions are studied in Section 6.

And �nally, T3NF and its decomposition algorithm are presented in Section 7. Section 8 concludes the

paper with some discussion. The Appendix provides proofs for several theorems.

5

2 Temporal Types and Modules

2.1 Temporal types

Before we can incorporate multiple temporal types into the logical design of temporal databases, we

�rst need to formalize the notion of a temporal type.

We assume that there is an underlying notion of absolute time, represented by the set of the real

numbers.2 In the following we will denote by R the set of all real numbers.

De�nition (Temporal type)

A temporal type is a mapping � from the set of the positive integers (the time ticks) to 2R (the set of

absolute time sets) such that for all positive integers i and j with i < j, the following two conditions

are satis�ed:

1. �(i) 6= ; and �(j) 6= ; imply that each real number in �(i) is less than all real numbers in �(j),

and

2. �(i) = ; implies �(j) = ;.

Property (1) states that the mapping must be monotonic. Property (2) disallows an empty set to

be the value of a mapping for a certain time tick unless the empty set will be the value of the mapping

for all subsequent time ticks.

Intuitive temporal types, e.g., day, month, week and year, satisfy the above de�nition. For example,

we can de�ne a special temporal type year starting from year 1800 as follows: year(1) is the set of

absolute time set (an interval of reals) corresponding to the year 1800, year(2) is the set of absolute

time set corresponding to the year 1801, and so on. Note that the sets in the type year are consecutive

intervals; however, this does not have to be the case for all types. Leap years, which are not consecutive

intervals, also constitute a temporal type. If we take 1892 as the �rst leap year, then leap-year(2)

corresponds to 1896, leap-year(3) corresponds to 1904,3 leap-year(4) corresponds to 1908, and so on.

We can also represent a �nite collection of \ticks" as a temporal type as well. For example, to specify

the year 1993, we can use the temporal type T such that T (1) is the set of absolute time corresponding

to the year 1993, and T (i) = ; for each i > 1.

The de�nition also allows temporal types in which ticks are mapped to more than a single interval.

This is a generalization of most previous de�nitions of temporal types. As an example, consider the

2In fact, any in�nite set with a total ordering can serve as the absolute time; reals, rationals and integers are examples.

3Note 1900 is not a leap year

6

type business-month, where every business month is a union of all business days in a month (i.e.,

excluding all Saturdays and Sundays). In this case, more than one single interval is in one tick.

In a realistic system, we should distinguish names of temporal types, like day, used by users or

system designers from the mapping they denote. It is possible that in a system di�erent names can be

used for the same mapping. For example, day and giorno (which is the Italian word for day) denote

the same mapping. However, for simplicity, in this paper we assume that di�erent symbols used for

temporal types denote di�erent mappings.

It is important to emphasize that a real system can only treat in�nite types that have �nite rep-

resentations. Various periodical descriptions, e.g., [4, 7], are possible but outside the scope of this

paper.

There is a natural relation among temporal types as given below:

De�nition Let �1 and �2 be temporal types. Then �1 is said to be �ner than �2, denoted �1 � �2, if

for each i, there exists j such that �1(i) � �2(j).

This \�ner than" relation is essential for temporal FDs. In the ACCOUNTS relation, since the accu-

mulated interest does not change in a day, it does not change in any hour during the day. (Note that

hour is �ner than day.) In fact, the interest will not change in terms of any temporal type that is �ner

than day. We will discuss this issue further in Section 3. We only want to note here that there are

in�nite number of temporal types that are �ner than day.

In the rest of the paper conditions like �1(i) � �2(j) are often expressed as \tick j of �2 covers tick

i of �1." The notation � � � will be used for a strictly �ner than relation: i.e., � � � if � � � and

� 6= �.

Consider now the properties of the �ner than relation. By de�nition, � � � for each time unit �.

Also, if �1 � �2 and �2 � �1 then �1 = �2. Furthermore, the �ner-than relation is obviously transitive.

Thus, � is a partial order. The relation � is not a total order since, for example, week and month are

incomparable (i.e., week is not �ner than month, and month is not �ner than week). There exists a

unique least upper bound of the set of all temporal types denoted by �Top, and a unique greatest lower

bound, denoted by �Bottom. These top and bottom elements are de�ned as follows: �Top(1) = R and

�Top(i) = ; for each i > 1, and �Bottom(i) = ; for each positive integer i. Moreover, it is easily seen that

for each pair of temporal types �1; �2, there exist a unique least upper bound lub(�1; �2) and a unique

greatest lower bound glb(�1; �2) of the two types, with respect to �. That is, the set of all temporal

types forms a lattice with respect to �.

7

Proposition 1 The set of all temporal types is a lattice with respect to the �ner than relation.

2.2 Temporal modules

Our discussion of logical design for temporal databases is in terms of temporal modules that were

introduced in [12] to provide a uni�ed interface for accessing di�erent underlying temporal information

systems. Thus, the temporal module concept is rather general; the concepts and the results of this

paper are readily translated to in terms of other temporal data models. Temporal modules de�ned in

this paper are simpli�ed but equivalent versions of extended temporal modules of [12], explained below.

We assume there is an in�nite set of attributes. For each attribute A, there exists an in�nite set of

values called domain of A, denoted dom(A). Each �nite set R of attributes is called a relation scheme.

A relation scheme R = fA1; : : : ; Ang is usually written as hA1; : : : ; Ani. For relation scheme R, let

Tup(R) denote the set of all mappings t, called tuples, from R to
S
A2R dom(A) such that for each A in

R, t(A) is in dom(A). A tuple of relation scheme hA1; : : : ; Ani is usually written as ha1; : : : ; ani, where

ai is in dom(Ai) for each 1 � i � n. We are now ready to de�ne temporal module schemes and temporal

modules.

De�nition (Temporal module scheme and temporal module)

A temporal module scheme is a pair (R; �), where R is a relation scheme and � a temporal type. A

temporal module is a triple (R; �; �), where (R; �) is a temporal module scheme and � is a function,

called time windowing function from N to 2Tup(R) such that �(i) = ; for each i with �(i) = ;.

Intuitively, the time windowing function � in a temporal module (R; �; �) gives the tuples (facts)

that hold at time tick i in temporal type �. This is a generalization of many temporal models appeared

in the literature.

The temporal module (R; �; �) is said to be on (R; �) and to be in terms of �. Temporal modules

are also denoted by symbol M, possibly subscripted. For each temporal module M, we denote its relation

scheme, temporal type, and windowing function by RM, �M and �M, respectively. For convenience, in

temporal module examples, instead of the positive integers we will sometimes use an equivalent domain.

For instance, the set of expressions of the form 3=3=93 : 09 : 01 : 00 will serve as such a domain.

Example 1 We view the temporal relation ACCOUNTS given in the introduction as a temporal module

with (ACCOUNTS, second), where ACCOUNTS = hAcctNo, Amount, Balance, AccumInti, as its scheme.

The relation in Figure 1 corresponds to the time windowing function � de�ned as follows:

8

�(3=3=93 : 09 : 01 : 00) = fh 1001, +1000, 1000, 0.00 ig

�(3=4=93 : 10 : 01 : 55) = fh 1001, -500, 500, 0.14 ig

�(3=4=93 : 11 : 00 : 00) = fh 1001, +200, 700, 0.14 ig

�(3=4=93 : 12 : 19 : 03) = fh 1001, -315, 385, 0.14 ig

�(3=4=93 : 18 : 00 : 00) = fh 1001, -255, 130, 0.14 ig

�(3=7=93 : 09 : 00 : 00) = fh 1001, -10, 120, 0.19 ig

�(3=7=93 : 12 : 01 : 40) = fh 1001, +100, 220, 0.19 ig

2

Two equivalent query languages, TM-calculus [12] and TM-algebra [11], have been proposed to

frame queries on temporal modules.

3 Temporal Functional Dependencies

Relations in relational databases are traditionally used to store \static" information, or only the \cur-

rent" information. An FDX ! Y states that whenever a relation has two tuples that agree on attributes

X , then they agree on attributes Y also. (See [9] for formal de�nitions.) As an example, consider a

relation scheme, called FACULTY, that records for each faculty member, the social security number (SSn),

name (Name), rank (Rank), and department (Dept). FD SSn! Rank states that each faculty member's

rank is unique, even though he or she may serve in more than one department at the same time.

In a temporal database, information becomes dynamic. An FD that is valid in the \current" relation

may no longer be valid in the corresponding temporal relation if the traditional de�nition of FDs is

used without change. This will be the case if FACULTY were a temporal relation since it is likely that

FACULTY will contain two tuples, one stating that a particular faculty is an Assistant Professor at one

time, but an Associate Professor at a di�erent time. We will extend the traditional notion of FDs that

will not only permit these possibilities, but enable us to model additional constraints such as \a faculty

member's rank does not change during an academic year" also.

De�nition (Temporal functional dependency)

Let X and Y be (�nite) sets of attributes and � a temporal type such that �(i) 6= ; for some i. Then

X �!� Y is called a temporal functional dependency (TFD).

Intuitively, a TFD X �!� Y states that whenever two tuples, holding on time ticks covered by the

same time tick in �, agree on X , they must also agree on Y . Thus, the TFD SSn �!ay Rank, where ay

9

is the temporal type of academic years, expresses the fact that a faculty's rank cannot change during

an academic year. We now formally de�ne the above notion of satisfaction. In order to simplify the

notation throughout this paper, we will use �(i1; : : : ; ik) to denote
S
1�j�k �(ij).

De�nition (Satisfaction of TFD)

A TFD X �!� Y is satis�ed by a temporal module M = (R; �; �) if for all tuples t1 and t2 and positive

integers i1 and i2, the following three conditions imply t1[Y] = t2[Y]:

(a) t1[X] = t2[X],

(b) t1 is in �(i1) and t2 is in �(i2), and

(c) there exists j such that �(i1; i2) � �(j).

For example, the temporal module corresponding to Figure 1 satis�es the TFD AcctNo �!day

AccumInt. The temporal module also satis�es AcctNo �!second Balance. However, the temporal

module does not satisfy AcctNo �!day Balance.

The de�nition implies that the TFD X �!� Y is always satis�ed by the temporal module (R; �; �)

if � does not have two di�erent ticks that are covered by a single tick of � (since condition (c) in the

de�nition will not be satis�ed).

Let (R; �) be a temporal module scheme with a set F of TFDs de�ned on (R; �). Only temporal

modules that satisfy F are considered feasible or allowed. Thus the set F determines the set of feasible

modules.

Example 2 The temporal module reported in Example 1 satis�es the TFD AcctNo �!second Amount,

Balance, AccumInt. In this case both the temporal module and the TFD are de�ned in terms of the

same temporal type (second). However, the same module satis�es the TFD AcctNo �!day AccumInt

that is de�ned in terms of a di�erent temporal type. The notion of temporal FDs introduced in [3]

allows only TFDs in terms of the same temporal type of the module. 2

Our notion of TFDs can also be used to express FDs that always hold, independent of time. For

example, we can express the FD \each person has only one biological father (regardless of time)" using

the TFD Name �!�Top
B Father. This TFD says that whenever two facts t1 and t2 with t1[X] = t2[X]

are valid in any temporal module, then t1[Y] = t2[Y], independent of the temporal type.

10

3.1 Inference axioms for TFDs

As in the case of traditional FDs, inference axioms to derive all TFDs that logically follow from a

set of TFDs are important. The inference axioms given below include not only the temporal analogs

of Armstrong's axioms [9], but axioms that reect the relationships among temporal types also. In

Example 1, since the values for accumulated interest values do not change in a day, they do not change

in any hour of the day. In general, they do not change in any tick of any temporal type that is �ner

than day. This is captured by the inference rule: if X �!� Y and � � �, then X �!� Y .

An intuitive conjecture would be that the above rule along with the temporal analogs of Armstrong's

axioms will constitute a complete axiomatization. This turns out to be false. Consider, for example,

two TFDs X �!y1 Y and X �!y2 Y , where y1 is the temporal type corresponding to years before

1990, and y2 is the temporal type corresponding to years 1990 and beyond. Taken together, these two

TFDs say that X �!year Y . However, year is not �ner than either y1 or y2.

In order to capture such inferences, we de�ne the notion that a temporal type is collectively �ner

than a set of temporal types. The temporal type year will be collectively �ner than the set of types

fy1; y2g because each tick of the type year is covered by (i.e. contained in) a tick of either y1 or y2.

Formally,

De�nition We say that a temporal type � is collectively �ner than a set f�1; : : : ; �ng of temporal

types, denoted � �C f�1; : : : ; �ng, if for each positive integer i, there exist 1 � k � n and a positive

integer j such that �(i) � �k(j)

Note that � � �1 implies � �C f�1; �2g for any �2.

Inference axioms for TFDs are given next.

Four Inference Axioms for TFDs:

1. Reexivity: If Y � X , then X �!� Y for each temporal type �.

2. Augmentation: If X �!� Y , then XZ �!� XZ.

3. Transitivity: If X �!� Y and Y �!� Z, then X �!� Z.

4. Descendability: If X �!�1 Y; : : : ; X �!�n Y with n � 1 then X �!� Y for each � with

� �C f�1; : : : ; �ng.

The �rst three axioms are temporal analogs of the Armstrong's axioms. The descendability axiom

states that if one or more TFDs (with the same left and right hand sides X and Y) in terms of di�erent

11

types are satis�ed by a temporal module M, then a TFD (with the same X and Y) in terms of any

temporal type that is �ner than the set of these temporal types is also satis�ed by M. In particular, if

we know that X �!� Y is satis�ed by M, descendability ensures that for each � with � �ner than �,

X �!� Y is satis�ed by M. This makes intuitive sense: if the rank of a faculty cannot change within

an academic year, it cannot change within a month or a day of an academic year.

Let F be a �nite set of TFDs. The notion of derivation of TFDs is analogous to the one for

traditional FDs. Formally,

De�nition The TFD X �!� Y is derived from F , denoted F ` X �!� Y , if there exists a proof

sequence f1; : : : ; fk such that (i) fk is X �!� Y and (ii) each fi is a TFD either in F or obtained by

using one of the four axioms on TFDs f1, : : : , fi�1.

The notion of implication of TFD is also standard. Formally,

De�nition The TFD X �!� Y is logically implied by F , denoted F j= X �!� Y , if every temporal

module M that satis�es each TFD in F , also satis�es X �!� Y .

Below, we establish the fact that the four axioms are sound (i.e., they can be used to derive only

logically implied TFDs) and complete (i.e., they can be used to derive all logically implied TFDs). First,

we have the soundness result:

Lemma 1 The four inference axioms are sound.

Proof. We must prove that for each set F of TFDs, given a TFD X �!� Y , F ` X �!� Y implies

F j= X �!� Y . It is su�cient to show that each derivation rule (axiom) starting from logically valid

TFDs derives only logically valid TFDs. The soundness of the �rst three axioms is trivial. Consider the

descendability axiom, i.e., X �!�1 Y , : : : , X �!�n Y implies X �!� Y for each � �C f�1; : : : ; �ng.

By de�nition, � �C f�1; : : : ; �ng means that each tick of � is covered by a tick of at least one of the

�1; : : : ; �n temporal types. Let M = (R; �; �) be an arbitrary module that satis�es F . Since X �!�1

Y; : : : ; X �!�n Y are (assumed to be) logically valid they are also satis�ed by M. To prove that M

satis�es X �!� Y by contradiction, assume X �!� Y is violated by M. Thus, there exists a tick of

�, say �(i), that covers one or more ticks in � and the windowing function of M in these ticks has two

tuples with the same value for X but di�erent values for Y . Since � �C f�1; : : : ; �ng, these ticks are

covered also by a tick of a �k among the �1; : : : ; �n. Hence, M does not satisfy X �!�k Y , and this is

a contradiction. Since this holds for every module satisfying F , we conclude that X �!� Y is logically

valid. 2

12

By using the above four inference axioms, we may derive other inference rules. For example, given

X �!�1 Y and Y �!�2 Z, we may derive X �!glb(�1;�2) Z. (We call this rule the extended transitivity

axiom.) Indeed, since glb(�1; �2) � �1 and glb(�1; �2) � �2, X �!glb(�1;�2) Y and Y �!glb(�1;�2) Z

by descendability. By transitivity, X �!glb(�1;�2) Y Z. Another rule we may derive is as follows: given

X �!�1 Y and X �!�2 Z, we have X �!glb(�1;�2) Y Z. (We call this union axiom). To see this,

we use augmentation to get X �!�1 XY and XY �!�2 Y Z from X �!�1 Y and X �!�2 Z,

respectively. Then by the extended transitivity above, we have X �!glb(�1;�2) Y Z. In summary, we

have the following two additional inference axioms:

Additional Inference Axioms for TFDs:

1. Extended Transitivity: If X �!�1 Y and Y �!�2 Z, then X �!glb(�1;�2) Z.

2. Union: If X �!�1 Y and X �!�2 Z, then X �!glb(�1;�2) Y Z.

Unlike in the case of traditional FDs, the application of the TFD inference axioms on a �nite set F

of TFDs may lead to an in�nite number of temporal functional dependencies. This is due to reexivity

and descendability axioms. It is obvious that the reexivity axiom gives in�nite number of TFDs.

However, these TFDs are trivial ones. The more serious problem is the descendability axiom. The

reason why the descendability axiom gives an in�nite number of TFDs is that given a type (or a set of

types) there may be an in�nite number of types that are (collectively) �ner than the given type (or set

of types). Consider, for example, AcctNo �!day AccumInt. Let dayi be the temporal type that covers

only the i-th day, i.e., dayi(1) maps to the absolute time of the day i, and dayi(j) = ; for all j > 1.

Then clearly, dayi � day and hence dayi �C fdayg for all i � 1. Therefore, by the descendability

axiom, we have AcctNo �!dayi AccumInt for all i � 1. These are in�nite number of TFDs.

To overcome the problem of in�nite number of logically implied TFDs, we ask the following ques-

tions: Does there exist a �nite set F 0 of TFDs which has the property that every TFD logically implied

by F can be derived from F 0 by just one application of the descendability axiom? Can the set F 0 be

e�ectively computed? We answer both questions positively by developing three �nite inference axioms

described below.

Three Finite Inference Axioms for TFDs:

1. Restricted Reexivity: If Y � X , then X �!�Top
Y .

2. Augmentation: If X �!� Y , then XZ �!� Y Z.

13

3. Extended Transitivity: If X �!�1 Y and Y �!�2 Z, then X �!glb(�1;�2) Z.

If a TFD X �!� Y is derived by using the three �nite inference axioms from a set F of TFDs, we then

say F `f X �!� Y . It is easily seen that if F `f X �!� Y , then � is the glb of some temporal types

appearing in F . Since F is �nite, we know that there are only �nite number of TFDs that are derived

from F by using the three �nite inference axioms. We call the set of TFDs that are derived from F by

these Finite Inference Axioms as the \�nite closure" of F . Formally,

De�nition (Finite closure)

Let F be a set of TFDs. The �nite closure of F , denoted F
+
, is the set of all the TFDs derivable from

F by the Three Finite Inference Axioms. More formally, F
+
= fX �!� Y j F `f X �!� Y g.

Consider, for example, F = fA �!� B;A �!� Bg. By the augmentation axiom, we obtain A �!� AB

and AB �!� B from A �!� B and A �!� B respectively. Then by extended transitivity, we have

A �!glb(�;�) B. Thus, A �!glb(�;�) B is in F
+
.

The Three Finite Axioms are sound since each of the three axioms is derived from the Four Inference

Axioms which are sound by Lemma 1. We shall show that the Three Finite Axioms are complete up

to descendability, i.e., if F j= X �!� Y then there exist X �!�1 Y , : : : , X �!�m Y in F
+
such that

� �C f�1; : : : ; �mg.

Theorem 1 The Three Finite Axioms are sound, and complete up to descendability.

Hence, although there may be an in�nite number of TFDs that are logically implied by a �nite set

F of TFDs, the only source of in�niteness is that there may be in�nite number of temporal types that

are collectively �ner than several temporal types which appear in the �nite closure of F .

The soundness in Theorem 1 follows directly from the soundness of the Four Inference Axioms. We

postpone the completeness (up to descendability) proof of the Three Finite Axioms until after we show

how it implies the completeness of the Four Inference Axioms.

Theorem 2 The Four Inference Axioms for TFDs are both sound and complete.

Proof. Soundness is provided by Lemma 1. For completeness, let F be a set of TFDs and X �!� Y a

TFD logically implied by F . By Theorem 1 we know that there exist TFDs X �!�1 Y ,: : : , X �!�k Y

in F
+
such that � �C f�1; : : : ; �kg. By the de�nition of F

+
we know that, for each 1 � i � k, F `f

X �!�i Y and hence, F ` X �!�i Y . Applying the descendability axiom we obtain F ` X �!� Y ,

which concludes the completeness proof. 2

14

We now turn to prove the completeness (up to descendability) of the Three Finite Axioms. First,

we give the following auxiliary operation: For each set F of TFDs and a set S of real numbers, let

�S(F) be the set of regular functional dependencies that have \e�ects" on S. Formally, let

�S(F) = fX ! Y j 9X �!� Y 2 F and 9j (S � �(j))g

Clearly, �;(F) gives the \non-temporal version" of all the TFDs in F .

To prove Theorem 1, we need the following two lemmas. The �rst lemma formalizes an important

relationship between temporal and corresponding nontemporal functional dependencies.

Lemma 2 Let F be a set of TFDs and X �!� Y a TFD such that F j= X �!� Y . Then for all i

such that �(i) 6= ;, we have ��(i)(F) j= X ! Y .

Proof. Let i be a positive integer, with �(i) 6= ;, and r a (non-temporal) relation that satis�es ��(i)(F).

We need only to show that r satis�es X ! Y . Let M be the temporal module (R; �; �), where R is the

relation scheme of r and � is given as follows: �(i) = r and �(j) = ; for each j 6= i. [Since �(i) 6= ;,

M is well de�ned.] We claim that M satis�es F . Indeed, suppose V �!� W is in F . If there does not

exist j such that �(i) � �(j), then V �!� W is satis�ed by M. Otherwise, since there does exist j

such that �(i) � �(j), V ! W is in ��(i)(F). From the fact that r satis�es ��(i)(F), it follows that M

satis�es V �!� W . Thus, M satis�es F . By the hypothesis, M satis�es X �!� Y . In order to show

that r satis�es X ! Y , let t1 and t2 be two arbitrary tuples in r such that t1[X] = t2[X]. We only

need to show that t1[Y] = t2[Y]. By the construction of M, t1 and t2 are both in �(i). Since M satis�es

X �!� Y , by de�nition, t1[Y] = t2[Y] as desired. 2

The next lemma establishes the relationship between the temporal types in a set of TFDs and those

of TFDs derived from the set by using the Three Finite Inference Axioms. We will use the following

notation: For each set G of TFDs, de�ne glb(G) to be the temporal type glb(f�jV �!� W 2 Gg). Note

that glb(G) = �Top if G = ; (see [2]).

Lemma 3 Let F be a set of TFDs and X �!� Y a TFD. If F `f X �!� Y and there is no proper

subset F 0 of F such that F 0 `f X �!�0 Y for any �0, then � = glb(F).

Proof. Since F `f X �!� Y , it is easily seen that glb(F) � � by observing the Three Finite Inference

Axioms. Now we show � � glb(F). Suppose by contradiction that � 6� glb(F). Hence, there exists a

non-empty tick i of � such that �(i) 6� glb(F)(j) for all j. By the de�nition of glb(F), it is easily seen

that there exists V �!� W in F such that �(i) 6� �(j) for all j. Thus, ��(i)(F) is a proper subset

15

of �;(F). By the soundness of the Four Inference Axioms, hence the soundness of the Three Finite

Inference Axioms, we know F j= X �!� Y since F `f X �!� Y . By Lemma 2, ��(i)(F) ` X ! Y .

Hence, there is a proof sequence for X ! Y from ��(i)(F) by using the Armstrong's axioms.4 For each

Armstrong's axiom, we �nd a counterpart in the �nite inference axioms. Also, if Z1 ! Z2 in ��(i)(F)

is used in the proof sequence, we use Z1 �!�0 Z2 in F where �(i) � �0(j) for some j (Z1 �!�0 Z2 in F

is guaranteed by the de�nition of ��(i)(F)). It is easily seen that V �!� W is not used in this process.

Thus, we have (F � fV �!� Wg) `f X �!�0 Y for some �0. This is a contradiction. Therefore,

� � glb(F), and hence � = glb(F). 2

We now establish the completeness up to descendability of the Three Finite Axioms.

Proof. Suppose F j= X �!� Y . Since by de�nition, there exists i such that �(i) 6= ;. By Lemma 2, we

have ��(i)(F) j= X ! Y . Since ��(i)(F) � �;(F), we have �;(F) j= X ! Y . We call a set G of TFDs a

support for X ! Y if �;(G) j= X ! Y . We say that it is minimal if no proper subset of G is a support

for X �! Y . Since �;(F) j= X ! Y , there exists at least one minimal support for X ! Y . We claim:

� For each minimal support F1 of X ! Y , F `f X �!glb(F1) Y .

Indeed, let F1 be a minimal support for X ! Y . Thus, there exists a proof sequence for X ! Y from

�;(F1) by using the Armstrong's axioms (since Armstrong's axioms are complete [9]). By replacing

each FD in �;(F1) in the proof sequence by a corresponding TFD in F1 and replacing each Armstrong's

axiom by the corresponding �nite inference axiom, we know F1 `f X �!�0 Y for some �0. Also, by the

minimality of F1, there is no proper subset F 0
1 of F1 such that F 0

1 `f X �!�0 Y for any �0. It follows

from Lemma 3 that �0 = glb(F1). That is, F1 `f X �!glb(F1) Y , and hence F `f X �!glb(F1) Y .

Let F1, : : : , Fn be all the minimal supports for X ! Y . For each 1 � i � n, let �i = glb(Fi). We

know that F `f X �!�i Y for each 1 � i � n. Hence, X �!�i Y 2 F
+
for each 1 � i � n. We have

only to show that � �C f�1; : : : ; �ng.

Suppose by contradiction that this is not the case (i.e., � 6�C f�1; : : : ; �mg). From the de�nition of

collective �ner-than relation, the following holds:

9i 8k 1 � k � m 8j �(i) 6� �k(j)

This is equivalent to saying that there exists a certain tick i of � such that no tick of �k , for each

4For those who are not familiar with the Armstrong's axioms, the axioms are: (i) Reexivity: X ! Y if Y � X, (ii)

Augmentation: XW ! Y W if X ! Y , and (ii) Transitivity: X ! Z if X ! Y and Y ! Z. The Armstrong's axioms are

sound and complete. That is, for each set functional dependencies, a functional dependency is logically implied by this set

i� it is derived by a proof sequence using the three axioms. See [9] for details.

16

1 � k � m, covers �(i). Clearly, �(i) 6= ;. Two cases arise: (1) �k = �Top for some k and (2) �k 6= �Top

for all k. Case (1) trivially leads to a contradiction since every tick of � is covered by the only tick of

�Top (using the fact that �Top(0) = R). Consider case (2), i.e., �k 6= �Top for all k. In this case, Fk 6= ;

for each k since �k = glb(Fk). Since each �k is the glb of the temporal types appearing in Fk , there exists

at least one TFD V �!� W in Fk such that there is no tick of � covering �(i), i.e., there exists no j

such that �(i) � �(j). Then V ! W 62 ��(i)(F) by de�nition. Hence, �;(Fk) 6� ��(i)(F). This holds for

each k. On the other hand, since F j= X �!� Y and �(i) 6= ;, ��(i)(F) j= X ! Y by Lemma 2. Hence,

��(i)(F) is a non-temporal support for X ! Y . Since F1, : : : , Fm are all the minimal non-temporal

supports for X ! Y , there must exist 1 � k � m such that �;(Fk) � ��(i)(F) This is a contradiction.

Hence, we have shown that if F j= X �!� Y then there exists a set fX �!�1 Y; : : : ; X �!�m Y g � F
+

such that � �C f�1; : : : ; �mg, i.e., the Three Finite Axioms are complete up to descendability. 2

3.2 Closure of Attributes

As in the traditional relational dependency theory, we wish to give a test to verify if a TFD of the form

X �!� B is implied from a set of TFDs. For this purpose we introduce the (temporal) notion of �nite

closures of attributes and give an algorithm to compute the �nite closures. First, the de�nition:

De�nition (Finite closure of attributes)

Let F be a �nite set of TFDs. For each �nite set X of attributes, the �nite closure of X wrt F is de�ned

as

X
+
= f(B; �) j X �!� B 2 F

+
and there is no X �!� B in F

+
such that � � �g

Note that X
+
for each X is a �nite set, since F

+
is �nite.

Proposition 2 Let F be a �nite set of TFDs and X a �nite set of attributes. The following holds:

F j= X �!� B i� there exists f(B; �1); : : : ; (B; �m)g � X
+

such that � �C f�1; : : : ; �mg

Proof. ()) Let U = f�j(B; �) 2 X
+
g. We only need to show that � �C U . Since F j= X �!� B, by

Theorem 1, there exists a set fX �!�1 B; : : : ; X �!�m Bg � F
+
such that � �C f�1; : : : ; �mg. Let

V = f�jX �!� B 2 F
+
g. Clearly, f�1; : : : ; �mg � V and � �C V . By de�nition, U � V and for each

� in V , there exists �0 in U such that � � �0. Since � �C V , it is now clear that � �C U (note that for

an arbitrary set U 0 of temporal types and temporal types �1 and �2 with �1 � �2, � �C U 0 [f�1; �2g

implies � �C U 0 [f�2g).

17

(() If f(B; �1); : : : ; (B; �m)g � X
+
then, by de�nition of X

+
, X �!�i B 2 F

+
for 1 � i � m and,

by de�nition of F
+
, F `f X �!�i B. Since the Three Finite Axioms can be derived by the Four

Inference Axioms, F ` X �!�i B. Applying the descendability axiom, we have F ` X �!� B. Thus,

F j= X �!� B by the completeness of the Four Inference Axioms. 2

From the previous proposition, we know that if we have an e�ective procedure for obtaining the

�nite closure for X and an e�ective procedure for testing the �C relation, we can then e�ectively decide

whether a TFD X �!� B is logically implied by F even if we may have an in�nite number of logically

implied TFDs. In Figure 3, we provide an algorithm for X
+
.

Algorithm for Computing X
+

INPUT: A �nite set of attributes U , a set of functional dependencies F on U , and a set

X � U .

OUTPUT: X
+
, the �nite closure of X with respect of F .

METHOD: We compute a sequence of sets X(0); X(1); : : : whose elements are pairs (at-

tribute, temporal-type).

1. Let X(0) = f(A; �Top) j A 2 Xg.

2. For each TFD A1: : :Ak�!� B1 : : :Bm in F such that f(A1; �1);: : : ; (Ak; �k)g

is a subset of X(i) we compute the set f(Bl; �
0) j 1 � l � m; �0 =

glb(�1; : : : ; �k; �)g. Let f1; : : : ; fr be all the TFDs in F that satisfy the

above condition and Y1; : : : ; Yr the corresponding computed sets. Then

let X(i+1) = X(i) [Y1 [: : :[Yr .

Step 2. is repeated until X(i+1) = X(i). The Algorithm returns the set

X(i) n f(B; �0) 2 X(i) j 9� (B; �) 2 X(i) with �0 � �g

Figure 3: Algorithm for computing X
+
.

Theorem 3 The algorithm in Figure 3 correctly computes X
+
in a �nite number of steps.

See Appendix A.1 for the proof.

Example 3 As an example, let wr be the temporal type of \recent weeks" de�ned as follows: wr(1)

maps to the week starting July 4, 1994, and wr(2) to the week after that, and so on. Now let F =

18

fA �!wr B;B �!month Ag: It is easily seen that A
+
= f(A; Top); (B; wr)g; B

+
= f(B; Top); (A; month)g

and AB
+
= A

+
[B

+
. 2

4 Temporal Normalization

In this section, we extend the traditional normalization theory to temporal databases. Thus, TFDs not

only capture certain type of constraints in temporal databases, but can also be used to eliminate data

redundancy and other anomalies in temporal relations. We begin by reconsidering the temporal module

(ACCOUNTS, second, �) given in Example 1.

Example 4 As discussed in the introduction, the temporal module scheme (ACCOUNTS, second) given

in Example 1 should be decomposed into two temporal module schemes (TRANSACTION-INFO, second)

and (ACCUM-INTEREST, day) where

TRANSACTION-INFO = hAcctNo, Amount, Balancei

and ACCUM-INTEREST = hAcctNo, AccumInti. The time windowing function � given earlier will be also

\decomposed" into two time windowing functions �1 and �2, de�ned as follows:

�1(3=3=93 : 09 : 01 : 00) = fh1001;+1000; 1000ig �2(3=3=93) = fh1001; 0:00ig

�1(3=4=93 : 10 : 01 : 55) = fh1001;�500; 500ig �2(3=4=93) = fh1001; 0:14ig

�1(3=4=93 : 11 : 00 : 00) = fh1001;+200; 700ig

�1(3=4=93 : 12 : 19 : 03) = fh1001;�315; 385ig

�1(3=4=93 : 18 : 00 : 00) = fh1001;�255; 130ig

�1(3=7=93 : 09 : 00 : 00) = fh1001;�10; 120ig �2(3=7=93) = fh1001; 0:19ig

�1(3=7=93 : 12 : 01 : 40) = fh1001;+100; 220ig

2

In order to have meaningful decompositions of temporal modules, we need to de�ne how we can join

decomposed temporal modules to recover original temporal modules. To this end, we de�ne temporal

natural join and temporal projection operations.

De�nition Let M1 = (R1; �; �1) and M2 = (R2; �; �2) be two temporal modules in terms of the same

temporal type �. Then M1 ./T M2, called temporal natural join of M1 and M2, is the temporal module

M = (R1 [R2; �; �), where � is de�ned as follows: For each i � 1, �(i) = �1(i) ./ �2(i); where ./ is the

traditional natural join operation (cf. [9]).

19

Thus, temporal natural join of two temporal modules is obtained by taking the natural joins of

their snapshots. Temporal projection of temporal modules is de�ned similarly. Basically, the projection

of a temporal module is a collection of snapshot projections.

De�nition Let M = (R; �; �) and R1 � R. Then �TR1
(M), called the projection of M on R1, is the

temporal module (R1; �; �1), where �1 is de�ned as follows: For each i � 0, �1(i) = �R1
(�(i)); where �

is the traditional projection operation (cf. [9]).

We de�ne the projection of a set of TFDs analogously to the standard de�nition of projection of a

set of functional dependencies.

De�nition Given a set of TFDs F , the projection of F onto a set of attributes Z, denoted �Z(F), is

the set of TFDs X �!� Y logically implied by F such that XY � Z.

Note that the projection only takes into account the attributes, not the underlying temporal types.

As we have seen for F , �Z(F) can also be in�nite. However, since we know how to compute a �nite

cover of the closure of attributes, we can compute a �nite cover of the projection of F on Z as follows:

Let

�Z(F) = fX �!� A1 � � �Am j XA1 � � �Am � Z and (Ai; �) 2 X
+
for 1 � i � mg:

Clearly, �Z(F) is a �nite set. By the completeness of the Three Finite Inference Axioms and the

de�nition of F
+
, we can easily see that �Z(F) is a \�nite cover" of �Z(F). That is:

Proposition 3 The following holds:

�Z(F) = fX �!�0 A1 � � �Am j X �!�i Ai 2 �Z(F) for 1 � i � m and �0 �C f�1; : : : ; �mgg:

Before we de�ne lossless decompositions, we need �rst to introduce three auxiliary operations,

Down, Up and [T, on temporal modules.

De�nition For M = (R; �; �) and temporal types �1 and �2, let Down(M; �1) and Up(M; �2) be the

temporal modules (R; �1; �1) and (R; �2; �2), respectively, where �1 and �2 are de�ned as follows: For

each i � 1, let

�1(i) =

8>>>><
>>>>:

; if �1(i) = ;

; if there is no j such that �1(i) � �(j)

�(j) where �1(i) � �(j) otherwise

20

and

�2(i) =
[

j:�(j)��2(i)

�(j):

Note that if there is no j such that �(j) � �2(i), then �2(i) = ;.

Intuitively, function Down maps a temporal module in terms of temporal type � to a temporal

module in terms of a �ner temporal type such that each tuple that is valid at tick i in � is taken to

be valid at all ticks j in �1 provided �1(j) � �(i). For example, consider a temporal module M that

registers faculty ranks in terms of the temporal type academic year. Then Down(M; month) converts

M into a temporal module in terms of month with a windowing function that gives for each month the

rank of the faculty member during the corresponding academic year. Similarly, the function Up is used

to obtain a temporal module in terms of temporal type �2 from a temporal module that is in terms of

a �ner temporal type � by taking each fact that is valid in a tick i in terms of � to be valid in tick

j in terms of �2 provided �(i) � �2(j). Consider a temporal module M that registers faculty ranks in

terms of the temporal type month. Then Up(M; academic-year) is a temporal module that registers

faculty ranks in terms of academic year, with a windowing function that gives for an academic year all

the rank(s) of faculty members during the months of the academic year.

De�nition Given temporal modules M1; : : : ; Mn over the same relation R and temporal type �, their

union is de�ned as the new module M = (R; �; �), where �, for each tick, is simply the union of the

values of the windowing functions for the same tick in the other modules. Formally, if Mj = (R; �; �j)

for j = 1; : : : ; n, then M1 [T : : :[T Mn = (R; �; �) where, for each i � 1 �(i) =
S
1�j�n �j(i).

De�nition We say that (R; �1); : : : ; (R; �n) is a lossless union decomposition of (R; �) if for each

module M on (R; �), M = Up(Down(M; �1); �)[T : : :[T Up(Down(M; �n); �)).

In particular, we observe that if �1; : : : ; �n are types such that their non-empty ticks form a partition

of the non-empty ticks of �, the above condition is satis�ed. This intuitively says that we can always

decompose a scheme so that the union of the ticks in the di�erent temporal types is the original type

and there is no intersection in the sets of ticks. As an example, if we have a scheme in days, we can

decompose it in two schemes, such that in the type of the �rst we just consider days from Monday

through Friday and in the other we consider Saturdays and Sundays. Our modules can be represented

in the original scheme or in the two new schemes without losing information. Notice, however, that

this decomposition may not preserve temporal functional dependencies. Indeed, consider the TFD

A �!week B, where A and B are the attributes of the module scheme, and assume we store information

21

by the two schemes as above. Suppose the facts (a; b) and (a; c) hold on Monday and Sunday of a

particular week, and there are no other facts in the module. Clearly, the two modules satisfy the TFDs

separately, but not collectively. We will study dependency-preserving decompositions in Section 6.

We now de�ne the general notion of a lossless decomposition of a temporal module using the three

auxiliary operations Down, Up and [T.

De�nition (Lossless decomposition)

Let (R; �) be a temporal module scheme and F a set of TFDs. A �nite set � of temporal module

schemes is said to be a lossless decomposition of (R; �) wrt F if there exist subsets �1; : : : ; �m of � such

that for each temporal module M on (R; �) that satis�es all TFDs in F, we have

M = Join(�1)[T � � � [T Join(�m);

where

Join(�i) = Down(Up(�T
Ri
1

(M); �i1); �) ./T � � � ./T Down(Up(�
T
Ri
k
(M); �ik); �)

for each �i = f(Ri
1; �

i
1); : : : ; (R

i
k; �

i
k)g.

Example 5 Now we are in a position to describe how we can recover the ACCOUNTS temporal mod-

ule from TRANSACTION-INFO and ACCUM-INTEREST temporal modules. Since ACCOUNTS is in terms of

temporal type second, we take the temporal join of TRANSACTION-INFO and Down(ACCUM-INTEREST,

second) to recover ACCOUNTS. 2

We introduce an equivalent notion of lossless decomposition for technical reasons. Suppose � is a

lossless decomposition of (R; �) and M = (R; �; �) is a temporal module on (R; �). Then for each tick i of

�, the relation �(i) can always be recovered from the projections of M over the decomposition. This leads

to the notion of tickwise lossless decomposition. For simplicity of presentation, we introduce the symbol

MaxSub; we use it as a function such that for each tick i of � and a set � of schemes, MaxSub(�(i); �)

is the maximal subset of � such that for each temporal type associated with these schemes there exists

a tick covering tick i of �. That is,

MaxSub(�(i); �) = f(R; �) 2 � j �(i) � �(j) for some jg:

This allows us to consider only that part of the decomposition which contributes to the recovery of the

original module at tick i of �.

De�nition (Tickwise lossless decomposition)

Let � be a decomposition of schema (R; �) and F a set of TFDs. The decomposition � is said to

22

be a tickwise lossless decomposition of (R; �) wrt F if for each nonempty tick k of �, the follow-

ing holds: If MaxSub(�(k); �) = f(R1; �1); : : : ; (Rm; �m)g and, for each 1 � i � m, (Ri; �; �i) =

Down(Up(�TRi
(M); �i); �) and ki is the integer such that �(k) � �i(ki), then �(k) = �1(k1) ./ : : : ./

�m(km):

The above de�nition intuitively says that for each tick of � we can reconstruct the original module

from its decomposition.

Proposition 4 Let (R; �) a temporal module scheme, F a set of TFDs, and � a decomposition of

(R; �). Then � is a lossless decomposition of (R; �) wrt F i� it is a tickwise lossless decomposition of

(R; �) wrt F .

Proof. First we establish the \if" (() part. Let P = fMaxSub(�(k); �) : �(k) 6= ;g. Since

MaxSub(�(k); �) is a subset of � for each non-empty tick k of � and � is a �nite set, it follows that

that P is also a �nite set. Assume P = f�1; : : : ; �mg. Now let M = (R; �; �) be a temporal module that

satis�es F and, for each 1 � i � m, let

Mi = Down(Up(�T
Ri
1

(M); �i1); �) ./T � � � ./T Down(Up(�
T
Ri
n
(M); �in); �);

assuming �i = f(Ri
1; �

i
1); : : : ; (R

i
n; �

i
n)g. Let 1 � i � m. Suppose Mi = (Ri; �i; �i). It follows from the

de�nition of Mi that �i = �. Furthermore, since � is tickwise lossless wrt F , we know that Ri = R and

�i(k) = �(k) for each non-empty tick k withMaxSub(�(k); �) = �i. Let M0 = (R; �; �0) = M1[T � � �[TMm.

It thus follows that �(k) � �0(k) for each non-empty tick k of �. Let k be a non-empty tick of �. We

show that �0(k) � �(k). To do this, assume �0(k) 6� �(k). Thus, there exists a tuple t such that t

is in �0(k) but not in �(k). Without loss of generality, suppose MaxSub(�(k); �) = �1 and we know

�(k) = �1(k) by the fact that � is tickwise lossless. Hence, t is not in �1(k) since t is not in �(k). Let

M00 = (R; �; �00) = M2 [T � � � [T Mm. Clearly, t must be in �00(k) by the de�nition of [T. Hence, there

must exist j with 2 � j � m such that t is in �j(k). This is impossible. Indeed, since �j 6= �1, there

exists (S; �) in �j such that �(k) 6� �(l) for all l. Let Ms = (S; �; �s) = Down(Up(�TS (M); �); �). Since

�(k) 6� �(l) for all l, we know �s(k) = ; by the de�nition of Down. Thus, �j(k) = ; because �j(k) is

the result of joining �s(k) with other relations and �s(k) = ;. Therefore, t cannot be in �j(k) for each

2 � j � m. This is a contradiction and we conclude that �(k) = �0(k). Hence, � = �0 and M0 = M. This

shows that � is a lossless decomposition of (R; �) wrt F .

We now establish the \only-if" ()) part. Assume that � is a lossless decomposition of (R; �). Then

there exist subsets �1, : : : , �m of � having the condition given in the de�nition. Let M = (R; �; �) be a

23

temporal module that satis�es F and, for each 1 � i � m, let

Mi = Down(Up(�T
Ri
1

(M); �i1); �) ./T � � � ./T Down(Up(�
T
Ri
n
(M); �in); �);

assuming �i = f(Ri
1; �

i
1); : : : ; (R

i
n; �

i
n)g. Let 1 � i � m. Suppose Mi = (Ri; �i; �i). It follows from the

de�nition of Mi that �i = �. Furthermore, since �1, : : : , �m satisfy the condition given in the de�nition

of lossless decomposition, it is easily seen that Ri = R. Let k be a non-empty tick of �. It is also easily

seen that, for each 1 � j � n, if �(k) 6� �ij(lj) for all lj, then �i(k) = ; by the de�nition of the Down

operation. Thus, if �i(k) 6= ;, then �(k) � �ij(lj) for some lj and hence, �i �MaxSub(�(k); �). Assume

that �i = f(Ri
1; �

i
1); : : : ; (R

i
p; �

i
p)g, and let (Ri

j; �; �
i
j) = Down(Up(�Ri

J
(M); �ij); �) for each 1 � j � p.

Since �i � MaxSub(�(k); �), for each 1 � j � p, there exists lj such �(k) � �ij(lj). By de�nition of

Up and Down, �Ri
j
(�(k)) � �ij(k) for each 1 � j � p. Therefore, �(k) � �i1(k) ./ � � � ./ �

i
p(k). Since

�i(k) = �i1(k) ./ � � � ./ �
i
p(k), we have �(k) � �i(k). Furthermore, since �(k) = �1(k)[� � �[�m(k) by the

lossless property of the decomposition �, it is easily seen that �i(k) � �(k). Hence, we have �i(k) = �(k).

Suppose now that a scheme (Rj ; �j) in � � �i and (Rj ; �j) is in MaxSub(�(k); �). Since (Rj ; �j) is in

MaxSub(�(k); �), there exists q such that �(i) � �j(q). Hence, by the de�nition of Up and Down,

�Rj
(�(k)) � �j(k). It is easily seen that �(k) = �(k) ./ �j(k). Therefore, �(k) = �i(k) ./ �j(k). That

is, given a scheme in MaxSub(�(k); �) that is not in �i, the join of �i(k) with the windowing function

obtain from this scheme will keep the value of �(k). Therefore, we conclude that the decomposition �

is tickwise lossless. 2

The following theorem gives a su�cient condition for a lossless decomposition.

Theorem 4 Let F be a set of TFDs. The decomposition (R1; �) and (R2; �) of (R1 [R2; �), where

� � �, is lossless wrt F if for all i1 and i2, �(i1; i2) � �(j) for some j implies that R1 \ R2 ! R2 is in

��(i1;i2)(F).

Proof. Let M = (R1[R2; �; �) be a temporal module that satis�es all TFDs in F . Let (R1; �; �1) = �TR1
(M)

and (R2; �; �2) = Up(�TR2
(M); �). We only need to show that for each positive integer k, �(k) = �1(k) ./

�2(k0), where �(k) � �(k0), since this implies that the decomposition is tickwise lossless and hence

lossless by Proposition 4. Let k be a positive integer. If �(k) = ;, we have �(k) = ; and �1(k) = ;.

Therefore, �(k) = �1(k) ./ �2(k0) holds. Now suppose �(k) 6= ;. Since � � �, there exists a positive

integer k0 such that �(k) � �(k0). It is easily seen that �(k) � �1(k) ./ �2(k
0) by the de�nitions of

temporal projection, Up and the natural join. Now assume that a tuple t is in �1(k) ./ �2(k
0). We

only need to show that t is in �(k). Since t is in �1(k) ./ �2(k0), there exists t1 in �1(k) and t2 in �2(k0)

24

such that t[R1] = t1 and t[R2] = t2. By de�nition, there exists t01 in �(k) such that t01[R1] = t1 and

there exists k00 and t02 in �(k00) such that �(k; k00) � �(k0) and t02[R2] = t2. Since �(k; k00) � �(k0), by

hypothesis, we know that R1 \ R2 ! R2 is in ��(k;k00)(F). Since R1 \ R2 � R1 and R1 \ R2 � R2, we

have t01[R1 \ R2] = t1[R1 \ R2] = t[R1 \ R2] = t2[R1 \ R2] = t02[R1 \ R2]. It follows from (1) t 2 �(k)

and t02 2 �(k00) and (2) R1 \ R2 ! R2 2 ��(k;k00)(F) that t
0
1[R2] = t02[R2]. Combining this with the fact

t[R1] = t1 = t01[R1], we know t[R1 [R2] = t01[R1 [R2], i.e., t = t01. Thus, t is in �(k) as desired. 2

From this theorem, it follows that the decomposition given in Example 1 is lossless.

5 Temporal BCNF

In this section, we de�ne the temporal analog of Boyce-Codd Normal Form (BCNF). The temporal

BCNF (TBCNF) retains the spirit of BCNF. That is, TBCNF does not allow any redundancy introduced

by TFDs. We then give a decomposition algorithm that renders lossless TBCNF decomposition for any

given temporal module scheme.

In order to de�ne TBCNF, we need the notion of keys.

De�nition Let F be a set of TFDs de�ned on a temporal module scheme (R; �). A set of attributes

X � R is said to be a temporal superkey of (R; �) if X �!� R is logically implied by the TFDs in F .5

If M is a temporal module on (R; �) and X is a superkey of (R; �), then whenever t1 and t2 are two

tuples with t1[X] = t2[X] for the same tick in �, then t1 = t2.

A temporal superkey X of (R; �) is called a temporal candidate key if for each A in X , X � fAg is

not a temporal superkey of (R; �).

We are now ready to de�ne the concept of temporal BCNF:

De�nition (Temporal BCNF)

A temporal module scheme (R; �), with a set F of TFDs, is said to be in temporal BCNF (TBCNF) if

for each TFD X �!� Y that is logically implied by F , where (a) XY � R, (b) Y 6� X , and (c) at least

one tick of � is covered by some tick of �, the following two conditions hold:

(i) X �!� R is logically implied by F , i.e., X is a superkey of (R; �), and

(ii) For all non-empty ticks i1 and i2 of �, with i1 6= i2, X ! Y 62 ��(i1;i2)(F).

5This notion of temporal superkey in terms of snapshots is closely related to the \proper temporal database" notion in

[13], and is identical to the concept of keys in [3].

25

While the �rst condition is the temporal analog of the traditional de�nition of BCNF, the second

condition disallows redundancy due to temporal functional dependencies. Indeed, we have redundancy

whenever there exists a TFD with a temporal type � such that two ticks of the temporal type of the

module are covered by the same tick of �. In this case if we have two tuples separately on these two

ticks, one of them may have redundant information. Thus, the two conditions for the TBCNF eliminate

all possible data redundancy that may arise by the presence of TFDs.

Example 6 The temporal module scheme (ACCOUNTS, second) in Example 1 is not in TBCNF since

F j= AcctNo �!day AccumInt. However, both (TRANSACTION-INFO, second) and (ACCUM-INTEREST,

day) are in TBCNF. 2

As in the traditional relational theory, decomposition is used to convert temporal module schemes

that are not in TBCNF into schemes that are in TBCNF. Similar to the traditional BCNF, the price

we pay for such a decomposition is that some of the TFDs may not be preserved. We will discuss

dependency-preserving decompositions in Section 6.

5.1 Decomposing temporal module schemes into TBCNF

In this section, we describe an algorithm that decomposes temporal schemes into TBCNF.

In the algorithm we will use two operators to create a new temporal type from a given one. The

�rst one is called the collapsing operator which, given a temporal type � and a positive integer i, gives

a type �c by combining tick i and i+ 1 of � into one tick and retaining all other ticks of �. Formally,

�c is the temporal type de�ned as follows: For all j � 1, let

�c(j) =

8>>>><
>>>>:

�(j) for 1 � j � i� 1

�(i; i+ 1) for j = i

�(j + 1) for j > i

The second operator is called the pruning operator which, given a temporal type � and a positive integer

i, produces a type �d by dropping the tick i of � and keeping all other ticks of �. Formally, �d is the

temporal type de�ned as follows: For all j � 1, let

�d(j) =

8<
:

�(j) for 1 � j � i� 1

�(j + 1) for j � i

Figure 4 presents the TBCNF decomposition algorithm. We note that if a scheme (Ri; �i) is not

in TBCNF wrt �Ri
(F), then there exists a TFD in �Ri

(F) such that one of the two conditions in the

26

Algorithm for TBCNF Decomposition

INPUT: A temporal module scheme (R; �) and a set F of temporal functional depen-

dencies.
OUTPUT: A lossless decomposition � of (R; �) such that each scheme in � is in TBCNF.

METHOD: We compute a sequence �(0); �(1); : : : of decompositions of (R; �):

Step 1. Let �(0) = f(R; �)g.

Step 2. Suppose �(j) is the last set we have computed. If at least one scheme

in �(j) is not in TBCNF we compute �(j+1) as follows. Take a scheme (Ri; �i)

from �(j) that is not in TBCNF and a TFDX �!� A from �Ri
(F) that violates

the TBCNF conditions for this scheme. Let

�(j+1) = (�(j) n f(Ri; �i)g) [f(Ri; �1); (Ri�A; �2); (XA; �3)g;

where �1, �2, and �3 are new temporal types de�ned as follows:

� �1 is obtained from �i by recursively applying the pruning operator to

drop all the nonempty ticks of �i that are covered by some tick of �. If

�1 results in an empty type, then the corresponding scheme, i.e., (Ri; �1),

is not added into �(j+1).

� �2 is the complementary of �1, that is, its ticks are all the ticks of �i that

are covered by some tick of �.

� �3 is obtained from �2 by recursively applying the collapsing operator to

collapse each pair of ticks of �2 that are covered by some tick of �. That

is, each non-empty tick of �3 is a combination of one or more ticks of �2.

Moreover, no two ticks of �3 are covered by a single tick of �.

Step 2 is repeated until each scheme in �(j) is in TBCNF. Then the algorithm

returns �(j).

Figure 4: Algorithm for TBCNF decomposition.

27

de�nition of TBCNF is violated. Thus, the decomposition required at step 2 can always be carried

out. Indeed, since (Ri; �i) is not in TBCNF wrt �Ri
(F), there exists X �!� A in �Ri

(F) such that

one of the two conditions for TBCNF is violated. By Proposition 3, there exists �1, : : : , �n such that

� �C f�1; : : : ; �ng and X �!�j A is in �Ri
(F) for each 1 � j � n. If X is not a superkey of (Ri; �i) (i.e.,

the �rst condition for TBCNF is violated), then clearly each X �!�j A violates the �rst condition for

TBCNF. Now suppose there exist integers k1 and k2, with k1 6= k2, and k such that �i(k1; k2) � �(k)

(i.e., the second condition for TBCNF is violated). Since � �C f�1; : : : ; �ng, there exist j and k0 such

that �(k) � �j(k
0). Hence, �i(k1; k2) � �(k) � �j(k

0), i.e., X �!�j A violates the second condition

for TBCNF. We conclude that if (Ri; �i) is not in TBCNF wrt �Ri
(F), we can always �nd a TFD in

�Ri
(F) that violates the condition for TBCNF.

Theorem 5 The algorithm in Figure 4 always terminates and gives a lossless TBCNF decomposition

of the input temporal scheme wrt the input set of TFDs.

See Appendix A.2 for the proof.

Example 7 We illustrate the algorithm by applying it to the temporal module scheme (ACCOUNTS,

second) of Example 1 wrt the following functional dependencies:

AcctNo �!second Amount Balance AccumInt

and

AcctNo �!day AccumInt:

It is clear that (ACCOUNTS, second) is not in TBCNF since we have AcctNo �!day AccumInt. The

second step of the algorithm determines three new temporal types: �1, �2 and �3. It is easily seen that

�1 will be �Bottom, �2 will be second and �3 will be day. Since �1 is �Bottom, (Ri; �1) is not added into

the decomposition. Therefore, two new schemes are used to replace the original scheme:

((ACCOUNTS, Amount, Balance); second)

and

((ACCOUNTS, AccumInt); day):

Both of these are in TBCNF. 2

As a �nal note on the TBCNF decomposition algorithm, if all TFDs are in terms of the temporal

type of the given module scheme, the algorithm in Figure 4 reduces to the decomposition algorithm of

traditional (non-temporal) BCNF.

28

6 Preservation of Dependencies

It is well-known that in order to eliminate all data redundancy due to (non-temporal) functional de-

pendencies, we have to pay the price of losing some dependencies [9]. Since (non-temporal) BCNF is

a special case of TBCNF, it is no surprise that TBCNF decomposition may not preserve all TFDs.

It is a surprise that even if a module scheme has only two attributes, redundancy may not be totally

eliminated without loosing TFDs.6 As an example, consider the temporal scheme (AB; day) with TFDs

A �!week B and A �!month B. Clearly, (AB; day) is not in TBCNF. By using the TBCNF decompo-

sition algorithm, f(A; day) and (AB; month)g can be the lossless TBCNF decomposition. However, the

TFD A �!week B cannot be enforced in either schemes. In fact, as we show below, there is no way of

enforcing both TFDs without any data redundancy.

In order to formally capture the intuition of \enforcing TFDs", as in the traditional relational design

theory, we de�ne the notion of dependency preservation:

De�nition (Dependency preservation)

Given amodule scheme (R; �), a set F of TFDs, we say that a decomposition � = f(R1; �1); : : : ; (Rk; �k)g

preserves the dependencies in F if, for each module M on (R; �),

Up(�TRi
(M); �i) satis�es �Ri

(F) for each i = 1; 2; : : : ; k implies M satis�es F .

First, we deal with the simple case where each TFD has the same left and right-hand sides (but in

terms of a di�erent temporal type). The example given in the beginning of this section is such a case.

We show how these temporal functional dependencies can be preserved.

Given a temporal type � and a set of TFDs F = fX �!�1 Y; : : : ; X �!�n Y g, let the function

cop(�; F) return a new type � obtained starting with � = � and recursively collapsing each pair of ticks

i1 and i2 such that both of the following conditions are satis�ed:

� X ! Y 2 ��(i1;i2)(F), and

� for all i3, X ! Y 2 ��(i1;i3)(F) [��(i2;i3)(F) implies X ! Y 2 ��(i1;i2;i3)(F).

The cop function gives a temporal type that is the coarsest of all the temporal types � such that

each tick of � is either a tick of � or a composition of a set of ticks of � covered by the same TFD in F ,

and such that f(R; �)g still preserves all TFDs in F .

6Note that if a (non-temporal) relation scheme has only two attributes, then the scheme is always in BCNF, and

therefore has no redundancy at all.

29

For example, given the temporal type day and F = fA �!week B;A �!month Bg, Figure 5 shows

the temporal type cop(day; F). In the �gure, each interval of a temporal type corresponds to a tick of

that type.

day

month

week

cop

absolute time

Figure 5: The cop function (types not to scale).

We now show that this cop function indeed has the required properties.

Proposition 5 Let (R; �) be a module scheme and F = fX �!�1 Y; : : : ; X �!�n Y g a set of TFDs,

with XY � R. Then for each module M = (R; �; �), Up(M; cop(�; F)) satis�es F i� M satis�es F .

Proof. The \if" (() part is straightforward. Indeed, suppose Up(M; cop(�; F)) does not satisfy F .

Then there exist two tuples t1 and t2 such that t1 2 �0(j1) and t2 2 �0(j2) where �
0 is the windowing

function of Up(M; cop(�; F)), j1 and j2 are such that X ! Y is in �cop(�;F)(j1;j2)(F), and t1 and t2 agree

on X but disagree on Y . Since each tick of cop(�; F) is a composition of several ticks of �, we have

ticks i1 and i2 of � such that t1 2 �(i1) and t2 2 �(i2) where � is the windowing function of M, and

�(il) � cop(�; F)(jl) for l = 1; 2. Thus, X ! Y 2 ��(i1;i2)(F). This contradicts the fact that M satis�es

F .

Now consider the \only-if" ()) part.

Since cop(�; F) is obtained by recursively collapsing pairs of ticks provided that the two conditions

are satis�ed, it is su�cient to show that, at each step in the collapsing process, if a module M raised

from the previous version of cop(�; F) to the new cop(�; F) satis�es F then M satis�es F . For simplicity

we consider the �rst step, where � is the type obtained by � only collapsing two ticks.

Suppose by contradiction that M = (R; �; �) does not satisfy F . Hence, there exists X �!�k Y in F

that is not satis�ed. By de�nition, there exist two tuples t1 and t2 and two non-empty ticks i1 and i2 of

� such that t1[X] = t2[X], t1 is in �(i1), t2 is in �(i2), and there exists j such that �(i1; i2) � �k(j), but

t1[Y] 6= t2[Y]. Since each tick of � covered by a tick in at least one of the �1; : : : ; �n is also covered by a

tick of � from its de�nition, there exist ticks k1 and k2 in � such that �(i1) � �(k1) and �(i2) � �(k2).

30

Moreover, since for each k, we have �0(k) =
S
i:�(i)��(k)�(i), then t1 2 �0(k1) and t2 2 �0(k2). We now

consider two cases: k1 = k2 and k1 6= k2. In the �rst case both ticks i1 and i2 are covered by the

same tick k1 = k2 of �. In this case k1 must be the tick obtained by collapsing and the two ticks of

� collapsed must be i1 and i2
7. In this case, it is clear that �(k1) � �k(j). But then, since Up(M; �)

satis�es F it satis�es also X �!�k Y and this is a contradiction since t1[Y] 6= t2[Y]. Consider the other

case, i.e., k1 6= k2. Then, if none of the ticks k1 and k2 of � is the one obtained by collapsing, it means

that �(k1) = �(i1) and �(k2) = �(i2). In this case obviously �(k1; k2) � �k(j) and as for k1 = k2, we

derive a contradiction. The only remaining case is when one of the ticks k1; k2 is obtained by collapsing.

Suppose without loss of generality that �(i2; i3) � �(k2) for some i3 6= i2, i3 6= i1. Then we know that

�(i1) = �(k1). We also know that �(i1; i2) � �k(j). Now, if �(i3) � �k(j) then �(k1; k2) � �k(j) and

as for previous cases, we derive a contradiction. Hence, �(i3) 6� �k(j). In this case we know that the

collapsing of ticks i2 and i3 by cop() implies the existence of a �r 6= �k in f�1; : : : ; �ng and of a tick r1

such that �(i1; i2; i3) � �r(r1). The reason why even tick i1 is covered by r1 is that the condition used by

cop() for collapsing imposes that no ticks of other types overlap with tick r1. If tick r1 would not cover

i1, tick j of �k would violate this condition. From �(i1; i2; i3) � �r(r1) we derive �(k1; k2) � �r(r1).

However, since Up(M; �) satis�es F it satis�es also X �!�r Y and this is a contradiction since we have

two tuples t1 2 �0(k1) and t2 2 �0(k2) such that t1[X] = t2[X] and t1[Y] 6= t2[Y].

We conclude that M must satisfy X �!�k Y and, since this reasoning applies to a generic TFD of

F , it must satisfy F . This concludes the proof. 2

Preservation of TFDs is in conict with elimination of redundancy. Turning back to our example in

the beginning of this section, let � = cop(day; F), where F = fA �!week B;A �!month Bg. Let d1 be

March 31, 1994 and d2 April 1, 1994. Now suppose the tuple t = (a; b) is in both �(d1) and �(d2). This

is redundant. However, d1 and d2 belong to the same week, but they belong to two di�erent months.

Hence, by Figure 5, d1 and d2 are not combined together in calculating �. Hence, these two tuples

remain separate in the new module Up(M; �). If d1 and d2 were in one tick of �, then the decomposition

f(A,day), (AB, �)g of (AB; �) would not preserve dependencies.

In the next section, we de�ne the temporal analog of (non-temporal) 3NF that relaxes, in a restricted

way, the conditions of TBCNF to allow certain types of data redundancy in order to preserve TFDs.

7Note that, at this step, only one tick was obtained by collapsing.

31

7 Temporal third normal form

Temporal third normal form (T3NF) is de�ned as follows:

De�nition (Temporal 3NF)

A temporal module scheme (R, �) with a set F of TFDs is in temporal third normal form (T3NF) if

for each TFD X �!� A that is logically implied by F , where (a) XA � R, (b) A 62 X , and (c) at least

one tick of � is covered by a tick of �, one of the following conditions holds:

(i) A is part of a temporal candidate key of (R, �), or

(ii) X is a temporal superkey of (R, �), and there do not exist i1 and i2, with i1 6= i2, such that

X ! A 2 ��(i1;i2)(F), unless there exists i3, with i3 6= i1, such that X ! A 2 ��(i1;i3)(F) but

X ! A 62 ��(i1;i2;i3)(F).

Turning back to the temporal module scheme (AB, day) with F = fA �!week B;A �!month Bg, we

can easily see that (A; day) and (AB; cop(�; F)) is a lossless T3NF decomposition of (AB; day).

To see the di�erence between T3NF and TBCNF, we consider the temporal module scheme (AB; day)

with TFDs A �!day B and B �!month A. This scheme is in T3NF and, thus, does not require any

further decomposition. In contrast, since B �!month A holds, (AB; day) is not in TBCNF. By the

algorithm in Figure 4, it is decomposed into (AB; month) and (B; day). Although these schemes are in

TBCNF, we can no longer enforce the TFD A �!day B. In this case, the original scheme which is in

T3NF may be preferred over the decomposed schemes in TBCNF.

7.1 Decomposing temporal module schemes into T3NF

In order to present the T3NF decomposition algorithm, we introduce the notions of subtype, partition

of a type and union of subtypes in a partition.

A subtype of a type � is intuitively a type having only a subset of the ticks of �. For example,

Sunday intended as a set of ticks corresponding to days that are Sundays, can be considered a subtype

of day.

De�nition We say that a type �1 is a subtype of a type � if for each positive integer i, �1(i) = �(j)

for some positive integer j.

A partition of a type � is intuitively a set of disjoint subsets such that the set of all their ticks is

32

the set of ticks of �. Referring to the previous example, the set of the seven types fMonday,: : : ,Sundayg

is a partition of the type day.

De�nition We say that a set of types f�1; : : : ; �ng is a partition of type � if:

� each �i with 1 � i � n is a subtype of �

� for each positive integer l, �(l) = �k(j) for some k with 1 � i � n and positive integer j. Moreover

�k(j) 6= �i(r) for each i 6= k and positive integer r.

We can also take the union of two subtypes of the same type generating a new subtype. For example,

Saturday [Sunday is the type whose ticks correspond to days that are only Saturdays and Sundays.

This can be useful if we want to store information concerning only these two days, but still being able

to relate this information with other information taken for di�erent days.

De�nition Given types �1 and �2 that are both subtypes of � we de�ne the union of them as

�1 [�2 such that for each tick of �1 [�2 there exists a tick of �1 or of �2 that is equal to it, and

conversely, for each tick of �1 and of �2 there exists a tick of �1 [�2 that is equal to it. That is,

for all i, (�1 [�2)(i) = �1(j1) or (�1 [�2)(i) = �2(j2) for some j1 and j2, and for all j1 and j2,

�1(j1) = (�1 [�2)(i1) and �2(j2) = (�1 [�2)(i2) for some i1 and i2.

Note that the union of two subtypes of � is still a subtype of � and the set obtained by taking a

partition of � and replacing two subtypes with their union is still a partition of �.

Similar to the traditional 3NF decomposition [9], we use temporal minimal cover for the T3NF

decomposition algorithm.8

De�nition (Temporal Minimal Cover)

Let F be a set of TFDs and NTC(F) the traditional non-temporal minimal cover of �;(F). We say

that G is a (temporal) minimal cover of F if G = fX �!� A j (A; �) 2 X
+
and X ! A 2 NTC(F)g.

As an example, consider the temporal types and TFDs given in Example 3. Clearly, NTC(F) =

�;(F) = fA ! B;B ! Ag. By de�nition, the following set is a temporal minimal cover of F :

fA �!wr B;B �!month Ag; which is F itself as expected.

We are now ready for the T3NF decomposition algorithm.

8For those not familiar with the non-temporal minimal cover, a minimal cover of a set F of FDs is a set Fc of FDs that

is equivalent to F and satis�es the following three conditions [9]: (i) Every right side of a dependency in Fc is a single

attribute; (ii) For no X ! A in Fc is the set Fc � fX ! Ag equivalent to F ; and (iii) for no X ! A in Fc and proper

subset Z of X is (F � fX ! Ag) [fZ ! Ag equivalent to F .

33

Algorithm for T3NF Decomposition

INPUT: A temporal module scheme (R; �) and a set F of functional dependencies.

OUTPUT: A lossless decomposition � = (R1; �1); : : : ; (Rn; �n) such that each (Ri; �i) is in

T3NF.

METHOD: 1. Let MinCov(F) be a temporal minimal cover of F . From the set of

all types f�1; : : : ; �lg appearing in the TFDs of MinCov(F), compute a

partition P = f�1; : : : ; �mg of � as follows.

Starting with P (0) = f�g, for each �i in the TFDs starting from i = 1 to

i = l, get P (i) substituting each �k in P (i�1) with �k1; �k2, where �k1 is

obtained by �k dropping all nonempty ticks contained in �i and �k2 is the

complementary type, i.e., the type having only those ticks. P = P (l) will

be the desired partition. For each nonempty tick j of �, there is one and

only one type �k in P (l) with a tick s covering it. Moreover, �(j) = �k(s).

For each �k in P de�ne the seta

F�k = fX �!� A j X �!� A 2 MinCov(F) and 9j; i �k(j) 6= ; ^

�k(j) � �(i)g.

2. Let � = ;. For each X ! A in �;(MinCov(F)), given

� f�r; : : : ; �sg = f�k 2 P j 9�i s.t. X �!�i A 2 F�kg and

� FX!A = fX �!�i A j 9�k 2 P s.t. X �!�i A 2 F�kg,

add (XA; cop(�r [� � � [�s; FX!A)) to �.

3. For each �k in P add (Z; �k) to � where Z is a temporal candidate key of

(R; �k), if there is no (V; �r) in �, with Z � V and �k a subtype of �r.

4. If (X; �) and (Y; �) with X � Y are both in �, drop (X; �) from �.

Furthermore, if (X; �1) and (X; �2) are both in � and �1 and �2 are both

subtypes of a temporal type, drop (X; �1) and (X; �2) but add (X; �1[�2).

This last step may be repeated until no change can be made.

aThese sets are easily obtained by simply associating to �k2 the TFDs with type �i at each

step of calculating P .

Figure 6: Algorithm for T3NF decomposition.

34

Theorem 6 The algorithm in Figure 6 always terminates and gives a lossless T3NF decomposition of

the input temporal module scheme. Furthermore, the decomposition preserves dependencies.

A proof is supplied in Appendix A.3.

We illustrate the T3NF decomposition algorithm by continuing the example given before Theorem 6.

Assume (AB; day) is our temporal module scheme. The minimal cover of F is F itself. Therefore,

�;(MinCov(F)) = fA ! B;B ! Ag. For step 1, we use the two temporal types: month and wr to

partition temporal type day. Here, day is partitioned into two types: dp and dr, i.e., the part days

(the days before July 4, 1994) and the recent days (the days on and after July 4, 1994). Thus, Fdp =

fB �!month Ag and Fdr = F . Now for A ! B and B ! A in �;(MinCov(F)), we create the module

schemes (AB; cop(dr; FA!B) and (AB; cop(dp[dr; FB!A)), respectively. Note that cop(dr; FA!B) = wr

and cop(dp[dr; FB!A) = month. Hence, we have created the module schemes (AB; wr) and (AB; month).

As the �nal step, we create (B; dp) and (B; dr), which is combined into one temporal scheme (B; day).

In summary, the T3NF decomposition of (AB; day) is (B; day), (AB; wr) and (AB; month). All three

new schemes are in T3NF and the decomposition is lossless and preserves dependencies.

8 Conclusion

This paper introduced temporal functional dependencies, a type of natural temporal constraint. To

reduce data redundancy arising from these dependencies, temporal normal forms and their decomposi-

tion algorithms were given. These normal forms and algorithms are proper extensions of the traditional

normal forms and algorithms in that if all data are in one tick of a temporal type, then the temporal

normal forms and their algorithms reduce to their non-temporal counterparts.

To build e�ective procedures for the algorithms in the paper, certain operations on temporal types

must be e�ective. In the algorithm for X
+
, we needed to calculate the glb of a �nite number of temporal

types; also, we needed to know if � � � for given temporal types � and �. In the TBCNF decomposition

algorithm, given two temporal types � and �, we needed temporal types �1, �2 and �3 that are basically

obtained from a partition of temporal types and from combining certain ticks of a give temporal type.

Finally, in the T3NF algorithm, we needed to compute the cop function. Because our set of temporal

types is uncountably in�nite, it does not yield e�ective procedures for these operations. However, for

realistic systems, many (in�nite) temporal types can be �nitely described in a way that these operations

are e�ective. For example, for periodic temporal types9 above operations do have e�ective procedures.

9A temporal type is periodic if after certain ticks, each tick is only a shift (of a �xed length) of some previous tick.

35

Note that the every-day temporal types like week, month, etc. are all periodic.

A basic structure used in the paper is the temporal modules. It is important to emphasize that

the temporal modules are rather general. Results of the paper are readily applicable to all temporally

ungrouped models [1]. It will be interesting, as a future research problem, to apply the concepts and

methods to temporally grouped relational models [1].

Our work is set in the framework of a particular temporal type system. Since a temporal type

is a monotonic mapping from positive integers to the power set of the real numbers, in this type

system, the time is always positive, and every tick of a temporal type consists of an arbitrary set of

real numbers. These choices, however, are not entirely inherent to the results presented in the paper;

they are motivated by our desire for a simpler and intuitively appealing presentation of the results.

The results of this paper hold for a more general de�nition of temporal type using all the integers to

represent time ticks. In fact, the only requirement on the temporal types we used in the paper is the

following: A temporal type is a set of pairwise non-intersecting sets. The results of the paper should

hold with any type system with this property.

Temporal types generated by the TBCNF and T3NF decomposition algorithms may be quite com-

plex and not intuitive to users. This problem can be solved however by implementing a conceptual

database level that allow the users to view the data, update and pose queries assuming that the data

is in terms of basic temporal types they intuitively understand. At the lower level, transparent to the

users, the underlying implementation may use complex temporal types to facilitate the removal of data

redundancy. This idea is similar to views of traditional relational databases. The exact understanding

and implementation of this idea requires further investigation.

Finally, we note that data redundancy exists in spatial data, for example, in geographic information

systems due to constraints similar to TFDs. To understand the analogy, let a spatial type be de�ned

as a static collection of spatial objects, like states, counties, cities, etc. Consider a spatial re-

lation (Company, Branch-Coordinates, Supplies-Contractor) with a spatial FD Company �!state

Supplies-Contractor, which intuitively states that within a state boundary, all branches of a company

have to use the same supplies contractor. Since the same supplies contractor is repeated for each branch

in the same state, we have data redundancy. We may apply a technique that is very similar to what we

have developed for the temporal case, and obtain the decomposition (Company, Branch-Coordinates)

and (State, Supplies-Contractor).

Formally speaking, a temporal type � is periodic if there exist M and m such that for each k �M , �(k) = �(k �m).

36

References

[1] J. Cli�ord, A. Croker and A. Tuzhilin. On the completeness of query languages for grouped and

ungrouped historical data models. ACM Transactions on Database Systems, 19(1):64{116. March

1994.

[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press,

Cambridge, Great Britain, 1990.

[3] C. S. Jensen, R. T. Snodgrass, and Michael D. Soo. Extending normal forms to temporal relations.

Technical Report TR 92{17, University of Arizona, July 1992.

[4] F. Kabanza, J-M. Stevenne and P. Wolper. Handling in�nite temporal data. In Proceedings of 9th

ACM Symposium on Principles of Database Systems. Nashville, Tennessee. April, 1990.

[5] N. Lorentzos and V. Kollias. The handling of depth and time intervals in soil-information systems.

Computers and Geosciences, 15(3):395{401, 1989.

[6] S. B. Navathe and R. Ahmed. A temporal relational model and a query language. Information

Sciences, 49:147{175, 1989.

[7] M. Niezette and J. Stevenne. An E�cient Symbolic Representation of Periodic Time. First

International Conference on Information and Knowledge Management. Baltimore, MD. November,

1992.

[8] A. Segev and A. Shoshani. The representation of a temporal data model in the relational envi-

ronment. In Proceeding of the 4th International Conference on Statistical and Scienti�c Database

Management, 1988.

[9] J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press,

Rockville, MD. 1988.

[10] V. Vianu. Dynamic functional dependencies and database aging. JACM, 34(1):28{59, 1987.

[11] X.S. Wang. An algebraic query language on federated temporal databases. Technical Report

ISSE-TR-94-107. Department of Information and Software Systems Engineering, George Mason

University. June 1994.

37

[12] X.S. Wang, S. Jajodia, and V.S. Subrahmanian. Temporal modules: An approach toward feder-

ated temporal databases. In Proceedings of 1993 ACM SIGMOD International Conference on the

Management of Data, Washington, D.C., 1993.

[13] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with granularity of time in temporal databases.

In Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering, Trondheim, Norway,

may 1991.

Appendix

A.1 Proof of Theorem 3

Proof.

Termination. Let f�1; : : : ; �ng be the set of types appearing in F and UT = f(A; �) j A 2 U and � =

glb(�s; : : : ; �t) where f�s; : : : ; �tg � f�1; : : : ; �n; �Topgg. UT is a �nite set, since U is �nite and the set

of types appearing in F is also �nite. Since X(0) � : : : � X(i) � : : : � UT we must eventually reach i

such that X(i) = X(i+1).

Correctness. Let Z be the set returned by the algorithm. We need to show that Z = X
+
. Suppose i is

the integer in the algorithm such that X
(i)

= X
(i+1)

. We �rst show the following:

A. (B; �) 2 X
(i)

implies X �!� B 2 F
+

We prove by induction on the number j of iterations of step 2 in the algorithm that if (B; �) 2 X(j),

for some j � 0 then X �!� B 2 F
+
.

Basis : For j = 0 the set contains only pairs (Ai; �Top) such that Ai 2 X . If Ai 2 X then, by restricted

reexivity, F `f X �!�Top
Ai and, hence X �!�Top

Ai 2 F
+
.

Induction: Let j > 0 and suppose this is true for j. We want to prove that if (B; �) 2 X(j+1)

then X �!� B 2 F
+
. The algorithm computes X(j+1) in step 2. If (B; �) is also in X(j) then, by

the induction hypothesis, X �!� B 2 F
+
. Otherwise, (B; �) 2 X(j+1), but (B; �) 62 X(j). From

step 2, (B; �) 2 Y . Since (B; �) 2 Y , it must be in one of Y1; : : : ; Yr and therefore, there exists a

TFD A1 : : :Ak �!�0 B1 : : :Bm in F such that f(A1; �1); : : : ; (Ak; �k)g is a subset of X(j) and B is

one of the B1 : : :Bm. Moreover � = glb(�1; : : : ; �k; �0). By induction hypothesis, F ` X �!�i Ai

for each 1 � i � k. By union rule, F ` X �!glb(�1;:::;�k) A1 : : :Ak. By extended transitivity, F `

X �!glb(�1;:::;�k;�0) B1 : : :Bm. By restricted reexivity, B1 : : :Bm �!�Top
B and, �nally, by extended

transitivity, X �!glb(�1;:::;�k;�0) B. Since restricted reexivity and extended transitivity are Finite

38

Inference Axioms and the union rule is derived by augmentation and extended transitivity that are

both Finite Inference Axioms, we have F `f X �!glb(�1;:::;�k;�0) B. Since � = glb(�1; : : : ; �k; �
0), by

de�nition of F
+
, X �!� B 2 F

+
concluding the induction proof. Applying the result proved by

induction with X(j) = X(i) we obtain that (B; �) 2 X(i), where X(i+1) = X(i), implies X �!� B 2 F
+
.

We now prove the following claim:

B. If F ` X �!� B and � = glb(F 0) where F 0 is a minimal support for X ! B, then (B; �) is in

X(i).

Since F 0 is a minimal support for X ! B, by the standard completeness theorem, we know that

�;(F
0) ` X ! B. By the minimality of F 0 we know that all of the dependencies in �;(F

0) are used in

the derivation. Since each FD is used, we know that if C1 : : :Cr ! W is a FD in �;(F
0) then either

Ci � X or there exists a FD V ! CiY in �;(F
0). Indeed, if this is not the case C1 : : :Cr ! W cannot

be used in the derivation of X ! B. Let �(F 0) be a sequence of the FDs in �;(F
0) such that:

C1 : : :Cr ! W 2 �(F 0) and Ci 6� X with 1 � i � r

implies that

V ! CiY 2 �(F 0) and V ! CiY precedes C1 : : :Cr ! W in �(F 0).

We prove by induction on the length n of �(F 0) that if F ` X �!� B, F 0 is a minimal support for

X ! B, and � = glb(F 0) then (B; �) is in X(n).

If n = 0 it means that F 0 = ;. This implies � = �Top, and B � X . In this case we know that (B; �Top)

is in X(0). Assume this is true for 0 < n � q. We prove it for q + 1. The last element of �(F 0) must be

a functional dependency C1 : : :Cr ! W such that B 2 W . Consider the subsequence �� obtained by

dropping C1 : : :Cr ! W from �(F 0). By the ordering on the sequence we know that for each Ci with

1 � i � r either Ci � X or there exists V ! CiY in ��. If Ci � X we know that (Ci; �Top) 2 X(0)

and hence (Ci; �Top) 2 X(q). If V ! CiY 2 ��, there exists a minimal support Fi � F 0 for X ! Ci

such that all the FDs in �;(Fi) are in ��. Hence, by induction hypothesis, we have that (Ci; �i) 2 X(q)

with �i = glb(Fi). Since �;(F
0) is derived from F 0, there exists a TFD C1 : : :Cr �!�0 W in F 0

for some temporal type �0. Since there is a (Ci; �i) in X(q) for each 1 � i � r, at step q + 1 the

algorithm must consider the TFD C1 : : :Cr �!�0 W and the pair (B; �) with � = glb(�1; : : : ; �r; �
0)

will appear in X(q+1). Note that �i = glb(Fi) for 1 � i � r and we know that Fi � F 0. Hence,

F1 [: : :Fr [fC1 : : :Cr �!�0 Wg � F 0. Then glb(F 0) � glb(�1; : : : ; �r; �
0) = �. However, since F 0 is

a minimal support we know that the algorithm must have used all the TFDs in F 0. Hence it must be

� � glb(F 0) and using glb(F 0) � � we derive � = glb(F 0). This concludes the induction proof.

As the third step of the proof, we show

39

C. If X �!� B is in F
+
, then � � glb(Fi), for some minimal support Fi for X ! B.

Suppose by contradiction that � 6� glb(Fi) for all minimal support Fi for X ! B. Let F1, : : : , Fm be

all the minimal supports for X ! B. Then for each 1 � i � m, there exist j and Vi �!�i Wi in Fi

such that ; 6= �(j) 6� �i(k) for all k. Thus, for all 1 � i � m, there exists j such that �;(Fi) 6� ��(j)(F),

where ��(j)(F) = fV �!� W 2 F j�(j) � �(l) for some lg. Since X �!� B is in F
+
, by the Theorem 1,

we know F j= X �!� B. Hence, by Lemma 2, for all j such that �(j) 6= ;, we have ��(j)(F) ` X ! B.

Hence, there exists a minimal support F 0 for X ! B such that �;(F
0) � ��(j)(F). However, we

know that each �;(Fi) 6� ��(j)(F) for all the minimal support Fi for X ! B. This is a contradiction.

Therefore, � � glb(Fi) for some minimal support Fi for X ! B.

As the fourth step of the proof, we show the following:

D. Z � X
+
.

Assume by contradiction that there exists (B; �) 2 Z but (B; �) 62 X
+
. Since (B; �) is in Z and hence

in X
(i)
, we have X �!� B 2 F

+
by A. By C, we know that exists a minimum support Fi for X ! B

such that � � glb(Fi). We also know that � 6� glb(Fi), since otherwise, (B; �) is removed because

(B; glb(Fi)) is in F
+
for all minimal support Fi for X ! B by B. Since � � glb(Fi) and � 6� glb(Fi), we

know � = glb(Fi). Now since (B; �) 62 X
+
but X �!� B 2 F

+
, by the de�nition of X

+
, we know there

exists � such that X �!� B is in F
+
and hence, by C, there exists a minimal support Fj for X ! B

such that � � glb(Fj). Hence, � � � � glb(Fj). This is a contradiction since we know that � 6� glb(F 0)

for all minimal support F 0 for X ! B. Therefore, D holds.

As the last step, we establish:

E. X
+
� Z.

We �rst show X
+
� X

(i)
. Assume (B; �) is in X

+
. By de�nition, X �!� B is in F

+
and there exists no

� with � � � such that X �!� B is in F
+
. Hence, � � glb(Fi) for some minimal support Fi for X ! B

by C. We know � 6� glb(Fi). Indeed, since (B; glb(Fi)) is in X
(i)

and by A, we know X �!glb(Fi) B

is in F
+
. Hence, (B; �) cannot be in X

+
by de�nition if � � glb(Fi). Therefore, � = glb(Fi). Since

we know (B; �) = (B; glb(Fi)) is in X
(i)

by B, we have X
+
� X

(i)
because (B; �) is a generic element

of X
+
. Now we show E. Assume by contradiction that there exists (B; �) in X

+
but not in Z. Since

(B; �) 2 X
+
, we have (B; �) in X

(i)
since X

+
� X

(i)
. By the fact that (B; �) is not in Z and (B; �) is

in X
(i)
, we know there exists � such that (B; �) in Z, with � � �, by the de�nition of Z, and hence in

X
(i)
. By D, we know (B; �) is in X

+
. This is a contradiction since (B; �) is in X

+
and (B; �) is also

in X
+
with � � �. Hence, we have shown X

+
� Z.

40

By combining D and E, we know that the theorem holds. 2

A.2 Proof of Theorem 5

Before showing the correctness of the above algorithm, we �rst present the following preliminary result.

Lemma 4 Let (R; �) be a temporal module and F a set of TFDs.

Let �1 = f(R1; �1); : : : ; (Rn; �n)g be a tickwise-lossless decomposition of (R; �) wrt F ,

�2 = f(R11; �11); : : : ; (R1m; �1m)g a tickwise-lossless decomposition of (R1; �1) wrt F , and

� = f(R11; �11); : : : ; (R1m; �1m); (R2; �2); : : : ; (Rn; �n)g. If for all ticks k of � the following hold:

(a) for all k1, �(k) � �1(k1) implies MaxSub(�1(k1); �2) = �2 \MaxSub(�(k); �), and

(b) �2 \MaxSub(�(k); �) 6= ; i� (R1; �1) 2MaxSub(�(k); �1),

then � is a tickwise-lossless decomposition of (R; �) wrt F .

Proof. Let k be a non-empty tick of � and M = (R; �; �) be a temporal module that satis�es F . Two

cases arise:

i. MaxSub(�(k); �)\ �2 = ;, and

ii. MaxSub(�(k); �)\ �2 6= ;.

For each case, we need to show �(k) is a join of the modules from MaxSub(�(k); �). Consider case

i. In this case, MaxSub(�(k); �) is a subset of f(R2; �2); : : : ; (Rn; �n)g. Also, by the hypothesis (b)

of the lemma, (R1; �1) is not in MaxSub(�(k); �1). Then the tickwise-lossless property of �1 ensures

that �(k) can be recovered by the join of the windowing functions in the decomposition �1 and in

this case, it is the same join for the decomposition �. Thus, �(k) is recovered from the the join of

the modules on the schemes in MaxSub(�(k); �). Consider case ii. Since some of the schemes in �2

belong to MaxSub(�(k); �), (R1; �1) must be included in MaxSub(�(k); �1) by the hypothesis (b) of

the lemma. Since (R1; �1) is in MaxSub(�(k); �1), there exists a tick k1 of �1 covering tick k of �,

i.e., �(k) � �1(k1). By hypothesis (a), the set of schemes of �2 present in MaxSub(�(k); �) is exactly

MaxSub(�1(k1); �2). Thus we can assume that MaxSub(�1(k1); �2) = f(S1; �1); : : : ; (Sm; �m)g,

MaxSub(�(k); �) = f(S1; �1); : : : ; (Sm; �m); (S
0
1; �

0
1); : : : ; (S

0
n; �

0
n)g;

and MaxSub(�(k); �1) = f(R1; �1); (S
0
1; �

0
1); : : : ; (S

0
n; �

0
n)g: Let MR1

= (R1; �1; �R1
) = Up(�TR1

(M); �1),

(Sj ; �j ; �Sj) = Up(�TSj(MR1
); �j) for each 1 � j � m, and (S0j ; �

0
j ; �S0

j
) = Up(�T

S0
j
(M); �0j) for each

41

1 � j � n. Also, let kSj be the integer such that �1(k1) � �j(kSj) for each 1 � j � m and kS0
j
the

integer such that �(k) � �0j(kS0
j
) for each 1 � j � n. Since �1 is a tickwise lossless decomposition of

(R; �) wrt F , we have �(k) = �1(k1) ./ �S0
1
(kS0

1
) ./ � � � ./ �S0

n
(kS0

n
). Furthermore, since �2 is a tickwise

lossless decomposition of (R1; �1) wrt F , we have �1(k1) = �S1(kS1) ./ � � � ./ �Sm(kSm): Thus, we have

�(k) = �S1(kS1) ./ � � � ./ �Sm(kSm) ./ �S0
1
(kS0

1
) ./ � � � ./ �S0

n
(kS0

n
): The only thing left to be shown is

that �(k) � �j(kSj) for each 1 � j � m. However, this is clear since �1(k1) � �j(kSj) and �(k) � �1(k1).

2

We are now ready to show the correctness of the TBCNF decomposition algorithm.

Proof. Let (R; �) be the input scheme and F the input set of TFDs. We now show that the algorithm

always terminates. To do this, we associate to each scheme (Ri; �i) a tuple of three non-negative integers

(a; c; n), called its index, where

� a denotes the number of attributes in the scheme,

� c is the number of TFDs V �!� W in �Ri
(F) such that there exist tick k1 and k2 of �i that is

covered by some tick l of �, i.e., �i(k1; k2) � �(l), and

� n is the number of TFDs V �!� W in �Ri
(F) such that there exist ticks k1 and k2 such that

�i(k1) � �(j1) for some j1, and �i(k2) 6� �(j2) for all j2. That is, n is the number of TFDs whose

temporal type cover a proper subset of ticks of �i. We call such TFDs partial TFDs wrt �i.

It is easily seen that if a = 1, then the scheme is in TBCNF. We say that (a1; c1; n1) � (a2; c2; n2)

if a1 � a2, c1 � c2 and n1 � n2. If (a1; c1; n1) � (a2; c2; n2) and at least one of these corresponding

numbers are not equal, i.e., either a1 > a2, c1 > c2 or n1 > n2, then we say that (a1; c1; n1) is larger

than (a2; c2; n2). At each step, the algorithm selects a scheme (Ri; �i) and a TFD X �!� A in �Ri
(F)

that violates the TBCNF condition for that scheme. The scheme (Ri; �i) is then replaced by 3 schemes.

We claim that the index for (Ri; �i) is (strictly) larger than that for each of the new schemes. Clearly,

if this claim holds, and by the fact that the index for each scheme is � (1; 0; 0), we can then conclude

that the algorithm always terminates in a �nite number of steps.

Let us turn to establish our claim. Consider each of the three schemes that replaces (Ri; �i). Assume

that the index for (Ri; �i) is (a; c; n). Suppose the index for one of the three new schemes is (a0; c0; n0).

It is easily seen that a � a0, c � c0 and n � n0. We now show that (a; c; n) is strictly larger than

(a0; c0; n0) by considering each of the three new schemes:

42

1. Suppose (a0; c0; n0) is the index for (Ri; �1). Clearly, a
0 = a and c0 � c. It is also easily seen that

n0 < n. Indeed, by the algorithm, the scheme (Ri; �1) exists only if there is at least one non-empty

tick of �1, and also each tick of �1 is not covered by any tick of �. [Note that X �!� A is the TFD

that violates the TBCNF condition in (Ri; �i) and is used to decompose (Ri; �i).] Since X �!� A

violates the TBCNF condition in (Ri; �i), it implies that there exists at least one tick of �i that

is covered by a tick of �. Thus, X �!� A is a partial TFD wrt �i. However, this TFD is not

partial wrt �1. Also, it is clear, that a non-partial TFD wrt �i is still a non-partial TFD wrt �1.

Hence, the number of partial TFDs wrt �1 is strictly less than the number of partial TFDs wrt

�i, i.e., n0 < n.

2. Suppose (a0; c0; n0) is the index for (Ri � A; �2). Clearly, a0 = a � 1, and hence a > a0. It is also

clear that c > c0 and n > n0. Hence, (a; c; n) > (a0; c0; n0).

3. Suppose (a0; c0; n0) is the index for (XA; �3). Two cases arise: a > a0 and a = a0. In the �rst case,

we have (a; c; n) > (a0; c0; n0) as desired. Suppose now that a = a0. We consider two subcases:

c > c0 or c = c0. Again, if the �rst subcase holds, then we are done. So suppose c = c0. It is easily

seen that no two distinct ticks of �i are covered by a single tick of �. Indeed, assuming otherwise,

i.e., by the construction of �3, there exists a tick of �3 that covers two distinct ticks k1 and k2 of

�2. Hence, there exists a tick of � that covers both ticks k1 and k2 of �i. However, no tick of �

covers two distinct ticks of �3 by the construction of �3. Thus, c > c0, a contradiction. Now we

have a = a0 and �2 = �3. Then XA = Ri. However, we know that X �!� A violates the TBCNF

condition for (Ri; �i). This implies only two possibilities: (i) X is not a temporal superkey of

(Ri; �i), or (ii) there are two distinct ticks of �i that are covered by a single tick of �. The second

possibility is ruled out since �2 = �3. So we conclude that X is not a superkey of (Ri; �i). Thus,

� does not cover all non-empty ticks of �i. Since � covers at least one non-empty tick of �i, the

TFD X �!� A is a partial TFD wrt �i. But this TFD is not a partial one wrt �3 = �2 by the

construction of �2. Hence, the number of partial TFDs wrt �3 is strictly less than that wrt �i.

Hence n > n0. Therefore, (a; c; n)> (a0; c0; n0) as desired.

Since the algorithm terminates, it follows from the termination condition in the algorithm that

each scheme in the �nal decomposition is in TBCNF. We are only left to prove that the resulting

set of schemes is a lossless decomposition. For this purpose, we prove that it is a tickwise-lossless

decomposition and then Proposition 4 states that it is also a lossless decomposition.

Consider the central step of the algorithm: A scheme (Ri; �i) is decomposed into �i = f(Ri; �1); (Ri�

A; �2); (XA; �3)g. First we show that such a decomposition is tickwise lossless wrt F . Consider a non-

43

empty tick k of �i. By the ways that �1, �2 and �3 are constructed, there are two cases to be considered:

(i) there exists l1 such that �i(k) = �1(l1), and (ii) there exist l2 and l3 such that �i(k) = �2(l2)

and �i(k) � �3(l3). For case (i), we have MaxSub(�i(k); �i) = f(Ri; �1)g. Since each tick of �1 is

some tick of �i, it is easily seen that �i is tickwise lossless for tick k. Consider case (ii). We have

MaxSub(�i(k); �i) = f(Ri � A; �2); (XA; �3)g and F j= X �!�3 A. By Theorem 4, (Ri � A; �2) and

(XA; �3) is a lossless decomposition of (Ri; �2) wrt F . Let M = (Ri; �i; �i) be a temporal module

that satis�es F , and M0 = (Ri; �2; �
0
i) be the temporal module such that for each non-empty tick l of

�2, �
0
i(l) = �i(j), where �i(j) = �2(l). Let (Ri � A; �2; �

00) = Up(�TRi�A
(M); �2) and (XA; �3; �

000) =

Up(�TXA(M); �3). It is easily seen that (Ri�A; �2; �00) = �TRi�A
(M0) and (XA; �3; �

000) = Up(�TXA(M
0); �3).

Since (Ri�A; �2) and (XA; �3) form a lossless decomposition of (Ri; �2), �
0
i(l2) = �00(l2) ./ �

000(l3), where

l3 is the integer such that �2(l2) � �3(l3). By the de�nition of M0, we have �i(k) = �00(l2) ./ �000(l3).

Since �i(k) = �2(l2) and �i(k) � �3(l3), it follows from the de�nition that �i is tickwise lossless for tick

k. By combining cases (i) and (ii) above, we conclude that �i is a tickwise lossless decomposition of

(Ri; �i) wrt F . We now show that the decomposition obtained by the algorithm is tickwise lossless.

We do this by induction on the number of iterations of the algorithm. For notational convenience, we

assume �1 = f(R1; �1); : : : ; (Rn; �n)g is the decomposition before entering an iteration and (R1; �1) is

the scheme that is not TBCNF and is decomposed into three schemes �2 = f(S1; �1); (S2; �2); (S3; �3)g,

and the decomposition after the iteration is � = (�1 [�2)� f(R1; �1)g. As shown above, �2 is always a

tickwise lossless decomposition of (R1; �1). We now show that after each iteration, the decomposition

� is always tickwise lossless. As the basic step, i.e., zero iterations, it is trivial that the decomposition

is tickwise lossless. Now suppose that the decomposition is tickwise lossless after L � 1 iterations and

consider the decomposition right after the L-th iteration. By the assumptions above and the fact that

the three new schemes generated at each iteration form a tickwise lossless decomposition of the scheme

they replace, we only need to show that the hypothesis of Lemma 4 is true.

Consider the hypothesis (a) of Lemma 4, i.e.,

�(k) � �1(k1) implies MaxSub(�1(k1); �2) = �2 \MaxSub(�(k); �)

Suppose �(k) � �1(k1). Assume that (Sj ; �j) is in MaxSub(�1(k1); �2) for some 1 � j � 3. We need

to show that (Sj ; �j) is also in MaxSub(�(k); �). Since (Sj ; �j) is in MaxSub(�1(k1); �2), there exists

k2 such that �1(k1) � �j(k2). Since �(k) � �1(k1), we have �(k) � �1(k1) � �j(k2). Hence, (Sj ; �j) is

in MaxSub(�(k); �) as desired. Assume now (Sj ; �j) is in MaxSub(�(k); �) for some 1 � j � 3. Thus,

there exists j0 such that �(k) � �j(j
0). Since �(k) � �1(k1), we have �1(k1) \ �j(j

0) 6= ;. However, by

the construction of �j , it is easily seen that if tick j0 of �j overlaps with tick k1 of �1, then tick j0 of �j

44

covers tick k1 of �1. Hence, �1(k1) � �j(j
0) and, therefore, (Sj ; �j) is in MaxSub(�1(k1); �2) as desired.

Consider the hypothesis (b) of Lemma 4, i.e., �2\MaxSub(�(k); �) 6= ; i� (R1; �1) 2MaxSub(�(k); �1).

We �rst establish the \only-if" part. Suppose �2\MaxSub(�(k); �) 6= ;. Thus, there exists k0 such that

�(k) � �j(k
0) for some 1 � j � 3. If j = 1 or 2, it is easily seen that �j(k

0) = �1(k
00) for some k00, and

hence (R1; �1) is in MaxSub(�(k); �1). On the other hand, suppose j = 3, Since �3(k
0) denotes a tick of

�3 which is a combination of some ticks in �1, there exist k001 , : : : , k
00
p such that �3(k0) = �1(k001 ; : : : ; k

00
p).

Observe that each tick of the temporal types obtained by the TBCNF decomposition algorithm is a

combination of ticks of �. Thus, each �1(k
00
i) for 1 � i � p is a combination of several ticks of �. It is

then easily seen that there exists k00 such that �(k) � �1(k00) since �(k) � �3(k0) = �1(k001 ; : : : ; k
00
p), and

hence (R1; �1) is inMaxSub(�(k); �1). To establish the \if" part of the hypothesis (b), suppose (R1; �1)

is in MaxSub(�(k); �1). Then there exists a tick k0 of �1 such that �(k) � �1(k0). By the construction

of the types �1, �2 and �3, it is easily seen that there exist k00 and 1 � j � 3 such that �1(k
0) � �j(k

00),

and hence �(k) � �j(k00). Clearly, the last statement implies that there exists a scheme in �2 such that

the scheme is in MaxSub(�(k); �).

Thus, we have established that the two hypotheses of Lemma 4 hold for the decomposition at the

L-th iteration. Thus, it follows from the induction hypothesis that � is tickwise lossless decomposition

of (R; �) wrt F since �1 is tickwise lossless decomposition of (R; �) wrt F . The induction proof therefore

establishes the fact that the decomposition obtained by the algorithm is a tickwise lossless decomposition

of (R; �) wrt F . By Proposition 4, the decomposition is a lossless decomposition of (R; �) wrt F . This

concludes our proof. 2

A.3 Proof of Theorem 6

Lemma 5 Let F be a set of TFDs, (R; �) a scheme, X � R a set of attributes, B 2 R an attribute,

�r a subtype of �, and

F�r = fX �!� A j X �!� A 2MinCov(F) and 9j; i �r(j) 6= ; ^ �r(j) � �(i)g.

Then, the following holds:

(B; �r) 2 X
+
wrt F implies (B; �r) 2 X

+
wrt F�r

Proof. Since (B; �r) is derived by the algorithm in Figure 3 at a certain step j, we know that �r =

glb(�1; : : : ; �k; �
0) where �0 is the type of the TFD in F considered by the algorithm at step j and having

B among the attributes on the right side, while the �1; : : : ; �k are types present in the pairs (Ai; �i) 2

X(j�1) needed for the application of that TFD. However, considering step 2 of the algorithm, it is clear

45

that �1; : : : ; �k must be either �Top or glbs of types appearing in TFDs considered by the algorithm

in previous steps. The lattice of types insures that, for arbitrary types �1; �2; �3, glb(�1; glb(�2; �3)) =

glb(�1; �2; �3). Hence, we know that �r = glb(�1; : : : ; �n) where �1; : : : ; �n are all the types appearing

in the TFDs of F used by the algorithm to derive (B; �r). We show that all these TFDs are not only in

F , but also in F�r . Suppose V �!� A 2 F but V �!� A 62 F�r . Then, from the de�nition of F�r , we

know that 8i; j �r(i) 6= ;) �r(i) 6� �(j). This means that � 62 f�1; : : : ; �ng since, by de�nition of glb,

every tick of �r should be covered by a tick of each one of the �1; : : : ; �n. We can conclude that only

TFDs in F�r are useful in the algorithm to obtain (B; �r) and this is equivalent to say that if (B; �r)

is obtained by the algorithm, it can be obtained considering indi�erently F�r or F . 2

Proof. The proof of termination is trivial since step 1 and step 2 are iterations bounded by the number

of TFDs in MinCov(F). Step 3 is an iteration bounded by the number types in P , and step 4 is limited

by the length of the decomposition resulting by previous steps.

We now prove that the decomposition � = f(R1; �1); : : : ; (Rk; �k)g obtained from the algorithm wrt

(R; �) and F preserves dependencies. Suppose M = (R; �; �) does not satisfy F . By the de�nition of the

dependency preservation, we only need to show that Up(�TRi
(M); �i) does not satisfy �Ri

(F) for some

1 � i � k. Since M does not satisfy F , there must exist a TFD X �!� A in MinCov(F) that is not

satis�ed by M. That is, there exist tuples t1 and t2 and ticks i1 and i2 of � such that t1[X] = t2[X],

t1 is in �(i1), t2 is in �(i2), and there exists j such that �(i1; i2) � �(j), but t1[A] 6= t2[A]. Suppose

P is the partition of � created by the T3NF decomposition algorithm. Then there exist �r1 and �r2

in P such that �(i1) = �r1(l1) and �(i2) = �r2(l2) for some l1 and l2, and hence X �!� A is in both

F�r1 and F�r2 by the de�nition in the algorithm. By the algorithm and the fact that X ! A is in the

�;(MinCov(F)) set, the scheme (S; �) is in � with XA � S and � = cop(�r [: : :[�s; FX!A), where

�r, : : : , �s and FX!A are as de�ned in the algorithm. Since X �!� A is in F�r1 and in F�r2 , it follows

that �r1 and �r2 must be among �r ; : : : ; �s and X �!� A must be in FX!A. It su�ces now to show

that Up(�TS (M); �) does not satisfy X �!� A. Let �[= �r [: : :[�s and M[= Up(�TS (M); �[). We

have the equation:

Up(�TS (M); �) = Up(M[; �):

This equation follows immediately from the following observations: (1) a tick of � is covered by a tick

of � i� it is covered by a tick of �[, and (2) since �[is a subtype of �, the e�ect of the Up operation

in de�ning M[is only to drop the values of the windowing function for the ticks not in �[, hence not

covered by any tick of �. By Proposition 5 and the above equation, to show that Up(�S(M); �) does

not satisfy X �!� A, we only need to show that M[does not satisfy X �!� A. Since �r1 and �r2 are

46

among �r , : : : , �s, there exist l
0
1 and l

0
2 such that �(i1) = �r1(l1) = �[(l

0
1) and �(i2) = �r2(l2) = �[(l

0
2).

Let M[= (S; �[; �[). By the de�nitions of the projection and Up operations and the fact that �[is a

subtype of �, it is easily seen that t1[S] is in �[(l
0
1) and t2[S] is in �[(l

0
2) since t1 is in �(i1) and t2 is

in �(i2). Since �(i1; i2) � �(j), it follows that �[(l01; l
0
2) � �(j). Since t1[X] = t2[X] but t1[A] 6= t2[A],

and also XA � S, it then follows that M[does not satisfy X �!� A. This concludes our proof that �

preserves dependencies.

We now show that each scheme in � is in T3NF. For each scheme (Ri; �i) in �, two cases arise:

(1) Ri = Z, where Z is a candidate key of (R; �i) and �i is one of the types in the partition P , and

(2) Ri = XA, where X ! A is in �;(MinCov(F)) and �i is computed by the function cop() with the

arguments as explained in the algorithm. In case (1), we know that Z is also a key of (Z; �i). Indeed,

if there exists a proper subset Y of Z such that Y �!�i Z, then Y �!�i R, and this contradicts the

fact that Z is a candidate key of (R; �i). Therefore, for each TFD V �!� W , with VW � Z, we know

that W must consist of prime attributes. By de�nition, (Z; �i) is in T3NF. In case (2) we consider a

generic scheme (XA; �0) with �0 = cop(�; FX!A), where � = �r [� � � [�s and FX!A are as de�ned in

the algorithm. By the algorithm, for each �i (r � i � s), there exists a TFD X�jA in FX!A such that

a tick of �i is covered by some tick of �j . Since �i is a partition of � from the algorithm, it is easily seen

that each tick of �i is covered by some tick of �j (otherwise, �i will be partitioned further). Hence, each

tick of � is covered by some tick of �j . Therefore, it is easily seen that X �!� A is logically implied by

F since each X �!�j A in FX!A is logically implied by F . We now claim that X is a candidate key of

(XA; �0). Indeed, we have shown that X �!� A is logically implied by F . By the de�nition of cop(),

it is easily seen that X �!�0 A is logically implied by F . Now suppose there is a proper subset V of X

such that V �!�0 XA, hence V �!�0 A is logically implied by F and then, V ! A is logically implied

by �;(F). Since X ! A is in �;(MinCov(F)) and, by the construction ofMinCov(F), �;(MinCov(F))

is the same as the minimal cover of �;(F), it follows that X ! A is in the minimal cover of �;(F) and

V ! A is logically implied by �;(F). This is a contradiction since we may replace X ! A by V ! A

in the minimal cover of �;(F).

Let us now consider an arbitrary TFD V �!� B that is logically implied by F such that V B � XA,

B 62 V and there exists a tick of �0 which is covered by some tick of �. If B 2 X , then B is prime

since X is a candidate key of (XA; �0). Thus, we need only consider the case when B is not in X ,

i.e., B = A and V �!� A is logically implied by F . Since A = B 62 V , it follows that V is a subset

of X . We know that V cannot be a proper subset of X since otherwise, as shown earlier, X ! A

cannot be in �;(MinCov(F)). Therefore, V = X and we need only consider the TFD X �!� A that

47

is logically implied by F with the assumption that there exists at least one tick of �0 that is covered

by a tick of �. We now show that the second condition of T3NF is satis�ed by X �!� A. As shown

above, X is a candidate key for (XA; �0). Assume now that two non-empty ticks �0(i1) and �0(i2),

where i1 6= i2, are covered by a single tick j of �. Let V = f�0jX �!�0 A 2 MinCov(F)g. By the

de�nition of minimal cover, we know � �C V . Thus, there exist �0 in V and j0 such that �(j) � �0(j0).

Since �0(i1; i2) � �(j) � �0(j0) and �0 is obtained by collapsing ticks of � = �r [� � �[�s, without loss of

generality, we may assume that ; 6= �r(i
0
1) � �0(i1) for some i01. Thus, �r(i

0
1) � �0(j0). By the de�nition

of F�r , we know that X �!�0 A is in F�r . Therefore, by de�nition in the algorithm again, we know

X �!�0 A is in FX!A. Thus, �0(i1; i2) � �0(j0). By the de�nition of cop() function, it follows that there

exist a TFD X �!�i A, in FX!A, that is logically implied by F and integers k0 and i3 with i3 6= i1 such

that �0(i1) and �0(i3) are contained in �i(k0) and �(i3) is not contained in �0(j0). Since �(j) � �0(j0)

and �0(j0) does not contain �0(i3), it is clear that �(j) does not contain �0(i3). This is exactly required

by the second condition of T3NF. Hence, (XA; �) is in T3NF.

Finally, we prove that the decomposition � is lossless. By Proposition 4, it su�ces to show that

� is tickwise lossless. Let us consider a generic nonempty tick k of � and assume MaxSub(�(k); �) =

f(R1; �1); : : : ; (Rm; �m)g. We only need to prove that for each module M = (R; �; �) and corresponding

projections Mi = (Ri; �; �i) = Down(Up(�TRi
(M); �i); �) for i = 1; : : : ; m, the following holds:

�(k) = �1(k1) ./ � � � ./ �m(km)

where �(k) � �i(ki) for each 1 � i � m. By the de�nitions of Up and Down operations and the

fact that �(k) � �i(ki) for each 1 � i � m, it is easily seen that �1(k1) ./ � � � ./ �m(km) � �(k). We

only need to show that �(k) � �1(k1) ./ � � � ./ �m(km). Suppose by contradiction that there exists a

tuple t in �1(k1) ./ : : : ./ �m(km) that is not in �(k). This tuple results from a natural join of tuples,

hence for each 1 � i � m, there exist ti 2 �i(ki) such that t[Ri] = ti. For each 1 � i � m, since

�i(ki) =
S
j:�(j)��(ki) �(j) by de�nition, we know that there exists a tuple toi 2 �(koi) for some koi such

that �(k; koi) � �i(li) for some li and toi [Ri] = ti. This intuitively says that tuples ti are the projection

of some tuple given in the original module at tick koi where k
o
i and k are covered by the same tick ki = li

of �i. Let �k be in P and such that there exists a tick of �k that equals the tick k of �. We know there

exists a scheme (V; �l) in MaxSub(�(k); �) such that V contains a temporal candidate key for (R; �k)

and �k is a subtype of �l. [Indeed, from the algorithm, either a scheme (V; �l), with V containing a

temporal candidate key of (R; �k) and �k a subtype of �l, is already in �, or (Z; �k) is added by step

3, where Z is a candidate key of (R; �k). In the �rst case, (V; �r) is in MaxSub(�(k); �) since a tick of

�k covers tick k of �(k) by our choice of �k and �k is a subtype of �l. In the second case, (Z; �k) is in

48

MaxSub(�(k); �) since �(k) is covered by a tick of �k by our choice of �k .] Without loss of generality,

assume (R1; �1) has the property that (a) (R1; �1) is in MaxSub(�(k); �), (b) R1 contains a candidate

key of (R; �k), and (c) �k is a subtype of �1. By the de�nitions of Up and Down and the fact that a

tick of �1 is exactly the tick k of �, ko1 = k. Since t1 = to1[R1] and t[R1] = t1, we have t[R1] = to1[R1].

Note that to1 is in �(ko1) = �(k) since ko1 = k This means that there exists a tuple to1 2 �(k) such that

to1[R1] = t[R1]. Now we know that t 6= to1 since we assume t is not in �(k). Thus, there exists A such

that t[A] 6= to1[A]. Since R1 contains a candidate key of (R; �k) wrt F , it contains a candidate key of

(R; �k) wrt F�k by Lemma 5. Thus, every attribute of R, and hence A, appears in Z
+
, where Z � R1

is a temporal candidate key of (R; �k). Consider now the algorithm in Figure 3 that computes Z
+
wrt

F�k . At each step the algorithm takes a TFD Xi �!�i Ai from F�k and adds a pair (Ai; �i) where

either Ai is an attribute not appearing in the previously computed set or �i is a new type. Without

loss of generality, suppose A is the �rst attribute added by the algorithm such that to1[A] 6= t[A] and

Z;A1; : : : ; As the attributes added before A and t[ZA1 : : :As] = to1[ZA1 : : :As]. Then we know that

there exists a TFD X �!� A in F�k such that X � ZA1 : : :As.

Since we know that X �!� A is in F�k , we know that X ! A is in �;(MinCov(F)). Therefore, a

scheme (XA; �) is added to � at Step 2 of the algorithm. This scheme can only be taken out from �

at Step 4, if a scheme (Ri; �) is in � with XA � Ri. Without loss of generality, assume this scheme is

(R2; �2), i.e., XA � R2 and �2 = � = cop(�r [: : : [�s; FX!A) where f�r; : : : ; �sg = f�j 2 P j 9�i :

X �!�i A 2 F�jg and FX!A = fX �!�j A j 9�j 2 P : X �!�i A 2 F�jg. In particular the following

holds:

� �k � �2.

Indeed, since X �!� A is in F�k , �k is among �r , : : : , �s. Now it is easily seen that �k � �r [: : :[�s.

By the de�nition of function cop(), �r [: : : [�s � �2. Hence, �k � �2. Note also that the scheme

(R2; �2) is in MaxSub(�(k); �) by the fact that �(k) is covered by a tick of �k and �k � �2.

We know that to1[X] = t[X] since X � ZA1 : : :As. Since t[R2] = t2 and X � R2, we have

to1[X] = t[X] = t2[X]. Note that t2 = to2[R2], where to2 is in �(ko2) and ko2 and k are both covered by the

tick k2 of �2. We now know that (i) to2[X] = t2[X] = to1[X] since X � R, and (ii) to1 is in �(k) and to2 is

in �(ko2) and �(k; ko2) � �2(l2) for some l2. Let V = f�r j X �!�r A 2 MinCov(F)g. By the de�nition

of MinCov(F), we know that �2 �C V . Thus, there exists �r in V such that �2(k2) � �r(l0) for some

l0. Since �(k; ko2) � �2(k2) � �r(l
0), X �!�r A is in F�r , we know that to1[A] = to2[A] by the assumption

that M satis�es F and the facts (i) and (ii) above. Therefore, to1[A] = to2[A] = t[A] since A 2 R2 and

t[R2] = t2 = to2[R2]. This is a contradiction since we assume to1[A] 6= t[A]. 2

49

