
Semantic Update Optimization

in Active Databases�

Jong P. Yoon

Department of Computer Science

Sookmyung Woman's University

Chungpa-Dong 2 Ka, Yongsan Ku, Seoul, South Korea

and

Larry Kerschberg

Center for Information Systems Integration and Evolution

Department of Information and Software Systems Engineering

School of Information Technology and Engineering

George Mason University, Fairfax, VA 22030-4444

fjyoon,kerschg@isse.gmu.edu

Abstract

In an active database, an update may be constrained by integrity constraints, and may
also trigger rules that, in turn, may a�ect the database state. The general problem is to
e�ect the update while also managing the \side-e�ects" of constraint enforcement and rule
execution. In this paper an update calculus is proposed by which updates, constraints and
rules are speci�ed and managed within the same formalism. Constraints and production
rules are expressed in a constraint language based on �rst-order logic. These logic expres-
sions are used to semantically transform an original update into a sequence of updates that
re
ect the relevant constraints and production rules. The inference mechanism associated
with processing a reformulated query ensures that: 1) the pre- and post-conditions of an
update are satis�ed, 2) update side-e�ects are propagated, and 3) repairs are made to tuples
exhibiting constraint violations. Thus, a user-speci�ed \update" is transformed, through se-
mantic reformulation techniques, into a sequence of updates which together ensure semantic
integrity of the original update as well as its propagated side-e�ects.

�This research was supported in part by an ARPA grant, administered by the O�ce of Naval Research

under grant number N00014-92-J-4038.

This research presents several contributions. Integrity constraints and production rules
are expressed in a declarative formalism so that they may be reasoned about. The up-
date calculus formalism handles the semantic reformulation of an update to re
ect relevant
constraints and rules governing it. Finally, an algorithm is presented to handle constraint
enforcement, production rule �ring, and subsequent repair actions.

2

1 Introduction

Active databases, with their rule-processing capabilities, o�er powerful mechanisms for the

invocation of production rules that can reason about and update the database state. Because

these rules are equivalent to database \triggers," we need ways to manage their execution

so as to ensure consistent database states. Thus, we have two problems: 1) managing

integrity constraints de�ned by logical formulae, and 2) supporting updates (insert, delete,

modify) to the database while ensuring that constraint violations can be repaired.

The approach taken in this work is to de�ne a constraint language that can be used to

express not only integrity constraints, but also production rules for both the propagation of

update e�ects and the repair of constraint violations. A user's update is posed as an SQL

query which is then reformulated semantically with pre-conditions representing integrity

constraints and post-conditions representing update e�ects and repair actions needed to

maintain the relevant constraints. The reformulated query is then processed so as to ensure a

consistent database state. In our approach the user, who may not be aware of the \triggers"

to be activated by his query, may \preview" the update e�ects and potential actions by

examining the pre- and post- conditions of the reformulated query.

The contributions of this work are the following: 1) a formalism to express both con-

straints and rules in an update language, 2) a semantic reformulation technique that trans-

forms a user update into a sequence of updates incorporating relevant constraints and rules,

and 3) an algorithm to execute the sequence of updates, maintain semantic integrity of the

database, invoke associated triggered rules, and repair possibly inconsistent tuples.

1

1.1 Motivating Examples

EXAMPLE 1.1

Consider an employee-dependent database consisting of two relations:

emp(E;X; S; T)

% employee with employee number E, years of experience X, salary S, and tax rate T

expressed in percent, and

depn(P;E)

% person with name P is a dependent of employee with number E.

Assume that an integrity constraint, IC1, speci�es that employees who have more than

5 years experience should earn more than $50K. Assume further that the database is in a

consistent state. When employee salaries are increased by 10 percent, using UPDATE emp

SET S := S � 1:1, one needs to verify that the new salary S satis�es constraint IC1. This

veri�cation is performed one tuple at a time. Suppose, however, that the integrity constraint

is associated directly with the update expression. The update may therefore be expressed as

UPDATE emp SET S := S � 1:1 WHERE IC1. The \where" clause expresses the constraint

that those employees with more than �ve years experience should have a salary exceeding

$50K.

Further, if we have an additional integrity constraint IC2, specifying that the tax rate of

employees who earn over $50K should be more than 15 percent, we have a situation where

the tax rate for an employee may have to be updated to satisfy constraint IC2. Alternatively,

suppose, that the \where" clause of an update expression consists of both a pre-condition and

a post-condition. The update may therefore be expressed as UPDATE emp SET S := S� 1:1

2

WHERE IC1 is satis�ed AND IC2 is not violated. Note that constraint satisfaction and

constraint violation will be de�ned later in Section 3. The update will be complete if these

two associated constraints are satis�ed. However, what if the integrity constraint IC2 were

violated? The following example provides an answer to this question. 2

EXAMPLE 1.2

Consider a production rule PR1, in the employee-dependent database. PR1 produces the

tax rate X, say 20%, for those who earn over $50K and have more than three dependents. In

the previous example, the update is executed for the tuples which satisfy the constraint IC1.

It is also \committed" for tuples which do not violate the constraint IC2. Suppose, however,

that some tuples, if not all the violating tuples, have salary over $50K, and, in addition,

have more than three dependents. By executing the rule PR1, we obtain the proper tax rate

for employees earning over $50K (by constraint IC2) and those who in addition have three

dependents (by production rule PR1). Thus productions may be speci�ed to specify how

constraints are to be enforced. 2

1.2 Related Work

Active databases monitor the database states as shown in [AWH92,DBB+88,DHL90,MD89]

and hence appropriate rules are activated to trigger additional actions if the database state

changes. These rules are activated in response to an update without user intervention.

A declarative update can be transformed into a procedural speci�cation of database state

transitions. The work on update speci�cation transformation is investigated in [Man89,

3

QW88]. View update problems have been dealt with by many researchers. Kakas and

Mancarella [KM90] use an abductive approach so that constraint checking associated with

an update is incorporated into the update to reject the generation of inconsistent states. Ceri

and Widom [CW91] provide a facility whereby a user de�nes a view as an SQL expression,

from which productions are generated to maintain a materialization of that view. Gottlob,

Paolini, and Zicari [GPZ88] describe how primitive update operators can be rewritten into

complex updates and how view updates are translated into database updates. Our approach

is similar to this approach in that an update is performed within a view.

Kramer et al. [KLS92] and Cacace et al. [CCCR+90] incorporate updates into rule

languages . Widom et al. [WCL91] introduce an SQL-based production rule language into

the Starburst rule system. Our approach incorporates rules and constraints into updates .

That is, the update calculus described in this paper is an SQL-like language augmented by

the semantics of rules and constraints.

Constraint checking and constraint violation repair are important issues in active databases.

Many researchers have developed formalisms for specifying constraints [Kow78,Mor86,SK86]

and enforcing constraints [CGM90,DBB+88,SK86]. A constraint violation repair method has

been proposed by Moerkotte and Lockemann [ML91]. They assume that constraint violations

are caused by an unsound transaction and therefore symptoms causing the inconsistency are

removed from that transaction. In contrast, we assume that constraint violations are caused

by incomplete update speci�cations. The e�ects of an update are propagated, and database

instances not satisfying constraints may be corrected. Ceri and Widom [CW90] have used

production rules to repair inconsistent states. They present a method for translating con-

4

straints, which are used to detect inconsistent states, into constraint maintaining production

rules. The translation, however, requires user intervention; it is static and manual.

Finally, the research of Hecht and Kerschberg [HK81], Morgenstern [Mor84] and Abiteboul

and Hull [AH85] addresses the need for update propagation for maintaining overall database

consistency.

1.3 Outline of Paper

The remainder of this paper is organized as follows: Section 2 formalizes the constraint

language in �rst-order logic. When an update is posed to a database, constraints are enforced.

Update veri�cation using constraints is described in Section 3. Appropriate constraints

are converted into SQL query expressions. Section 4 extends the constraint formalism to

active database rules and shows that rule conversion into update expressions is similar to

the technique shown in Section 3. Section 5 describes the repair technique for constraint

violations. Section 6 applies these techniques to the propagation of update e�ects. Section 7

discusses implementation issues, and Section 8 presents our conclusions.

2 Constraint Language

The constraints we consider are expressed in �rst order logic. The syntax is adopted from

Gupta and Widom [GW93]. The di�erence is a simpli�cation for single database constraints

and an extension to active database rules.

5

2.1 Syntax

An integrity constraint, denoted IC, is a �rst order logic sentence of the following form:

(IC): 8 �X9 �Y [R1(�X1) ^ ::: ^Rk(�Xk) ^ g(�X; �Y ; �c)
=) S1(�X 0

1;
�Y 0
1) _ ::: _ Sn(�X 0

n;
�Y 0
n)]

where

R1; :::; Rk; S1; :::Sn represent relations.

�X = fX1; :::; Xtg is a set of universally-quanti�ed (8) variables occurring only inR1; :::; Rk,
and g.

�Y = fY1; :::; Yug is a set of existentially-quanti�ed (9) variables occurring only in S1; :::; Sn,
and g.

�c = fc1; :::; cwg is a set of constants occurring only in g.

g(�X; �Y ; �c) is a conjunction of equality (=) and inequalities (6=; >;<;�;�) involving vari-
ables from �X and �Y .

�Xi � �X is the set of variables that occur in Ri; 1 � i � k.

�X 0
i � �X is the set of universally-quanti�ed variables that occur in Si; 1 � i � n.

�Y 0
i � �Y is the set of existentially-quanti�ed variables that occur in Si; 1 � i � n.

2.2 Semantics

Assume that the domain of each variable in �X and �Y is the domain of the relation attribute in

which that variable appears. The integrity constraint is satis�ed if for all value assignments

to the variables in �X there exists an assignment of values to variables in �Y such that either

1. For each Ri; 1 � i � k in IC, there does not exist a tuple in the relation Ri with the

values assigned to �Xi, or

2. Predicate g is not satis�ed using constants �c and the values assigned to �X, and �Y , or

6

3. For some Si; 1 � i � n in IC, there is a tuple in relation Si with the values assigned to

�X 0
i and

�Y 0
i .

We express the constraints of Example 2.1 as �rst order logic sentences in the form

described as above.

EXAMPLE 2.1 Constraint IC1 speci�es that employees who have more than 5 years of

experience should earn more than $50K.

(IC1): 8E;X; T;9S [emp(E;X; S; T) ^ (X > 5)
=) (S > 50K)]

Constraint IC2 speci�es that the tax rate of employees who earn over $50K should be

more than %15.

(IC2): 8E;X; S;9T [emp(E;X; S; T) ^ (S > 50K)
=) (T > :15)]

2

3 Constraint Management During Updates

A database is said to be consistent if all integrity constraints are satis�ed by a database state.

However, if a database is updated, the database that is initially consistent with respect to

a set of integrity constraints can become inconsistent. The problem is further complicated

when the side-e�ects of an update are propagated. In this section we present an update

language that incorporate pre- and post-conditions for an original update. These conditions

contain constraints and productions that can be used for managing the consistency of the

database.

7

3.1 The Update Language

As seen in Example 1.1, the constraint IC1 serves as a pre-condition for the update while

the constraint IC2 serves as a post-condition. The update can be executed (and committed)

if the pre-condition is satis�ed. Moreover, the side-e�ects of an update may cause additional

inconsistencies. Note that the typical UPDATE - SET - WHERE expression [KS91] veri�es

only the pre-condition using the \WHERE" clause, but not the post-condition. To verify

the post-condition as well, we propose an update expression. The update expression has

associated with it both a pre- and post-condition as shown below:

UPDATE relation
SET assignments
PRECOND constraints are satis�ed
POSTCONDconstraints are not violated

Using available constraints and rules, we reformulate a user-speci�ed update into a semantically-

rich update sequence. Section 3 discusses the conversion of constraints and rules into SQL

expressions, and Section 4 associates those converted constraints and rules with an update.

3.2 Converting Constraints to Query Expressions

This section describes how to convert constraints to SQL query expressions. Constraints

by nature ensure that a database state is consistent. Hence, a database state can either

satisfy the constraints or violate them. Before developing the conversion technique further,

we de�ne the notions of constraint satisfaction and constraint violation.

De�nition 1 (Constraint Satisfaction). Constraint p =) q is satis�ed by a database if

either p is false or q is true in the database. 2

8

De�nition 2 (Constraint Violation). Constraint p =) q is violated by a database if p is

true but q is false in the database. 2

Constraint IC can be satis�ed by part of a database, if not an entire database, and it can

also be violated by part of the database, if not an empty database. Consider the following

general constraint IC:

(IC): 8 �X9 �Y [R1(�X1) ^ ::: ^Rk(�Xk) ^ g(�X; �Y ; �c) =) S1(�X 0
1;

�Y 0
1) _ ::: _ Sn(�X 0

n;
�Y 0
n)]

The set of tuples satisfying the constraint IC is expressed as the SQL query.

SELECT *
FROM R1(�X1); :::; Rk(�Xk); S1(�X 0

1;
�Y 0
1); :::; Sn(�X 0

n;
�Y 0
n)

WHERE :g(�X; �Y ; �c)

The above SQL query results in a set of tuples satisfying the constraint IC, that is, those

tuples satisfy the condition :g(�X; �Y ; �c). Clearly, therefore, if the result of the above SQL

query is empty, it means that all the database states are not correct, that is, the database

is inconsistent.

The set of tuples violating the constraint IC is expressed as the SQL query.

SELECT *
FROM R1(�X1); :::; Rk(�Xk); S1(�X 0

1;
�Y 0
1); :::; Sn(�X 0

n;
�Y 0
n)

WHERE g(�X; �Y ; �c)

The result is a set of tuples, each of which violates the constraint IC. If the result set is

empty, the database is said to be consistent with regard to the constraint IC.

The �rst expression speci�es a set of tuples for which the update e�ects must be propa-

gated if the operation is not to be aborted. The second expression speci�es a set of tuples

which may be repaired if alerts are not the best solution.

9

EXAMPLE 3.1 Constraint IC1 speci�es that employees who have more than 5 years of

experience should earn more than $50K.

(IC1): 8E;X; T;9S [emp(E;X; S; T) ^ (X > 5)
=) (S > 50K)]

Clearly, this constraint is equivalent to 8E;X; T;9S[emp(E;X; S; T) ^ (X > 5) ^ (S >

50K) =)] as far as the de�nition is concerned in Section 2.1.

The set of tuples satisfying IC1 is expressed as

SELECT *
FROM emp

WHERE :(X > 5) OR (S > 50K)

The set of tuples not satisfying IC1 is expressed as

SELECT *
FROM emp

WHERE (X > 5) AND :(S > 50K)

A set of tuples violating the constraints will be repaired using techniques presented in

Section 5. The database is said consistent if this SQL query returns the empty set. 2

3.3 Update Veri�cation Using Constraints

When an update U is posed to an active database, it is likely that constraints are available

for checking the database state. The compilation of appropriate constraints is another con-

sideration [YK92]. This paper, however, describes a method of con�ning the scope of the

side-e�ects of an update. Suppose that constraints ICi and ICj are available. The constraint

ICi checks database states for the update U and the constraint ICj checks results of the

10

update. The database tuples where U does not apply can be moved outside the scope of

the update process. Similarly, the database tuples where the e�ects of U causes additional

violations can be moved outside the scope of the update commit. By combining these two

scopes, a user-issued update expression can be rewritten:

UPDATE relations
SET assignment in U

PRECOND EXIST tuples satisfying ICi AND the condition of U
POSTCONDEXIST tuples satisfying ICj

The condition of the PRECOND and POSTCOND clauses speci�es a set comparison be-

tween join attributes. The scope of either a constraint or a rule may be expressed as predi-

cates in SQL, as will be demonstrated in the following example.

Example 3.2

Consider the following constraints.

(IC1): 8E;X; T;9S [emp(E;X; S; T) ^ (X > 5)
=) (S > 50K)]

(IC2): 8E;X; S;9T [emp(E;X; S; T) ^ (S > 50K)
=) (T > :15)]

Suppose that once again the update is posed to augment employee salaries by ten percent.

UPDATE emp

SET S = S � 1:1

Consistent update is ensured by using the above two constraints. The �rst constraint

serves as the pre-condition, while the second constraint serves as the post-condition. Now,

we discuss how the PRECOND and POSTCOND are expressed. Recall that a constraint

p! q holds if both p and q are true or p is false. By the same token, a constraint p! q does

11

not hold if p is true and q is not. Using converted query expressions as shown in Example 3.1,

the given update can be reformulated as following:

UPDATE emp

SET S := S � 1:1
PRECOND EXIST (SELECT *

FROM emp

WHERE :(X > 5) OR S > 50000)
POSTCONDEXIST (SELECT *

FROM emp

WHERE :(S > 50000) OR T � :15)

A user-speci�ed update was reformulated into the semantically-rich update shown above.

The reformulated update veri�es the salary update itself and furthermore, checks the tax

rate which may be a�ected by the update. The next sub-section describes how to repair

constraint violations. It handles, for example, possible modi�cation of taxRate resulting

from the update on salary. 2

4 Incorporating Rules into the Constraint Language

We now extend the method of constraint management to incorporate production rules used

in active databases. A production rule executes a sequence of actions if the conditions of

its left-hand-side are satis�ed. We consider only production rules which update a database,

that is, insert, delete, or modify, but not other user-de�ned programs, such as methods.

12

4.1 Syntax

A production rule, denoted PR, is a �rst order logic sentence similar to the constraint

speci�cation. The di�erence from the constraint language is that its consequent is a sequence

of database operations (update, insert, and delete) on a database. In active databases, it is

well known that those operations are executed in the order speci�ed in a rule. The rule is

de�ned as the following form:

(PR): 8 �X9 �Y [R1(�X1) ^ ::: ^Rk(�Xk) ^ g(�X; �Y ; �c)
=) O(S1(�X 0

1;
�Y 0
1)) ^ ::: ^O(Sn(�X 0

n;
�Y 0
n))]

where

R1; :::; Rk; S1; :::; Sn represent relations.

O represents a database modi�cation operation such as update, insert or delete.

�X = fX1; :::; Xtg is a set of universally-quanti�ed variables occurring only in R1; :::; Rk,
and g.

�Y = fY1; :::; Yug is a set of existentially-quanti�ed (9) variables occurring only in S1; :::; Sn,
and g.

�c = fc1; :::; cwg is a set of constants occurring only in g.

g(�X; �Y ; �c) is a conjunction of equality (=), inequalities (6=; >;<;�;�), and assignment
(:=) involving variables from �X and �Y .

�Xi � �X is the set of variables that occur in Ri; 1 � i � k.

�X 0
i � �X is the set of universally-quanti�ed variables that occur in Si; 1 � i � n.

�Y 0
i � �Y is the set of existentially-quanti�ed variables that occur in Si; 1 � i � n.

4.2 Semantics

IfO inO(Si(�X 0
i;
�Y 0
i)) denotes UPDATE, g(�X; �Y ; �c) is a conjunction of g1(�X; �Y ; �c) and g2(�X; �Y ; �c),

where g1(�X; �Y ; �c) denotes equality (=) or inequalities (6=; >;<;�;�) and g2(�X; �Y ; �c) denotes

13

assignment (:=). The rule PR can be rewritten as.

(PR): 8 �X9 �Y [R1(�X1) ^ ::: ^Rk(�Xk) ^ g1(�X; �Y ; �c) ^ g2(�X; �Y ; �c)
=) O(S1(�X 0

1;
�Y 0
1)) ^ ::: ^O(Sn(�X 0

n;
�Y 0
n))]

The production rule is satis�ed if for all value assignments to the variables in �X a database

operation O is executed with a value assignment to variables in �Y such that if

1. For each Ri; 1 � i � k in IC, there does not exist a tuple in the relation Ri with the

values assigned to �Xi, and

2. Predicate g1 is satis�ed by constants �c and the values assigned to �X and �Y , and

3. g2 is satis�ed using unifying the variables in �X and �Y with the values of �c, then

4. For some Si; 1 � i � n in IC, the database operation O is performed for a tuple in

relation Si with the values assigned to �X 0
i and

�Y 0
i .

4.3 Examples

EXAMPLE 4.1 Rule PR1 sets a tax rate of 20% for those who earn over $50K and have

more than three dependents.

(PR1): 8E;X; S; P;9T [emp(E;X; S; T)^ depn(P;E) ^ (S > 50K)^
(sum(P) > 3) ^ (T := :2) =) UPDATE(emp(E;X; S; T))]

Note that sum(P) returns the total number of appropriate P . The tuples in emp, if their

salary is more than $50K and they have more than three dependents, are updated with the

value uni�ed with variable T . 2

14

EXAMPLE 4.2 Rule PR2 deletes the tuples for employees who have worked more than 20

years.

(PR2): 8E;X; S; P;9T [emp(E;X; S; T) ^ (X > 20)
=) DELETE(emp(E;X; S; T))]

The emp tuples, with experience greater than 20 years, are removed from emp. 2

EXAMPLE 4.3 Rule PR3 creates the tuples of high paid if their salary is more than

$80K.

(PR3): 8E;X; S; P;9T [emp(E;X; S; T) ^ (S > 80000)
=) INSERT(high paid(E; S))]

2

4.4 Converting Rules to Update Expressions

Rule PR can modify a portion of a database, if not the entire database. Consider the

following production rule:

(PR): 8 �X9 �Y [R1(�X1) ^ ::: ^Rk(�Xk) ^ g(�X; �Y ; �c) =) O(Si(�X 0
i;
�Y 0
i))]

Recall that O denotes either UPDATE, INSERT, or DELETE. If O in O(Si(�X 0
i;
�Y 0
i)) denotes

UPDATE, g(�X; �Y ; �c) is a conjunction of g1(�X; �Y ; �c) and g2(�X; �Y ; �c), where g1(�X; �Y ; �c) denotes

equality (=) or inequalities (6=; >;<;�;�) and g2(�X; �Y ; �c) denotes assignment (:=). The

rule PR can be rewritten as.

(PR): 8 �X9 �Y [R1(�X1) ^ ::: ^Rk(�Xk) ^ g1(�X; �Y ; �c) ^ g2(�X; �Y ; �c)
=) UPDATE (Si(�X 0

i;
�Y 0
i))]

Therefore, the rule PR can be converted into

15

UPDATE Si(�X 0
i;
�Y 0
i)

SET g2(�X; �Y ; �c)
PRECOND EXIST (SELECT *

FROM R1(�X1); :::; Rk(�Xk)
WHERE g1(�X; �Y ; �c))

Notice that the condition part of PR is to scope the problem view within which the

assignment g2(�X; �Y ; �c) is executed. As seen in Section 2.3, the condition is called PRECOND.

The POSTCOND clause consists of available constraints IC that verify the consistency of the

update.

EXAMPLE 4.4 Rule PR1 produces a 20% tax rate for those who earn over $50K and have

more than three dependents.

(PR1): 8E;X; S; P;9T [emp(E;X; S; T)^ depn(P;E) ^ (S > 50K)^
(sum(P) > 3) ^ (T := :2) =) UPDATE(emp(E;X; S; T))]

The rule PR1 can be converted into an update expression:

UPDATE emp

SET T := 2
PRECOND EXIST (SELECT E, sum(P)

FROM emp, depn
WHERE (S > 50K) AND (sum(P) > 3))

The impedance mismatch problem has been solved by converting rules into an SQL ex-

pression so that sets of tuples may be examined versus tuple-at-a-time processing. A �rst-

order-logic based rule formalism can be implemented in relational database management

systems using these transformation techniques. 2

16

5 Repairing Constraint Violations Using Rules

When the database state is updated, e�ects of the update can be propagated in active

databases. The propagation of update e�ects may cause additional database inconsistencies.

In traditional active database formalisms, these constraint violations must be corrected ex-

plicitly by users, or the updates causing the violation are rejected. Suppose, however, an

appropriate rule were available in the database to deduce new facts to compensate for these

constraint violations. This section describes how to make use of available rules for ensuring

consistent database updates.

Consider an update U whose e�ects violate a constraint ICj, and a rule PRj whose actions

can repair these constraint violations. By converting the rule PRj as shown in earlier section,

two update expressions are obtained.

UPDATE relation used in a user-issued query
SET assignment in U

PRECOND EXIST tuples satisfying ICi AND the condition of U
POSTCONDEXIST tuples satisfying ICj

UPDATE relation used in a rule
SET assignment in PRj

PRECOND EXIST tuples violating ICj AND the condition of PRj

POSTCONDEXIST tuples satisfying ICj

These two updates are activated in sequence; the converted update from a rule is per-

formed before a user-issued update.

Example 5.1

Consider the following constraint and rule.

17

(IC2): 8E;X; S;9T [emp(E;X; S; T) ^ (S > 50K)
=) (T > :15)]

(PR1): 8E;X; S; P;9T [emp(E;X; S; T)^ depn(P;E) ^ (S > 50K)^
(sum(P) > 3) ^ (T := :2) =) UPDATE(emp(E;X; S; T))]

Suppose that the following update is posed to the active database.

UPDATE emp

SET S = S � 1:1

As shown in Example 3.2, the constraint is used to ensure the post-condition of the update.

At the same time, it is necessary to consider those tuples, if any, violating this constraint.

If the above rule can be used to repair those constraint violations, the rule can be converted

into an update expression. Clearly, the scope of those constraint violations should be taken

into account in the pre-condition of the converted update, as expressed below.

UPDATE emp

SET S := S � 1:1
POSTCONDEXIST (SELECT *

FROM emp

WHERE :(S > 50000) OR T � :15)

UPDATE emp

SET T := 2
PRECOND EXIST (SELECT E, sum(P)

FROM emp, depn
WHERE (S > 50K) AND (sum(P) > 3)

AND :(T � :15))
POSTCOND EXIST (SELECT *

FROM emp

WHERE :(S > 50K) OR T � :15)

These two updates are executed sequentially: the �rst update is to set the salary S for

those tuples satisfying the pre-condition and to commit this update to those tuples satisfying

the post-condition. The second update is to set the tax rate T for those tuples violating the

post-condition of the �rst update and to commit this update to those tuples satisfying that

18

post-condition. 2

6 Propagation of Update E�ects

In response to a database state change, active database rules are activated without the user's

intervention. That is, database state changes trigger further rule activation and execution.

Suppose that a rule PRk is triggered in response of database state changes caused by an

update U . For a given U , a sequence of updates is obtained as follows.

UPDATE relation
SET assignment in U

PRECOND the condition of v(U)

UPDATE relation
SET assignments in PRk

PRECOND the condition of PRk

Example 6.1

Consider the following update which is to increase employee salaries by ten percent where

years of expr is over 2 years.

UPDATE emp

SET S = S � 1:1
WHERE EXIST (SELECT *

FROM emp

WHERE X > 2)

Suppose that the following rule PR4 can be triggered by the database state changes caused

by the above update.

19

(PR4): 8E;X; T; S;9Y [emp(E;X; S; T)^ high paid(E; Y)^
(S > 80K) ^ (Y := \high")
=) UPDATE(high paid(E; Y)]

By incorporating rule PR4, the given update is reformulated to the following two update

expressions:

UPDATE emp

SET S = S � 1:1
WHERE EXIST (SELECT *

FROM emp

WHERE X > 2)

UPDATE high paid

SET Y := \high"
WHERE EXIST (SELECT E

FROM emp

WHERE S > 80K)

This sequence of two updates explains propagation of the update e�ects. If constraints

regarding the changes to salary are available, they are taken into account by the PRECOND

clause of the second update. If constraints regarding additional attributes a�ected by the

changes to salary are available, they are used for the POSTCOND clause. 2

7 Implementation Issues

The reformulation process described in this paper is depicted in Figure 1. For a user-issued

update expression, appropriate constraints and rules need to be compiled; a discussion of

compilation techniques appears in [Yoo93], but is beyond the scope of this paper. The

output of this reformulation process is a sequence of updates that represents the semantic

reformulation of the user's original update.

20

Update

Constraint
Available?

Constraint Violated
Tuple Set = {}

Update Verification

Stop

Constraint
Violation

Repair

Constraint Satisfied
Tuple Set = {}

Stop

Alert/Stop

Rule
Available?

Update
Effects

Propagation

Rule
Available?

Yes Yes

NoNo

Yes Yes

No No

No

Yes

Reformulation- -

? ?

Database
Engine

Update Sequence of Updates

Constraints Rules

Figure 1: Semantic Update Reformulation

Consider now the actual processing of updates as depicted in Figure 2. The
ow diagram

shown in Figure 2 represents the integration of three major tasks of semantic update pro-

cessing: update veri�cation, constraint violation repair, and update e�ects propagation, as

discussed in Sections 3, 5, and 6, respectively.

Figure 2: Semantic Update Processing Diagram

First we consider the update veri�cation phase, in which the database is partitioned into

two parts: a set of tuples satisfying the constraints and the remaining tuples which violate the

21

constraints. The constraint language requires syntactic interpretation to be expressed in the

SQL query language. In an implementation, this syntactic interpretation may be performed

by using a parser and a lexical analyzer, or by indexing constraints to a data dictionary

containing pre-de�ned query expressions. The advantage of our conversion technique is that

set-at-a-time constraint evaluation is performed rather than tuple-at-a-time evaluation.

The repair phase of a constraint violation is processed only if the database state violates

a constraint and a rule is available for deducing facts. The deduced facts may be corrections

if they, in turn, satisfy all the constraints that were not satis�ed originally. Otherwise, an

alerter may be generated to appraise users of the constraint violation; the user can then take

appropriate action.

In the propagation of update e�ects phase { a key feature of active databases { one or

more rules may be activated as a side-e�ect of an update. In an implementation, rules can

be activated against either those valid tuples which satisfy all constraints, or those tuples

which are to be repaired due to constraint violations.

Note that the constraint violation repair and the update e�ects propagation phases may

be performed in parallel. The database can be partitioned into tuples that satisfy the con-

straints and those the violate the constraints. We can take advantage of parallel algorithms

and multiprocessor architectures, e.g., DB2 V3 or ORACLE Parallel Server V7, for query

optimization.

22

8 Conclusions

This paper has presented a novel approach to constraint management in active databases.

Updates to a database are reformulated to employ the semantics of both rules and con-

straints. We have presented a uni�ed approach to consistent update management using

constraints and rules in databases, and have made the following contributions:

� A uni�ed database update calculus has been developed. In this approach, a user-

speci�ed database update is reformulated into a sequence of semantically-rich updates

that have associated with them relevant constraints and rules.

� A system-derived update incorporates constraints and rules, so that database consis-

tency can be maintained e�ciently. The user may preview the e�ects of an update by

examining reformulated sequence of updates.

� Updates are performed set-at-a-time only on valid database instances and the update

e�ects are propagated only on valid instances. Invalid instances are repaired by rule

deduction.

The bene�ts described in this paper include the following:

� Conversion of constraints and rules to SQL expressions supports set-manipulation in the

update calculus versus the typical tuple-at-a-time rule evaluation used in other update

schemes.

� Semantic query optimization [YK93] is a particular case of semantic update optimization

discussed in this paper. Therefore, the semantic update reformulation framework can

23

be used to optimize queries semantically [LHQ91].

� Update reformulation provides users with a pre-viewing mechanism of active database

rule processing. Users may also have control of rule activation, if necessary.

The formalism discussed in this paper will help database designers and database users to

manage and control database updates in active databases. The techniques of constraint man-

agement { update veri�cation, constraint violation repair, and update e�ects propagation {

applied to the reformulation and management of updates, will permit users and developers

to have increased con�dence that their active applications are performing as designed and

with the appropriate results.

References

[AH85] S. Abiteboul and R. Hull. Update propagation in the IFO database model. In
Proceedings of the International Conf. on Foundations of Data Organization,
pages 243{251, Kyoto, 1985.

[AWH92] Alexander Aiken, Jennifer Widom, and Jeseph M. Hellerstein. Behavior of
database production rules: Termination, con
uence, and observable determin-
ism. In Michael Stonebraker, editor, Proc. ACM SIGMOD Intl. Conf. on Man-

agement of Data, pages 59{68, San Diego, 1992.

[CCCR+90] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating
object-oriented data modeling with a rule-based programming paradigm. In
Hector Garcia-Molina and H.V. Jagadish, editors, Proc. ACM SIGMOD Intl.

Conf. on Management of Data, pages 225{236, Atlantic City, NJ, 1990.

[CGM90] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach
to semantic query optimization. ACM Transactions on Database Systems,
15(2):163{207, June 1990.

[CW90] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In
Proc. Intl. Conf. on Very Large Data Bases, pages 650{661, Brisbane, Australia,
1990.

24

[CW91] S. Ceri and J. Widom. Deriving production rules for incremental view mainte-
nance. In Proc. Intl. Conf. on Very Large Data Bases, pages 577{589, Barcelona,
1991.

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, R. Ledin M. Hsu,
D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny, and R. Jauhari.
The HiPAC project: Combining active databases and timing constraints. ACM
SIGMOD Record, 17(1):51{70, March 1988.

[DHL90] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. Organizing long running
activities with triggers and transactions. In Hector Garcia-Molina and H.V.
Jagadish, editors, Proc. ACM SIGMOD Intl. Conf. on Management of Data,
pages 204{214, Atlantic City, NJ, 1990.

[GPZ88] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of
consistent views. ACM Transactions on Database Systems, 13(4):486{524, 1988.

[GW93] Ashish Gupta and Jennifer Widom. Local veri�cation of global integrity con-
straints in distributed databases. In Peter Buneman and Sushil Jajodia, editors,
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 49{58, Wash-
ington, D. C., 1993.

[HK81] Matthew S. Hecht and Larry Kerschberg. Update semantics for the functional
data model. Technical Report Database Research Report No. 4, Bell Laborato-
ries, Holmdel, New Jersey, January 1981.

[KLS92] M. Kramer, G. Lausen, and G. Saake. Updates in a rule-based language for ob-
jects. In Proc. Intl. Conf. on Very Large Data Bases, pages 251{262, Vancouver,
Canada, 1992.

[KM90] A. C. Kakas and P. Mancarella. Database updates through abduction. In Proc.

Intl. Conf. on Very Large Data Bases, pages 650{661, Australia, 1990.

[Kow78] R. Kowalski. Logic for data description. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 77{103, New York, 1978. Plenum Press.

[KS91] Henry F. Korth and Abraham Silberschatz. Database System Concepts.
McGraw-Hill, Inc, New York, 1991.

[LHQ91] Sanggoo Lee, Lawrence J. Henschen, and Ghassan Z. Qadah. Semantic query
reformulation in deductive databases. In Intl. Conf. on Data Engineering, pages
232{239, 1991.

[Man89] Sanjay Manchanda. Declarative expression of deductive database updates. In
Proceedings of the ACM Symposium on Principles of Database Systems, pages
93{100, Philadelphia, 1989.

25

[MD89] D. R. McCarthy and U. Dayal. The architecture of an active database man-
agement system. In Proc. ACM SIGMOD Intl. Conf. on Management of Data,
pages 215{224, Portland, Oregon, 1989.

[ML91] Guido Moerkotte and Peter C. Lockemann. Reactive consistency control in
deductive database. ACM Transactions on Database Systems, 16:670{702, 1991.

[Mor84] M. Morgenstern. Constraint equations: Declarative expression of constraints
with automatic enforcement. In Proc of VLDB, pages 111{125, 1984.

[Mor86] M. Morgenstern. The role of constraints in databases. In Larry Kerschberg,
editor, Expert Database Systems, pages 351{368. Benjamin/Cummings, 1986.

[QW88] Xialolei Qian and Richard Waldinger. A transaction logic for database speci-
�cation. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages
243{250, Chicago, 1988.

[SK86] A. Shepherd and L. Kerschberg. Constraint management in expert database
systems. In Larry Kerschberg, editor, Expert Database Systems, pages 309{368.
Benjamin/Cummings, 1986.

[WCL91] J. Widom, R. J. Cochrane, and B. G. Lindsay. Implementing set-oriented pro-
duction rules as an extension to Starburst. In Proc. Intl. Conf. on Very Large

Data Bases, pages 275{285, Barcelona, Spain, 1991.

[YK92] Jong P. Yoon and Larry Kerschberg. A framework for constraint management
in object-oriented databases. In Proc. of the First International Conference on

Information and Knowledge Management, pages 292{299, Baltimore, MD, 1992.

[YK93] Jong P. Yoon and Larry Kerschberg. Semantic query optimization in deductive
object-oriented databases. In Proc. of the Third International Conference on

Deductive and Object-Oriented Databases, Phoenix, Arizona, December, 1993.

[Yoo93] Jong P. Yoon. Constraint Management in Active Databases. PhD thesis, George
Mason University, Fairfax, Virginia, 1993.

26

