
A restrictive de�nition of concurrency for

discrete-event modeling

Bo Sand�en

George Mason University

bsanden@gmu.edu

ISSE-TR-94-114

Revised

February 27, 1995

Abstract

Concurrency is an increasingly popular modeling concept in object-oriented anal-
ysis, software design, process modeling and other areas. Many approaches view their
problem domains in terms of independent, concurrent processes that occasionally need
to be synchronized. This is potentially an extremely concurrent model, where \essen-
tial" processes that represent independent progress may be lost in the wealth of more
trivial processes. This is particularly important in a software implementation, where
various overhead costs are incurred by each process.

The objective of this work is to �nd a formal de�nition of concurrency that is
restrictive in that only essential processes (in some sense) are considered concurrent.
The de�nition is based on simultaneity: threads (processes) are concurrent i� their
occurrences are arbitrarily close in time. The formal apparatus is outlined in the
following:

An occurrence is a unique happening at a speci�c time. A problem is a set of timed
traces of occurrences. Such a set of traces is given as the starting point of the analysis.
Occurrences are usually discussed in terms of events, where an event is any rule that
de�nes a set of occurrences.

A thread is an event whose occurrences are separated in time. Given a problem,
the goal is to �nd a thread model such that each occurrence in the problem belongs to
exactly one thread. The rationale is that when the system runs, �nite time is required to
process each occurrence. Within each thread, the interval between occurrences allows
for this. Simultaneous occurrences belong to di�erent threads, which may execute on
di�erent processors or interleaved on a single one.

A thread model is minimal if all the threads have simultaneous occurrences. The
rationale here is economy: this eliminates redundant threads that occur in lockstep
or sequentially, one following the other, and consequently do not contribute to the
essential concurrency. All minimal thread models of a given problem have the same
number of threads, which is the concurrency level of the problem.

1

1 Introduction

Continuous activities are intuitively concurrent if they run in parallel, that is, there is an
interval during which all the activities are continuously going on. In discrete-event environ-
ments, where reality is described in terms of distinct occurrences without duration, concur-

rency has no similarly obvious meaning. As a basis for the design of concurrent software,
this paper proposes a de�nition based on simultaneity: threads (processes) are concurrent i�
their occurrences are arbitrarily close in time. The objective is to de�ne concurrency for the
purposes of modeling and design, where it is now often used ad hoc. The de�nition proposed

here allows the modeler or designer to base the decision of where to use concurrency on a
determination of whether individual events occur at the same time. This determination can
be made objectively based on explicit assumptions.

Concurrency is an increasingly popular modeling concept. Identifying essential concur-
rency is a useful way to separate concerns in a complex system, which can be reduced to

a set of interacting sequential processes. Essential concurrency exists for instance (a) when
a process may be held up waiting for resources held by another, (b) when single processes
must wait for external events while other processes can proceed, and (c) when each process

operates according to an individual schedule. In these cases, each process can intuitively be
regarded as a unit of independent progress.

Many object-oriented analysis approaches include dynamic models, where an object is
given life in the form of a process. There is sometimes a tendency in object-oriented modeling
to regard concurrency as a normal state of a�airs, which is disrupted by the occasional need

for synchronization. For example, Cox views objects as \little independent automata, each
busily working away in parallel : : :" [2]. One problem with such very concurrent models is
that essential concurrency inherent in a problem is not identi�ed and may be lost among
a wealth of processes, some of which may operate in lockstep or sequentially, one after the

other. The processes described under (a), (b) and (c) above may not be identi�ed among
the \independent automata" but instead span several such automata.

An additional problem with a very concurrent model has to do with implementation.
A software designer or a builder of a simulation model needs to map some of the processes
found in a description of the problem onto tasks1 executing on a computer. In that situation,

a cost is incurred for the start-up of every new task, for each time unit of the task's exis-
tence and possibly for its dismantling. Costs are also associated with task synchronization
and communication. These costs are not only in terms of tangible resources, such as CPU

cycles, but also in terms of complexity, since process start-up, rescheduling, synchronization,
dismantling, etc., require considerable manipulation. With this background, a reasonable
research endeavor may be formulated as follows: \To formally de�ne concurrency in envi-
ronments where a cost is associated with the start of each concurrent process and/or for

synchronization and/or for communication between processes."

1\Task" is used for a process managed during the execution of software. This is the term used in Ada,

for example.

2

This paper proposes a simple concurrency concept that is applicable in practice yet
amenable to formal treatment: The concurrency exists between sequential threads. In a

thread model of a certain problem, each occurrence is attributed to exactly one thread. A
� > 0 exists, such that the occurrences in each thread are separated by � units of time. In
a minimal thread model, all the threads are concurrent in the sense that each thread has at

least one occurrence that is simultaneous with an occurrence in each other thread.

No notation for describing the possible sequences of occurrences in a thread is proposed,
nor is any one existing notation adopted. The modeler may choose to represent individual
threads as state machines (using state transition diagrams or Statecharts [5]), regular ex-
pressions (using either the traditional notation from automata theory or Jackson diagrams

[7, 8]) or recursive expressions as in CSP [6]. The purpose of the proposed concurrency
de�nition is not to provide another notation for communicating concurrent processes. In
fact, the de�nition abstracts away from the structure of each process and sequence of event
occurrences it produces, and is instead only concerned with whether a concurrent process is

justi�ed.

1.1 Practical justi�cation

The concurrency de�nition proposed here is useful for concurrent, discrete-event modeling
in requirements analysis, software design and simulation. Current literature on software

requirements shows considerable interest in concurrent models [4]. In software design, tasks
as provided by Ada and the threads provided by some operating systems and windowing
systems have made concurrency easily available. Furthermore, there is a trend toward using
concurrent models for such purposes as process modeling [3]. In all these areas, a well-de�ned

vehicle for reasoning about concurrency in real, practical problems is needed.

Object-oriented analysis is particularly popular, and the Object Modeling Technique,
OMT [10]2 is a good example of an object-oriented analysis approach. OMT includes an
object model and a dynamic model. Objects are capsules of data (state) and operations,
and the object model describes their relationships at each point in time. The dynamic

model consists of concurrent processes and describes how the state changes as a result of
events. (OMT uses Statecharts [5].) This makes OMT one of several object-oriented analysis
techniques where objects are given life and become concurrent processes. OMT takes a liberal

view of concurrency. Not only are di�erent objects regarded as concurrent processes, but
the modeler is also encouraged to use concurrency to express interleaved sequences of events
within individual objects, leading to a potentially very concurrent model.

An important trend in object-oriented development is the desire for seamlessness in the
sense that one basic model should support analysis, design and implementation. This means

that concurrency identi�ed during analysis tends to remain in the design, where it gives rise
to tasks that must be managed and incur the costs that motivate the proposed concurrency
de�nition.

2The reference is dated but adequate for the reasoning here.

3

As mentioned earlier, one concern in the design of concurrent software is that unnec-
essary tasks incur overhead. Given this background, Entity-life modeling (ELM) relies on

threads as de�ned in this paper and gives heuristics for identifying threads in the problem
and mapping them onto tasks [12, 13]. ELM gives special emphasis to systems where multiple
entities vie for exclusive access to shared resources, and particularly where each entity needs

simultaneous, exclusive access to multiple resources. The entities are modeled as threads. In
control systems, it is often possible to design away deadlocks by imposing a certain protocol
on these entities as to the order in which they acquire exclusive access to shared resources
[14].

Section 2 contains the basic de�nitions. Section 3 contains a number of examples.

Section 4 compares the de�nitions made here with other concurrency concepts. Section 5
includes conclusions and outlines further work.

2 De�nitions

The basic, proposed concurrency de�nitions follow here. The �rst part is concerned with

describing problems, the second with reasoning about them. Problem description is based
on occurrences. An occurrence (of an event) is a concrete, unique happening. An informal
example is: \This particular elevator arrives at this particular oor in this particular building
at this particular time". A problem is de�ned as a set of timed traces, which are ordered

sequences of occurrences. A trace describes one possible unfolding of occurrences in a given
problem. Each trace is a consistent description of developments in the physical world, but
a problem may contain traces that are mutually inconsistent. For example, in an elevator

problem one trace may have the elevator arriving at oor 4 at a certain time on a certain
day, while in another the elevator arrives at oor 5 at the same time and day. These two
occurrences cannot co-exist in one trace. A trace may consist of actual observations of reality
or be the result of a simulation or a thought experiment.

An event is an abstraction of the notion of occurrence; any rule that de�nes a set of

occurrences is an event. This is intended to capture the common usage in discrete-event
modeling. For example, when a system is modeled as a �nite automaton, an event causes a
state transition. Such an event may have any number of occurrences in the actual system.
(The usage may clash with what is common in other contexts, where the word \event" is

used for what is here called an \occurrence".) The event concept also subsumes the concept
of conditions, which are sometimes used together with events in discrete-event models. Thus
an event might be formulated as: \Elevator E arrives at oor 3 during rush hour".

The reasoning about concurrency is based on threads. A thread is an event whose occur-
rences are separated in time. This is the key to the concurrency de�nition: it distinguishes

what is sequential (occurrences of the same thread) from what may be concurrent (occur-
rences of di�erent threads). Simultaneous occurrences must be in di�erent threads. Since
an occurrence has no extension in time, such simultaneity is formalized by the concept of

event co-occurrence. A set of events co-occur if for any � > 0 there is a trace where all the

4

events in the set occur within an interval of � time units.

Given a problem, the goal is to �nd a thread model such that each occurrence belongs
to exactly one thread. A rationale for this is that when a system is executed, �nite time is

required to process each occurrence. Within each thread, occurrences are separated by at
least � time units, so a su�ciently fast processor can handle each occurrence as it happens.
If o1 in the thread t1 is such an occurrence, then any occurrence within � time units of o1,

which might cut short o1's processing time, belongs by de�nition to a di�erent thread, t2,
say. The threads t1 and t2 can execute on di�erent processors or be interleaved on a single
processor.

A thread model is minimal if all threads co-occur, that is, they have occurrences that
are arbitrarily close in time. The rationale behind minimal thread models is economy: as

stated in the introduction, a cost is associated with each thread. In a minimal thread model,
there are no redundant threads.

Traces and threads. The two concepts trace and thread both refer to ordered sets and
may perhaps be confused. The following two examples illustrate the di�erence:

Example 1: In a multi-elevator system, a tracemay be created by logging every occurrence
as it happens, no matter what elevator and what oor it a�ects. On the other hand, each
elevator represents a thread, since, regardless of trace, all occurrences a�ecting that elevator
are separated in time.

Example 2: In a multi-processor system, the occurrences may be the executions of single
instructions on each processor. Then, each processor represents a thread, while each execution

of a program generates a trace.

2.1 Problem descriptions.

This subsection introduces the concepts necessary to describe problems. They include time,
occurrences and traces. The notion of distance in time between occurrences is also intro-

duced.

2.1.1 Time and occurrences.

In this model, time is continuous and monotonic. An occurrence is a happening at a point

in time and without extension in time.

Example: The arrival of a particular elevator car to a particular oor in a particular

building at a particular date and time.

5

Let occurrences be the set of all occurrences

The function

time : occurrences! time

is an injection de�ned for all o 2 occurrences and gives a unique time for each occurrence.

2.1.2 Traces.

A trace is an ordered set of occurrences. Semantically, a trace describes one possible sequence
of occurrences in a particular problem. We shall assume that each trace has at most a

countable number of occurrences.

Let traces be the set of all traces

Then,

traces 2 2occurrences

The ordering of the occurrences in a trace with respect to time is strict; the likelihood of
two di�erent occurrences being at the same time is zero. Thus, the times associated with
di�erent occurrences are di�erent:

8S 2 traces; 8o1; o2 2 S ; o1 6= o2 � time(o1) 6= time(o2)

(Restricted to a trace, S 2 traces, time : S ! time is a total injection.)

The separation in time between two occurrences in the same trace is de�ned as follows:

8S 2 traces; 8o1; o2 2 S ��(o1; o2)
def
= j time(o1)� time(o2) j

Since no two occurrences happen at the same point in time,

8S 2 traces; 8o1; o2 2 S � o1 6= o2) �(o1; o2) > 0

We shall say that two occurrences o1 and o2 are separated (or, more speci�cally, separated
by � time units) if there is a trace that includes them both and there exists a � > 0 such
that �(o1; o2) > �.

A trace extends in time to in�nity. Thus, there is no concept of one trace following another.
However, the range of time applied to the occurrences in a trace may be limited; that is, a

trace may contain a �rst and/or a last occurrence.

2.1.3 Problems.

The purpose of the analysis discussed here is to �nd a thread model of a given problem. We
de�ne formally a problem, P , as a set of traces. We shall assume that each problem has at
most a countable number of traces.

Let problems be the set of all problems.

A problem is non-empty if it contains at least one trace, S , such that S 6= fg. Any other
problem is empty. We shall denote the empty problem by ;.

6

Furthermore, we de�ne the function

Occset : problems! 2occurrences

as the set of all occurrences in P as follows:

8P 2 problems; 8o 2 occurrences � o 2 Occset(P)
def
() 9S 2 P ; o 2 S

Theorem 2.1.1. For any problem, P , Occset(P) is at most countable.

Proof: The number of traces is at most countable and the number of occurrences in each
trace is at most countable. Occset(P) is then also at most countable. q.e.d.

Note. In a problem concerning real-world occurrences there is only one trace. Multiple
traces exist in hypothetical worlds, such as simulations, where di�erent scenarios over the
same time span can be explored.

2.1.4 Restrictions of problems.

For a given problem, P = fSj ; j = 1 : : :g, and a set, O � occurrences, the restriction of a
P with respect to O is denoted P j O and de�ned as the set fSj \O ; j = 1 : : :g.

Clearly, the following holds;

P j Occset(P) = P

P j fg = ;

P j O = P j (O \Occset(P))

2.2 Events.

An event is a rule that de�nes a set of occurrences. Examples: Each of a, b, c, d and f is
an event:

� a = \Elevator X arrives at some oor"

� b = \Some elevator arrives at oor 4"

� c = \Some elevator arrives at some oor"

� d = \Something happens"

� f = \Elevator X arrives at oor 4"

7

With the above notation, the text within quotes following the '=' sign is referred to as the
formulation of the event.

Let events be the set of all events.

The function occset maps each event onto its occurrences in a given trace:

occset : events� traces! 2occurrences

If o is an occurrence and e is an event, we shall say that o belongs to e and that e includes
o in a problem P i� the following holds:

8S 2 P ; o 2 S � o 2 occset(e;S)

If e1 and e2 are events, we shall say that e1 includes e2 in a problem P i� the following holds:

8S 2 P � occset(e2;S) � occset(e1;S)

By overloading, we de�ne

occset : events� problems! 2occurrences

as follows:

8 e 2 events; 8P 2 problems; 8o 2 occurrences�

o 2 occset(e;P)
def
() 9S 2 P ; o 2 occset(e;S)

Note: Occset takes a problem as its argument, and occset takes an event and either a
problem or a trace.

Example: For the above events a through f , and a suitably de�ned elevator problem, P ,

occset(a;P) � occset(c;P)

occset(b;P) � occset(c;P)

occset(c;P) � occset(d ;P)

occset(a;P) \ occset(b;P) = occset(f ;P)

The function event maps each occurrence, o onto an event that includes exactly the occur-
rence o. The following holds:

8o 2 occurrences; 8P 2 problems�

o 2 Occset(P)) occset(event(o);P) = fog.

2.3 Threads.

We are interested in events whose occurrences are separated by a minimum time interval.
We shall say that an event is a thread in a problem, P , if this is the case. Formally,

8P 2 problems; 8 e 2 events�

8

threadP(e)
def
()

9 � > 0; 8S 2 P ; 8oi ; oj 2 occset(e;S); oi 6= oj ��(oi ; oj) > �

Example: a = \Elevator X arrives at some oor"

In a suitably de�ned elevator problem, a is a thread since its occurrences are separated by
the minimum time that elapses between arrivals at di�erent oors.

Counter-example: g = \Some elevator arrives at some oor"

g is not a thread in a problem, P , if for any � > 0, we can �nd a trace in P where two
elevators arrive within � time units of each other. Intuitively, such a trace can be found in
a problem where multiple elevators travel independently.

Theorem 2.3.1. An event with no occurrence in a problem, P , is a thread in P .

Theorem 2.3.2. An event with exactly one occurrence in a problem, P , is a thread in P .

To show that an event, e, is a thread in a problem, P , it is su�cient and necessary to
show one of the following:

� e has no occurrences in P (Theorem 2.3.1).

� e has exactly one occurrence in P (Theorem 2.3.2).

� In every trace, S 2 P , any two occurrences in occset(e;S) are separated by some � > 0.

Note. For any occurrence, o, in a problem, P , event(o) is a thread in P since it has exactly
one occurrence.

We shall say that a set, E , of events is a thread set in a problem, P, i� each member of E is

a thread in P. Formally,

8P 2 problems; 8E 2 2events�

threadsetP(E)
def
() 8 e 2 E ; threadP(e)

2.4 Thread models.

A thread model of a given problem, P , is a set of threads, fh1 : : :g in P , such that each
occurrence in each trace in P belongs to exactly one thread.

Equivalently, a set of threads in P , fh1 : : :g, is a thread model of P i� occset(h1;P) : : :

partition Occset(P).

9

Formally, de�ne modelP as follows:

8P 2 problems; 8E 2 2events�

modelP(E)
def
()

threadsetP(E) ^
S
h2E occset(h;P) = Occset(P) ^

8 j � 1; k 2 1 : : : j � 1; hj ; hk 2 E � occset(hj ;P) \ occset(hk ;P) = fg

Example: Given the earlier-de�ned events a, b, and f ,

� a = \Elevator X arrives at some oor"

� b = \Some elevator arrives at oor 4"

� f = \Elevator X arrives at oor 4",

a and b cannot be threads in the same model of a problem, P , since both include f .

Theorem 2.4.1. A thread model of a non-empty problem contains at least one thread.

Theorem 2.4.2 The empty set is a thread model of the empty problem.

To show that a set of threads, fh1 : : : hng, is a thread model of a problem, P , it is su�cient

and necessary to show that :

8 j 2 1 : : : n; k 2 j + 1 : : : n � occset(hj ;P) \ occset(hk ;P) = fg

and

occset(h1;P) [: : : [occset(hn ;P) = Occset(P)

2.5 Co-occurrence.

Co-occurrence captures the intuition that di�erent events occur independently. We shall say
that a set of events co-occur in a problem, P , if for every � > 0, there is a trace where all

the events occur within � time units.

8P 2 problems; 8E 2 2events�

co occurP(E)
def
()

8 � > 0; 8 ei ; ej 2 E ; ei 6= ej ; 9S 2 P ;

9 oi 2 occset(ei ;S); oj 2 occset(ej ;S); oi 6= oj ; �(oi ; oj) < �

Theorem 2.5.1. An event without occurrences in a problem, P , co-occurs with no event

in P .

10

Note. The de�nition of co-occurrence of a set of events does not require that each event
co-occur with itself.

To show that two events, ej and ek do not co-occur in a problem, P , it is necessary and
su�cient to show either that one of the events has no occurrence in P , or that there exists
a � > 0 such that in each trace, S 2 P , each member of occset(ej ;S) is separated from each
member of occset(ek ;S) by � time units.

Theorem 2.5.2. If hj and hk ; hj 6= hk ; are threads in a problem, P , and do not co-occur,
there exists a thread, h, in P , such that occset(h;P) = occset(hj ;P) [occset(hk ;P)

Proof. If hj and hk do not co-occur, the following possibilities exist:

1) occset(hj ;P) = fg, in which case h = hk

2) occset(hk ;P) = fg, in which case h = hj

3) occset(hj ;P) = occset(hk ;P) = fg, in which case h = fg

4) occset(hj ;P) 6= fg and occset(hk ;P) 6= fg

To prove the theorem in case 4), let h be an event such that occset(h;P) = occset(hj ;P) [
occset(hk ;P). To show that h is a thread in P , we need to show

9 � > 0; 8S 2 P ; 8ol ; om 2 occset(h;S); ol 6= om ��(ol ; om) > �

according to the de�nition of thread. Since hj and hk are threads, we know that this holds

for any pair ol ; om 2 hj and for any pair ol ; om 2 hk . It remains to show that it holds for any
pair oj ; ok ; oj 2 hj ; ok 2 hk . But from the the de�nition of co-occurrence we conclude that

9 � > 0; 8S 2 P ; 8oj 2 occset(hj ;S); ok 2 occset(hk ;S); oj 6= ok ��(oj ; ok) > �

q.e.d.

2.6 Minimal thread models.

A thread model, M , is minimal i� all the threads in M co-occur. Formally, the property
minmodel is de�ned as follows:

8P 2 problems; 8M 2 2events�

minmodelP(M)
def
() modelP(M) ^ co occurP(M)

Theorem 2.6.1. If P is a non-empty problem, and MP = fh1g is a thread model of P ,
then MP is minimal.

Theorem 2.6.2. Each thread in a minimal thread model of a problem, P , includes at least
one occurrence in P .

11

Theorem 2.6.3 The minimal thread model of the empty problem is the empty set of
threads.

To show that a thread model, MP = fh1 : : :g, of a given problem, P , is minimal, it is
necessary and su�cient to �nd for any � > 0, a trace, S�, with one occurrence, ok , from each
thread, hk ; k = 1 : : :, such that 8 i 2 1 : : : n; j 2 1 : : : i � 1; �(oi; oj) < �.

To show that a thread model, MP = fh1 : : :g, is not minimal, it is necessary and su�cient
to �nd two threads hj and hk in MP that do not co-occur.

Algorithm 2.6.1 One way to �nd a minimal thread model for a given problem, P , is
de�ned recursively as follows:

1. Assume that a minimal thread model, MPjOk
, of P restricted to some subset, Ok �

Occset(P) has been found.

2. Find a subset, Ok+1 � Occset(P), that contains Ok and where Ok+1 nOk 6= fg.

3. Find a set of threads, Tk+1, that include all occurrences in Ok+1 nOk .

4. For each thread, h 2 Tk+1, if h co-occurs with all the threads in MPjOk
, include it

in MPjOk+1
, else reformulate (as necessary) one or more threads in MPjOk+1

to include
occset(h;P j Ok+1).

Note also, that for O0 = fg, MPjO0
= fg (by Theorem 2.6.3.), which provides a possible

starting point for the recursion.

Theorem 2.6.4. Algorithm 2.6.1 is convergent for any problem with a �nite number of

occurrences.

Algorithm 2.6.2. Given a thread model, E = fh1; h2 : : :g of a problem, P , the following
algorithm produces a minimal thread model:

1. Assume that a minimal thread model, Mn has been found of P j (occset(h1;P) [: : : [
occset(hn ;P))

2. If co occurP(fh1 : : :hn+1g) then Mn+1 = Mn [fhn+1g. Otherwise, there is a thread,
hi ; 1 � i � n, such that fhi ; hn+1g do not co-occur. But then there exists a thread,

h, such that occset(h;P) = occset(hi ;P) [occset(hn+1;P), by Theorem 2.5.2. Choose
Mn+1 = Mn n fhig [h

Note that M1 = fh1g is a minimal thread model of P j occset(h1;P), providing a possible

starting point for the recursion.

12

Theorem 2.6.5. Algorithm 2.6.2 is convergent for any thread model with a �nite number
of threads.

2.7 Properties of minimal thread models.

Theorem 2.7.1. A minimal thread model contains at most a countable number of threads.

Proof: For any problem, P , and any minimal thread model, MP of P ,

card(MP) � card(Occset(P)).

By Theorem 2.1.1, Occset(P) is at most countable. q.e.d.

Theorem 2.7.2. If one minimal thread model of a problem, P , has a �nite number, n, of

threads, then all minimal thread models of P have n threads.

Proof: Assume that M1 = fh1 : : :hng and M2 = fg1 : : : gmg are both minimal thread

models of a problem, P , with m < n. Since M1 is minimal, h1 : : : hn all co-occur, so for
any � > 0, there is a trace, S� 2 P with n di�erent occurrences within � time units. Since
m < n, at least two of these occurrences must be in one of g1 : : : gm , say gj . But then gj is
not a thread, leading to contradiction. q.e.d.

We shall call the number of threads in a minimal thread model of a problem P the concur-

rency level of P and denote it L(P).

Theorem 2.7.3. L(P) = 0 i� P is empty.

Theorem 2.7.4. There exists a problem with a concurrency level equal to the cardinal
number of a countably in�nite set (@0).

Proof. Consider a problem, P , with one trace, S = o1; o2; : : : such that time(ok) = 1 +
1=22 + : : : + 1=k2. The series converges toward a certain �nite value, t1, say. For any

� > 0, the interval [t1�� : : : t1] contains a countably in�nite number of occurrences, making
L(P) = @0. q.e.d.

13

3 Examples.

This section illustrates the use of the formalism by establishing thread models of a number
of examples. Some assumptions are left out relying on the reader's familiarity with various
everyday situations.

3.1 Ball tossing.

De�nitions: In a situation where a girl and a boy are tossing a ball to each other, de�ne
the following events:

boy = \Boy catches or tosses",

girl = \Girl catches or tosses",

ball = \Ball tossed or caught"

Let P be a set of ball-tossing traces according to the above description.

Theorem: [1] fball ; boy; girlg is not a thread model of P .
[2] fboy; girlg is a thread model of P , but not minimal.
[3] fballg is a minimal thread model of P .

Proof:

[1] fball ; boy; girlg is not a thread model of P since each occurrence belongs either to both
boy and ball or to both girl and ball .

[2] boy and girl are threads in P since the occurrences are separated by � = 1 second,

say. Furthermore, fboy; girlg is a thread model of P since boy and girl together include all
occurrences in P and no occurrence is included in both threads. But boy and girl do not
co-occur, so fboy; girlg is not minimal.

[3] Clearly, ball is a thread including all occurrences in P . By Theorem 2.6.1 it is minimal.

q.e.d.

Comment: An analyst trying to �nd a minimal thread model for the ball-tossing problem

might begin with the events associated with the girl and �nd the model fh1g, where h1 = girl .
When the analyst goes on to consider the occurrences associated with the boy, it turns out
that the boy occurrences are separated from those associated with the girl, so they must
be included in the same thread. This forces a reformulation of h1 as the ball thread. The

association of a thread with an entity such as the ball or the girl has no formal signi�cance
but is a practically useful way of giving meaning to the thread.

14

3.2 Elevator system.

This system was mentioned earlier and includes one or more elevators operating in parallel

shafts and serving the same set of oors. There are emax elevators and fmax oors, with
emax > 0 and fmax > 1. Any number of the elevators can arrive at a oor at the same time.

Let the following be events:

ei = \Elevator i arrives at a oor" for i = 1 : : : emax

fj = \An elevator arrives at oor j" for j = 1 : : : fmax

Theorem: [1] fe1 : : : eemaxg is a minimal thread model of Pemax .
[2] ff1 : : : ffmaxg is a thread model of P1, but not minimal.
[3] For emax > 1; fj is not a thread in Pemax for any j .

Proof:

[1] ej is a thread in Pemax for each j 2 1 : : : emax for any emax > 0 since one elevator
cannot arrive at more than one oor at each point in time in a given trace.

Furthermore, fe1 : : : eemax g is a thread model for all emax since

8 emax � occset(e1) [: : : [occset(eemax) = Occset(Pemax)

8 emax ; 8 j ; k 2 1 : : : emax ; j 6= k � occset(ej) \ occset(ek) = fg

Finally, e1 : : : en co-occur, since we can �nd a trace where all elevators arrive at some oor
at the same time.

[2] In P1, emax = 1. For any j 2 1 : : : fmax , fj is then equivalent to the event

\The elevator arrives at oor j",

whose occurrences are separated. Furthermore,

8 fmax � occset(f1) [: : : [occset(ffmax) = Occset(P1)

8 fmax ; 8 j ; k 2 1 : : : fmax ; j 6= k � occset(fj) \ occset(fk) = fg

Thus, ff1 : : : ffmaxg is a thread model of P1.

By [1], fe1g is a minimal thread model of P1. Thus L(P1) = 1 so by Theorem 2.7.2,
ff1 : : : ffmaxg cannot be minimal for fmax > 1.

[3] fj is not a thread in Pemax ; emax > 1, for any j since the occurrences that two di�erent

elevators arrive at oor j are not separated. q.e.d.

15

3.3 Movie star.

Both in the elevator example and the ball-tossing example, threads can be determined on

the basis of causality: each elevator must leave a oor before it can arrive at the next, the
girl must toss the ball before the boy can catch it, etc., whereas the arrivals of two di�erent
elevators at a oor have no direct causal connection.

Now consider instead the life of a movie star described as an alternating series of oc-
currences of the events hire and �re on one hand, and a series of alternating marry and

divorce occurrences on the other3. Here, causality is limited to each of the two series, but it
is reasonable to assume that the star cannot be involved in more than one occurrence of any
of these events at a given point in time.

De�nition: Let the following be an event:

s = \Star gets married ; divorced ; hired or �red"

Theorem: fsg is a minimal thread model of the movie star problem, P .

Proof: s is a thread since with � = 1 second (for example),

8oi ; oj 2 occset(s;P); oi 6= oj ��(oi ; oj) > �

fsg is a thread model since occset(s;P) = Occset(P). By Theorem 2.6.1, it is minimal.

q.e.d.

3.4 File copy.

Consider the problem where a device (such as a computer program) copies a sequential
�le, IN, onto a di�erent �le, OUT, by repeatedly �lling a bu�er with a block from IN then

emptying the bu�er into OUT. At any one time, at most one bu�er, BI , can be �lled, and
at most one bu�er, BO , can be emptied, with BI 6= BO .

De�nitions: Let Pn be a �le copy problem with n > 0 bu�ers.

Let the following be events:

fi = \Start �lling bu�er i"; i = 1 : : :n

ei = \Start emptying bu�er i"; i = 1 : : :n

ti = \Start �lling or emptying bu�er i"; i = 1 : : :n

f = \Start �lling some bu�er"

e = \Start emptying some bu�er"

3This view of stardom was suggested by Ashley McNeile.

16

Theorem: [1] ff ; eg is a thread model of Pn , for any n > 0.
[2] ff ; eg is a minimal thread model of Pn ;n > 1.
[3] ff ; eg is not a minimal thread model of P1.

[4] ft1 : : : tng is a thread model of Pn , for any n > 0.
[5] ft1 : : : tng is a minimal thread model of Pn ;n = 1; 2.
[6] ft1 : : : tng is not a minimal thread model of Pn ;n � 3.

Proof:

[1] Each of e and f is a thread since only one bu�er can be �lled at a time, and only one
bu�er emptied at a time. Furthermore,

8n > 0 � occset(f ;Pn) [occset(e;Pn) = Occset(Pn)

8n > 0 � occset(f ;Pn) \ occset(e;Pn) = fg

[2] For n > 1, e and f co-occur since one bu�er can be read and another one written
simultaneously. Consequently, the thread model is minimal.

[3] With a single bu�er, e = e1 and f = f1 do not co-occur since the bu�er cannot be �lled
and emptied at the same time.

[4] ti is a thread in Pn for each i = 1 : : : n, for any n > 0 since any two occurrences of start

�lling and start emptying a given bu�er are separated. Furthermore,

8n > 0; occset(t1;Pn) [: : : [occset(tn ;Pn) = Occset(Pn)

8n > 0; 8 j ; k 2 1 : : :n; j 6= k � occset(tj ;Pn) \ occset(tk ;Pn) = fg

[5] For n = 1, it follows by Theorem 2.6.1 that ft1g is a minimal thread model of P1.

For n = 2, t1 and t2 co-occur since, in some trace, one bu�er starts �lling and the other
starts emptying at the same time.

[6] From [2] and Theorem 2.7.2 it follows that a minimal thread model of Pn ;n > 1 has
exactly 2 threads. q.e.d.

17

4 Other concurrency models

4.1 Process algebra.

In Hoare's Communicating Sequential Processes (CSP) [6], a process is a rule that generates

traces of event occurrences. An elementary process, P , is described recursively as the solution
to an equation such as P = (x ! P) where x is some event. The right-hand member reads \x
then P" and describes a process that generates the event x and then behaves exactly like P .
Process interaction occurs when the same event is a possible next event in the independent

behavior of each process. Such symmetric interaction can be extended to any number of
processes. This allows the modeler to capture each causal constraint as concurrent process,
since the production of a trace can only continue with an event that meets all the constraints.

In this regard, CSP represents an alternative concurrency de�nition from the one proposed
here4

In addition to providing an alternative de�nition, CSP can also be used as a notation to
describe individual threads in the sense of this paper. Several CSP processes may constitute
one thread. For example, T = P ; Q ; R may be a thread, consisting of the three CSP

processes P , Q and R executed in sequence. A thread can also be de�ned by interleaving
CSP processes.

4.2 Actors.

Actors [1] is a general computational model intended particularly for applications in arti�-
cial intelligence and targeted at highly parallel computer architectures. Actor systems are
modeled in a \structured operational" style. This is contrast to the CSP description style,

where a system is broken down into individual processes and the total behavior is deduced
from their combined behavior, Agha de�nes the con�guration of an actor system and the
transitions between con�gurations. Figuratively, such a con�guration is a kind of snapshot
of the whole system, reecting the \state" of each actor5. In contrast with the processes in

CSP, which are implicit, an actor is a computational agent with certain capabilities. This
is in line with the proposed concurrency de�nition, which is motivated by costs associated
with similar agents.

4.3 Models based on �nite automata.

In Statecharts [5], concurrent processes (referred to as orthogonal states) are represented as
communicating state machines. For notational exibility beyond what is usual in traditional

state transition diagrams, state variables are used in addition to explicit states, and tran-
sitions are caused by events and/or conditions on state variables and on the current state

4The concurrency concept in CSP gave rise to the task-rich Ada 83 syntax. Ada 9X allows equivalent

designs to be expressed with substantially fewer tasks.
5Strictly speaking, there is no concept of a global time at which a snapshot might be taken.

18

of a concurrent process. Each transition may cause an action, which may in turn trigger a
transition in another process or assign a value to a state variable, etc. Statecharts provide for

viewing processes at di�erent levels of abstraction with superstates that decompose into sub-
states. Statecharts are incorporated in various requirements techniques. In object-oriented
analysis, they are sometimes used to represent the dynamic behavior of the objects [10].

The Jackson model is intended as an aid for practical software construction. It is

represented by JSP [7, 11] and JSD [8]. A process is essentially a regular expression over
events and communicates with other processes via messages. Message queues allow each
process to proceed at its own rate. While the model is explicitly pragmatic, it is amenable
to formalization [15]. A strength of the model is the direct mapping of a process in the

reality onto a program control structure in the software. Structure diagrams (or sequence
diagrams [13]) are used to represent individual processes. They provide an alternative that
is preferable to state transition diagrams (and Statecharts) for certain types of processes.

Both Statecharts and the Jackson model support a concurrency concept based on causal-
ity, similar to that supported by CSP: Every constraint on the system that can be so ex-

pressed is included as a sequential process, and an event occurs only when all the constraints
are met. No particular attempt is made to reduce concurrency. In JSD, this is remedied by
implementation in a sequential environment where di�erent processes become subprograms
and multiple instances of a process type become data records. That way, the cost associated

with the process is much reduced.

4.4 Petri nets.

The Petri net [9] model also expresses concurrency. It is basically a resource model: a
transition, t, is enabled when the necessary resources are available in the form of tokens at

t's input places. As a result, new resources may become available as tokens at t's output
places, and may in turn enable other transitions. Each �ring of a transition is an occurrence
under the proposed de�nition, and concurrency is de�ned in terms of transitions that can �re
simultaneously. However, there is no explicit notion of a thread, which is instead represented

by a series of transitions.

5 Conclusions.

Concurrent threads have been formally de�ned based on the concept of occurrences that
coincide in time. The concept has been shown to capture the intuitive concurrency in a

number of small problems. Further work includes the development of larger examples and a
comparison with other concurrency de�nitions.

5.1 Further work on the de�nitions.

The following are some areas where the concurrency de�nition must be elaborated:

19

Realism. A realism criterion is necessary that limits the way events can be de�ned. For
example, the occurrences of \Pick a lottery ticket" cannot normally also be described by

the two events \Pick a winning ticket" and \Pick a losing ticket" since it must be possible
to know what event occurs as it occurs.

Similar situations arise in communication systems where an incoming message must be
accepted before its local addressee is known. This creates a need for secondary occurrences:

The arrival of a message is an occurrence in the problem domain which may belong to some
thread, t1, but once the the addressee is determined, there may be an occurrence of some
thread, t2, associated with that addressee. Secondary occurrences are another area for theory
enhancement.

Universal occurrences. A provision must be made for a class of universal occurrences
that do not �t the concept of threads as equivalence classes. These are exceptional occur-

rences typically emanating from outside the problem domain and with particularly broad
e�ects. Examples are the occurrences of such events as \power cut" and \the system crashes".

Modeling liberty. The realism requirement notwithstanding, the modeler is at liberty to
make explicit assumptions that conict with the physical reality. For example, it may be
desirable to abstract away the fact that a certain system is to be executed on one sequential
processor, which otherwise limits the system model to a single thread.

Adaptation to physical reality. In a practical implementation with a digital clock,
� would not be less than the distance between clock ticks since there is no way of telling

occurrences apart at a higher degree of resolution. But the processing time for an occurrence
may be greater than a clock tick. This means that occurrences of the same thread may be
too frequent to be handled by one processor, and must be processed by multiple processors
working in lockstep.

5.2 Development of further examples.

Along the lines of the examples discussed in the previous section, additional, well-de�ned,
small problems will be developed as tests of the concurrency de�nition against intuitive con-
currency. The intention is that some of the examples can be developed into reference problems

that can serve as prototypes for the analyst.

Resource sharing. If the occurrences in a problem are dependent on shared resources, this

inuences the thread models of the problem. For example, if all occurrences are dependent
on a single resource, the concurrency level of the problem is one. Resource sharing and
deadlock prevention between threads needs to be studied.

20

Timing. Events such as \X seconds have expired since y" often play an important role
in concurrent models either as time-outs or as prompts for action, such as when a quantity

needs to be sampled every X seconds.

Interleaving. The earlier-mentioned life of a movie star is an example of interleaving. A

more mundane example is a print �le which has a physical view with page and line breaks
and a logical view with paragraph and sentence breaks. The series of physical breaks and
the series of logical breaks are interleaved. Davis discusses the advantage of orthogonal

states in Statecharts to express interleaving [4]: A description of the movie star without
decomposition into such orthogonal states includes less intuitive, combined states such as
married-and-hired and single-and-�red. The two versions of the print �le and the two views
of the life of a movie star are not concurrent threads with the de�nition proposed here, but

may be with some other de�nition of concurrency.

Parallel computation. Although the proposed de�nition is primarily concerned with

problem-domain concurrency, it is consistent with execution domain concurrency, i.e., ex-
ecution on parallel hardware. The execution on any one processor is regarded as a series
of occurrences of some execution event. The events on di�erent processors then co-occur,
whereas those on each processor are separated.

5.3 Relation between threads and tasks.

The proposed de�nition is intended to restrict the possible, concurrent descriptions of a
given problem. As far as the de�nition is concerned, these descriptions are equivalent.
They potentially lead to di�erent concurrent software designs with threads mapped onto

tasks. The software designer must choose a concurrent description that leads to an optimum
design. Some heuristics were developed as part of Entity-life modeling, such as the criterion
that a thread be delayable or queuable [13].

A delayable thread contains events that are triggered by time. The rationale for these
threads is that a task has the built-in ability to reschedule itself for execution at a later time

(as by means of the delay statement in Ada). The elevator threads are delayable since, for
instance, the doors must close automatically after they have been open for a certain period
of time.

Queuable threads compete for simultaneous exclusive access to some resources. The
rationale for queuable threads is a task's ability to suspend its activity and queue for access to

a resource. In a simulation of the dining philosophers' problem, for example, each philosopher
has a thread that queues for access �rst to one fork and then to another.

Additional criteria suggest that each thread should be varied. This is meant to reduce
the number of threads by including many di�erent events in each one. Furthermore, for

conceptual simplicity, multiple instances of a few thread types are more desirable than many
di�erent threads.

21

Additional rules may allow the software designer to reduce the number of tasks below
the concurrency level of the problem. Such a reduction may be based on 1) the probability

that two events co-occur, 2) the window in time during which the occurrence can be detected
and 3) the consequences of missing an occurrence.

For instance, in the elevator example, buttons on the oors and in the elevators are
pressed independently of the elevator movements. Since they may all be pressed simultane-

ously, there is one thread per button. However, it is unlikely that more than a few buttons
are pressed at any one time, a pressed button can be detected at any time while it is being
held pressed, and the consequences of a failed detection are very limited (in this particular
example). For this reason, there can be considerably fewer button sampling tasks than there

are buttons.

5.4 Other research.

One bene�t of formally de�ning concurrency is the potential for comparison of di�erent
concurrency concepts. Interesting, potential research projects would be to

� compare the restricted concurrency as de�ned here to the concurrency concept in Petri
nets

� investigate if CSP can be used to de�ne the traces that the present de�nition is based
on.

A more practical e�ort is to elaborate a (manual) procedure or method for analyzing the
concurrency in a given problem. This amounts to devising a \user-friendly" interface on the
approach discussed here and might involve steps such as \identify signi�cant occurrences"
and perhaps a form or a table for identifying threads, co-occurrences, etc.

An important e�ort is to investigate how concurrency analysis as described here can be

integrated into some of the popular object-oriented analysis approaches, whether as a way
to identify \active" objects or separate threads.

Acknowledgements. Jan Hext made a crucial contribution to this work with his critique
of earlier versions of the paper. Paul Ammann, Pat Patterson, Ray Schneider and Sean
Wang also provided helpful comments and suggestions.

References

[1] G. Agha. Actors; A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[2] B. J. Cox. Object Oriented Programming, an Evolutionary Approach. Addison-Wesley,

1987.

22

[3] B. Curtis, M. I. Kellner, and J. Over. Process modeling. Communications of the ACM,
35(9):75{90, September 1992.

[4] A. M. Davis. Software Requirements. Objects, Functions and States. Prentice-Hall, 2
edition, 1993.

[5] D. Harel. Statecharts, a visual approach to complex systems. In Science of Computer

Programming, volume 8, pages 231{274. 1987.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.

[7] M. A. Jackson. Principles of Program Design. Academic Press, New York, 1975.

[8] M. A. Jackson. System Development. Prentice-Hall International, 1983.

[9] J. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1982.

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-oriented

Modeling and Design. Prentice-Hall, 1991.

[11] B. I. Sand�en. System programming with JSP: Example - a VDU controller. Communi-

cations of the ACM, 28(10):1059{1067, October 1985.

[12] B. I. Sand�en. Entity-life modeling and structured analysis in real-time software design

- a comparison. Communications of the ACM, 32(12):1458{1466, December 1989.

[13] B. I. Sand�en. Software Systems Construction with Examples in Ada. Prentice-Hall,

1994.

[14] B. I. Sand�en. Designing control systems with entity-life modeling. Journal of Systems

and Software, 17(4), April 1995.

[15] P. A. Zave. A distributed alternative to �nite-state-machine speci�cations. ACM

TOPLAS, 7(1):10{36, January 1985.

23

