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ABSTRACT Many multilevel data models have been proposed, and different mod-
els have different merits. In this paper, we unify many of these merits to build a
new multilevel data model as a natural extension of the traditional relational data
model. We describe our new model called the Multilevel Relational (MLR) data
model for multilevel relations with element-level labeling. The MLR model builds
upon prior work of numerous authors in this area, and integrates ideas from a num-
ber of sources. The new data-based semantics is given to the MLR data model which
combines ideas from SeaView, belief-based semantics and LDV model, and has the
advantages of both eliminating ambiguity and retaining upward information flow.
The model is simple, unambiguous and powerful. It has five integrity properties and
five operation statements for manipulating multilevel relations. In order to support
this integration, several new concepts are introduced and many old ones are rede-
fined. A central contribution of this paper is proofs of soundness, completeness and
security of the MLR data model. These proofs respectively show that any of the pro-
vided operation statements can keep database state legal (i.e., satisfying all integrity
properties), every legal database state can be constructed, and the MLR data model
is non-interfering. This is the first time that such properties have been formally
proved for a multilevel relational data model. The expressive power of the MLR
model is also discussed in this paper, and is compared with several other models.
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1 Introduction

The major difference between multilevel data models and traditional ones is that in multilevel
data models, data items and subjects have their own access classes (or levels), e.g., TS (Top
Secret), S (Secret), U (Unclassified), etc., known as classifications and clearances respectively.
Accesses by subjects are restricted by mandatory access controls, roughly expressed as “no read
up, no write down”, to follow the well-known Bell-LaPadula model [1]. However, from a security
standpoint, this restriction should be strengthened by a further requirement: operations from
any given level should not be accepted or rejected due to existence or absence of any higher level
data, otherwise there will be some covert channels for leakage of high-level data, i.e., indirect
methods of communication from higher-level processes to lower-level ones [7].

There are many multilevel relational data models in the literature, for example SeaView
[3, 8], LDV [5], and those proposed by Sandhu-Jajodia [13, 14], Jajodia-Sandhu [6, 7], Smith-
Winslett [15], etc. A close examination of these models reveals that each one has its own merits,
e.g., the integrity properties in SeaView and Sandhu-Jajodia model, the belief-based semantics of
Smith-Winslett model, the multilevel manipulation of Jajodia-Sandhu model, the derive option
of LDV, etc. How can these merits be reconciled and unified into a simple, unambiguous and
powerful multilevel relational data model?

The Multilevel Relational (MLR) data model for multilevel relations with element-level la-
beling, which is to be fully defined in this paper, unifies many of the merits of previous models,
and integrates ideas from a number of sources. The MLR model is a simple, flexible and pow-
erful model. Tt contains five integrity properties and five operation statements for manipulating
multilevel relations. Moreover, it retains some kind of “write up” and has no semantic ambiguity.

The MLR model is substantially based on the data model proposed by Sandhu-Jajodia [14].
Many aspects of that model can, in turn, be traced back to the SeaView work [3]. The most
significant difference is the requirement that there can be at most one tuple in each access class
for a given entity. This gives us the simplicity of tuple-level labeling, combined with the flexibility
of element-level labeling. There are also some other subtle, but very important, differences in
the precise formulation of various properties.

However, there are still some problems left unsolved in the Sandhu-Jajodia model of [14].
Two major problems are semantic ambiguity and operational incompleteness. Also, the No En-
tity Polyinstantiation Integrity property of [14] may cause some downward information leakage.

To illustrate the semantic ambiguity problem, consider the following relation SOD(SHIP,
OBJ, DEST) where SHIP is the primary key and the security classifications are assigned at the
granularity of individual data elements. OBJ and DEST are abbreviations for OBJECTIVE
and DESTINATIONS, respectively. TC is an abbreviation for TUPLE-CLASS. The label in the
TC attribute applies to the entire tuple.

\ SHIP \ OBJ | DEST [ TC |

Enterprise U | Spying S | Tales U | S
Enterprise U | Exploration U | Talos U | U

It is clear that the data in tuples at U and S are respectively accepted by subjects at levels
U and S. However, what is the data accepted by subjects at level TS? By the Sandhu-Jajodia
model, absence of a tuple at TS means there is no additional data at this level. But there are
both tuples at U and S existing in this relation. Do subjects at TS take the values from S or
from U? Is there any necessity to force them to choose the higher one? Are there situations in
which a subject at TS should accept values from the tuple at U rather than that at S?



Taking another more general example, let My and My be incomparable labels whose least
upper bound is S and greatest lower bound is U. Consider

\ SHIP \ OBJ | DEST | TC |
Enterprise U | Mining M; | Talos U | My
Enterprise U | Spying My | Talos U | My
Enterprise U | Exploration U | Talos U | U

Which OBJ value is accepted by subjects at 57 Mining or Spying or even Exploration? Again,
is it necessary to force them to accept data from any specific level?

As for the operational incompleteness problem, again let My and My be incomparable labels
whose least upper bound is S and greatest lower bound is U. How can a tuple whose individual
classification attributes are at, say, U, My, and My be instantiated by a subject at S? In fact,
there is no way in previous models for a subject at, say, S to add a tuple such as

| SHIP | OBJ | DEST |TC|
‘ Enterprise U ‘ Mining My ‘ Sirius My ‘ S ‘

In order to solve these problems we need to integrate ideas from a number of other models
to establish the new MLR data model. To complete this integration, several new concepts are
introduced and many old ones are redefined.

In this paper, we fully define the MLR data model. The new data-based semantics for both
data and operations is also given. Moreover, we prove that the MLR model is a sound, complete
and secure data model. These proofs respectively show that any of the provided operation
statements can keep database state legal (i.e., satisfying all integrity properties), every legal
database state can be constructed, and the MLR data model is non-interfering. This is the first
time that such properties have been formally proved for a multilevel relational data model. The
expressive power of the MLR model is discussed by comparing it with several other models.

The rest of this paper is organized as follows. In sections 2 and 3 we define the MLR model
and its data semantics. The expressive power of MLR is discussed in section 4. Section 5
addresses the manipulation of the model. Sections 6, 7 and 8 respectively prove the soundness,
completeness and security of the MLR data model. In section 9, we summarize our major
contributions.

2 The Basic Model

We define the MLR model in three parts. In this section we formally define the so-called basic
model. We give a data interpretation to the basic model as a part of the data semantics. We
also discuss the practicability of the model.

The next section describes the integrity properties of MLR. Discussion of data manipulation
in MLR is deferred until section 5.

2.1 Model Definition

A multilevel relation consists of the following two parts.

Definition 2.1 [RELATION SCHEME] A multilevel relation schemeis denoted by R( A1, Cq,
Ay, Cq,..., A, C,, TC), where each A; is a data attribute over domain D;, each C; is a classifi-
cation attribute for A;, and T'C' is the tuple-class attribute. The domains of C'; are specified by a
range [L;, H;], H; > L;, which defines a sub-lattice of access classes ranging from L; up to H'.

More generally, the domain of C; can be any arbitrary subset of access classes.



The domain of T'C' is U, ([L;, H]), where H is system high. O
Definition 2.2 [RELATION INSTANCE] A relation instance, denoted by (A, Cy, Ag, Co,

e A, O, TC), is a set of distinet tuples of the form (aq,c¢1,az,¢2,. .., ay, ¢y, tc), where each
a; € D; and ¢; € [L;, H;] or a; = null and ¢; € [L;, H;] U null, and te¢ > lub{¢; | ¢; # null :
i=1...n}. Here lub denotes the least upper bound. a

We assume that there is a user-specified apparent primary key AK consisting of a subset of
the data attributes A;. In general AK will consist of multiple attributes. In section 3.1 we will
see that all attributes in AK have the same classification level. Meanwhile, each A; can also
be seen as a group of attributes having identical classification level. In order to simplify our
notation, we use Ay as synonymous to AK,i.e., Ay and AK both denote the apparent primary
key. We also assume that the relation scheme is itself classified at the greatest lower bound of
L; (¢t =1...n). A tuple whose tuple class is ¢ is said to be a ¢-tuple, while a subject whose
clearance is ¢ is said to be a c-subject.

There are two subtle differences in these definitions, relative to [14]. Firstly, the domain of
TC is different from that in [14], which is [lub{ L; : ¢ = 1...n},lub{ H; : i = 1...n}]. Secondly,
the model of [14] does not allow classification attribute to be null. These changes are primarily
for the INSERT semantics (section 5.2), because now

\ SHIP \ OBJ | DEST | TC |
‘ Enterprise U ‘ Exploration U ‘ null  null ‘ U ‘

can be inserted into the relation by a U-subject, even if the domain of the classification attribute
for DEST is limited to, say, [S, TS], in which case,

\ SHIP \ OBJ | DEST | TC |
‘ Enterprise U ‘ Exploration U ‘ null U ‘ U ‘

is not allowed.

Also, in MLR every relation has only one relation instance at any time. As we will see in
section 2.2, subjects at different levels may have different views of the instance. Previous models
have defined a relation as having a different relation instance at each level. This modification is
simply for the convenience of semantic description.

Same as [14], we define t¢ > lub{¢; | ¢; # null : ¢ = 1...n}, by which

\ SHIP \ OBJ | DEST [ TC |

Enterprise U | Exploration U | Talos U | S
Enterprise U | Exploration U | Talos U | U

is allowed and has different meanings from

| SHIP | OBJ | DEST | TC |

Enterprise U | Exploration S | Talos S | S
Enterprise U | Exploration U | Talos U | U

In fact, the former one says S-subjects borrow from U-subjects the data currently owned
by U-subjects, and the data could be changed by U-subjects; whereas the later one means S-
subjects have their own data for OBJ and DEST, which could not be changed by U-subjects.
The value equivalence of OBJ and DEST in the later case is just by coincidence. The data
interpretation is discussed at length in section 2.2.

The following definition is directly taken from the traditional relational data model.



Definition 2.3 [DATABASE STATE] A database is a collection of relations. A database
state is a collection of all relation instances of a database at a particular time. O

2.2 Data Interpretation

The intuitive ideas of our data-based semantics are as follows.

1. The data accepted by subjects at one level consist of two parts: the data owned by them
and the data borrowed from lower-level subjects. The later one can be changed by the
lower-level subjects who are owning them.

2. The data a subject can see are those accepted by subjects at its level or at the levels below
it.

3. For a real world entity, c-tuple contains all the data accepted (either owned or borrowed)
by c-subjects. Absence of a ¢-tuple means the existence of the entity is not accepted by
c-subjects.

These ideas come from combining belief-based semantics [15] and LDV model [5]. In sec-
tions 3 and 5 we will see how these ideas lead to a complete semantics of our data model.

We now give a formal description of the above intuitive ideas. For all instances r(A;,Cq,
Ay, Cq, ..., A, C,, TC) and for all tuples ¢ € 7, the data are interpreted as follows.

1. Apparent Primary Key A; and its Classification Attribute C4

e {[Ay, (] identifies the entity and also gives the class level of the entity.
e {[C'1] = ¢; means the entity is created by a ¢;-subject and can only be deleted by

c1-subjects.

2. Tuple-Class Attribute T'C'

o {[T'C] = tc with {[{C1] = ¢; means that
— t is added by a tc-subject and all data in ¢ are accepted by te-subjects.

— ¢ can only be seen by subjects with level ¢’ > tc. In other words, all a ¢-subject
can see are tuples t' with ¢[TC] < ¢'.

— t can be deleted either by tc-subjects, or by ¢q-subjects in cases such as the entire
entity is deleted?.

e When ¢[T'C] = t[Cy], t is the base tuple of the entity, which means all tuples ¢’ € r
such that t'[Ay,Cq] = t[A1, 1] are based on ¢, and ¢ can only be deleted when the
entire entity is to be deleted.

3. Data Attribute Ay and Classification Attribute Cy (2 <k < n)

o t[Ay, Cy] with t[C] = ¢x and ¢[T'C] = tc indicates that
— the data t[A] accepted by tc-subjects is currently owned by ¢g-subjects.
— t[Ag, C] can be maintained (updated) either by ci-subjects or by te-subjects.

2Tt should be noted that discretionary or nondiscretionary access controls can be used to control which subject
can delete the tuple.



e When t[Cy] < t[T'C], t{Ar] # null is borrowed from the #'[Ag] of ¢ which has
t'[A1,Cq] = t[A1,Cy] AY[TC] = V[Cy] = t[Cg], and is subject to change when
t'[Ag, Ck] is changed or ' is deleted.

4. Null Value

o t[A,Cy] =[null, ¢x] (¢ < te) means for attribute Ay, tc-subjects are expecting to
borrow data owned by cg-subjects, however, no data is currently owned by them.

e Both t[Ay, Ci] =[null, null] and #[Ag, Ck] =[null, tc] means for Ay no data is available
at level tc. The [null, null] case applies when tc ¢ [Ly, Hy].

As an example, we consider

\ SHIP \ OBJ | DEST |[TC |

Enterprise S | Spying S | Rigel S| S
Enterprise U | Exploration U | null S| TS
Enterprise U | Exploration U | Talos U | U

where SHIP is assumed to be AK. There are two entities here, identified by (Enterprise, S) and
(Enterprise, U) respectively. (Enterprise, S) and (Enterprise, U) are respectively created by a
U-subject and an S-subject, and can only be respectively deleted by U-subjects and S-subjects.
The TS-tuple is added by a TS-subject and all data in it are accepted by TS-subjects. Let us
take a closer look at the entity (Enterprise, U). The U-tuple is the base tuple, which can be
deleted only when the entire entity is to be deleted, including the TS-tuple. TS-subjects can
see both the TS-tuple and the U-tuple whereas U-subjects can only see the U-tuple. The OBJ
value of the TS-tuple, Exploration, is borrowed from U-subjects, and is subject to change when
that of the U-tuple is changed or deleted. The null in the TS-tuple means that TS-subjects are
expecting to borrow DEST data from S-subjects, but there is no DEST data currently owned
by them for this entity. Also, absence of an S-tuple in this entity indicates that the existence of
this entity is not accepted by S-subjects.

This example also illustrates the two types of polyinstantiation, a technique to prevent infer-
ence violations: entity polyinstantiation and element polyinstantiation. Entity polyinstantiation
occurs when a relation contains multiple tuples with the same AK values but different C 45 val-
ues. With element polyinstantiation, a relation contains two or more tuples with identical AK
and C 4k values, but having different values for one or more Ay’s (2 < k < n). In this example,
for the AK value Enterprise, there are two C 4 values S and U; while for the same (Enterprise,
U), there are two different DEST values: null and Talos.

2.3 Practicability

As we have seen, the data-based semantics takes the following ideas from belief-based semantics:
for an entity, absence of a c-tuple means the entity is not accepted by c-subjects. In other words,
in order to reference an entity, c-subjects should add a c-tuple of the entity into the relation
first. This is so even if all the data accepted by ¢-subjects are belonging to the subjects below
¢, that is, all data elements of the c-tuple have classification lower than ¢. In fact, this is the
crucial point to eliminate semantic ambiguity.

This requirement would be quite acceptable if, say, 95% entities had different data at dif-
ferent levels. Actually, often only, say, 5% entities will have secret data at levels higher than
unclassified; which means for the other 95% entities, high level tuples just repeat unclassified



data. If there are m levels higher than unclassified, in order to reference unclassified data at
every level, all these data should be repeated m times. A naive implementation would not just
waste space but also waste time, if the repetition is explicitly done by subjects at each level.

By this consideration, we are forced to think about some practical issues of the physical
model under this reasonable logical model. Fortunately there are several techniques that can be
used to deal with these problems.

To avoid wasting space we can physically (not logically) expand the tuple-class attribute T'C’
to be a tuple-class attribute set, containing several levels whose data are exactly the same in

all A,Cq,...,A,,C,. Hence, instead of keep several repeated tuples in the database, we can
physically just keep one tuple and indicate all levels that accept it in the T'C' set. For example,
(a1,¢1,. .y p, cn, {ter, ... tey ) can stand for (ay, e1,. .., G, Cnyter), ..oy (A1, €1, .oy G, Cpy tem).

Saving labor time can be achieved if we allow the database administer or individual subjects
to set some defaults. For example, ¢-subjects can set defaults such as for all entities in R, all
data owned by ¢’-subjects (¢’ < ¢) are accepted. This is to say, whenever a ¢/-subject inserts an
entity into R, a c-tuple of the entity will be automatically created and all data of the c-tuple are
borrowed from ¢-subjects (possibly, we can just put ¢ into the T'C' set of the ¢/-tuple). For single
level relations, i.e., for any 4,7 such that 1 <:,j <n, L; = L; = H; = H;, this approach could
be very useful. For example, a single level relation could be used to keep common knowledge
such as the city name, location, area, climate, etc, which can be used by subjects at any level.

It is easy to see that there are many variations of these two basic approaches. Physical issues
may also depend on the storage strategies used to construct the DBMS. Since the MLR model is
a logical data model, further discussion about physical issues is outside the scope of this paper.
Our objective here is to simply make the feasibility argument sketched out above.

3 Integrity Properties

There are five integrity properties in the MLR data model, of which Entity Integrity and For-
eign Key Integrity are taken from the original SeaView model; Polyinstantiation Integrity and
Referential Integrity are significantly redefined by the authors; and Data-Borrow Integrity is
newly introduced. In particular, the Polyinstantiation Integrity property given here is much
more general than that of either SeaView [3] or Sandhu-Jajodia model [14], in that it takes care
of both entity polyinstantiation and element polyinstantiation.

3.1 Entity Integrity

The Entity Integrity property was first proposed by SeaView [3], and has stayed unchanged in
most work since then.

Property 1 [Entity Integrity (EI)] Let AKX be the apparent primary key of R. An instance
r of a multilevel relation R satisfies entity integrity if and only if for all ¢ € »

1. A; € AK = t[A;] # null
2. A;,A; € AK = tC;] = t[C]‘]
3. A; §§ AK, AJ‘ € AK = t[Cz] > t[C]‘]. a

The first requirement is exactly the definition of entity integrity from the traditional rela-
tional model, and ensures that no tuple in r has a null value for any attribute in AK. The second
requirement says that all attributes in AK have the same classification in a tuple, i.e., AK is



uniformly classified, and therefore we can define C'4x to be the classification of the apparent
primary key AK. This will ensure that AK is either entirely visible, or entirely null at a specific
access class ¢. The final requirement states that in any tuple the class of the non-AK attributes
must dominate C' 4x. This rules out the possibility of associating non-null attributes with a null
primary key.

3.2 Polyinstantiation Integrity

Polyinstantiation Integrity has been required by many models. However, our definition is much
more general than previous ones. It is the first one that treats both entity polyinstantiation and
element polyinstantiation in a unified manner.

Property 2 [Polyinstantiation Integrity (PI)] An instance r of a multilevel relation R
satisfies polyinstantiation integrity if and only if for 1 <7 < n,

1. Al,TC—>CZ
2. A, C,0C; — A, O

The second requirement is the original polyinstantiation integrity required by both SeaView
and Sandhu-Jajodia model, which says the real primary key of the relation is Ay, C,C5, ..., C.
The first requirement is derived from the following two conditions as well as the second require-
ment above.

L4 AlvTC - 017
4 AlvclvTC - AHCZ

Here, the later one is called tuple-class polyinstantiation integrity in [11]®, which says that every
entity in a relation can have at most one tuple for every access class; whereas the former one is
newly introduced and is discussed below.

This new property can be called as entity polyinstantiation integrity. The intuitive idea of
this property is that there could be several entities in a relation with the same AK value, but
subjects at any security level can accept at most one entity with that AK value. For example,

\ SHIP \ OBJ | DEST [ TC |
Enterprise U | Spying TS | Talos U | TS
Enterprise S | Mining S | Tales U | S
Enterprise U | Exploration U | Talos U | U

is allowed, because at each level, either TS, S or U, subjects only accept one entity with AK
value being Enterprise. However,

| SHIP | OBJ | DEST | TC |
Enterprise S | Spying S | Tales U | S
Enterprise U | Mining S | Talos U | S
Enterprise U | Exploration U | Talos U | U

It has been misexpressed at many places as A1, C1,TC — A;, which is obviously too weak.



is not allowed, because there are two entities with the same AK value Enterprise, (Enterprise, S)
and (Enterprise, U), accepted at level S. S-subjects could choose either of them, but not both,
to avoid semantic confusion.

This is very different from the No Entity Polyinstantiation Integrity of [14]. In our case,
there can be no downward information leakage, because entity polyinstantiation is allowed across
security levels, and therefore no insertion will be rejected due to existing entity polyinstantiation
at higher level. Also, there is no ambiguity, because no entity polyinstantiation is allowed in
what is accepted by subjects at any particular security level.

3.3 Data-Borrow Integrity

The newly introduced Data-Borrow Integrity is a key property of our data-based semantics.
Allowing data-borrow ensures that the MLR data model can retain upward information flow.
Changes to data at a lower level can be automatically propagated to higher levels. The integrity
property can be expressed as follows.

Property 3 [Data-Borrow Integrity (DBI)] An instance r of a multilevel relation R satisfies
data-borrow integrity if and only if for all t € r and 1 < @ < n, if t{4;] # null At[C;] < H{{TC],
there exists ¢’ € r such that ¢'[Ay,Cy] = t[Ay, C1] A V[T C) = '[C;] = t[C;] AV[A;] = tA;]. 0

This is based on the following idea of data-based semantics: c-tuple contains all the data
accepted (but not necessarily owned) by c-subjects; absence of a ¢-tuple means that to c-subjects
the entity does not exist.

Consider the following relation instance

\ SHIP \ OBJ | DEST [ TC |

Enterprise U | Exploration U | Rigel S | S
Enterprise U | Exploration U | Talos U | U

\ SHIP \ OBJ | DEST | TC |
‘ Enterprise U ‘ Exploration U ‘ Rigel S ‘ S ‘

The former one satisfies DBI but the later one does not. Here DBI requires that the U-tuple,
which is the source of the data Enterprise and Exploration, must exist. This is because absence
of a U-tuple means that to U-subjects the entity Enterprise does not exist; which implies that
the data once owned by U-subjects is invalid now and, of course, can no longer be used by
S-subjects.

Note that DBI is independent from PI. For example, the second instance above does not
satisfy DBI but yet satisfies PI.

3.4 Foreign Key Integrity
The Foreign Key Integrity is also proposed by SeaView [3], and is another very stable property.

Property 4 [Foreign Key Integrity (FKI)] Let F'K be a foreign key of the referencing
relation R. An instance r of a multilevel relation R satisfies foreign key integrity if and only if
forall t € r

1. Either (VA; € FK)[t[A;] = null] or (VA; € FK)[t[A;] # null]



2. AZ',A]‘ c 'K = t[Cz] = t[C]‘]. a

The first part of this property arises from traditional relations. The motivations for the
second part of this property are similar to those for the uniform classification of apparent primary
keys in EI, and we can similarly define C'pg to be the classification of the foreign key F K.

3.5 Referential Integrity

Referential Integrity appears both in SeaView and in Sandhu-Jajodia model. The main issue
with referential integrity is to avoid semantic ambiguity, as discussed at length in [14]. The defi-
nition given here is similar to the original SeaView definition and the Sandhu-Jajodia definition.
However, ambiguity is eliminated by our data-based semantics as follows.

Property 5 [Referential Integrity (RI)] Let F'K be a foreign key of the referencing relation
Ry. Let Ry be the referenced relation, with apparent primary key AK. Instances r; of Ry and
ro of Ry satisfy referential integrity if and only if for all ¢; € ry such that ¢;[F'K] # null, there
exists ty € rg such that ¢ [F K] = t[AK) A4 [TC] = t[TC) A 4 [Cri] > 62[Cak]. O

In traditional relations, the referential integrity property precludes the possibility of dangling
references. In other words a non-null foreign key must have a matching tuple in the referenced
relation. The requirement t;[Crr] > $2[Cax] is added by SeaView to only allow downward
references. In our definition, we require t;[T'C] = t3[T'C] as well, which means for any level
¢, c-tuples can only reference c-tuples. This follows naturally from our data-based semantics:
c-tuple contains all the data accepted by c-subjects, absence of a c-tuple means to c-subjects
the entity does not exist.

Now let us consider the two examples described in [14] as an impasse between referential
ambiguity and modeling power.

In the first example, references between relation instances SOD and CS

\ SHIP \ OBJ | DEST [ TC |
Enterprise U | Exploration U | Talos U | U
Enterprise S | Spying S | Rigel S| S

| CAPTAIN | SHIP | TC |
Kirk U | null U| U

Kirk U | Enterprise S | S

had some ambiguity in previous models, because the S-tuple of CS referenced both the U- and
the S-tuple of SOD and there is no way to determine which one is correct. In MLR, since the
S-tuple of CS can only reference the S-tuple of SOD, there is no referential ambiguity.

As the second example, references between relation instances SOD and CS

\ SHIP \ OBJ | DEST [ TC |
Enterprise U | Exploration U | Talos U | U
Enterprise U | Spying S | Rigel S| S

| CAPTAIN | SHIP | TC |
Kirk U | null U| U

Kirk U | Enterprise S | S
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Figure 1: The expressive power of the tuple-level labeling data model

would not be allowed in previous models if the restriction ¢ [Crx] > t2[Cax] was replaced by
11[Crr] = t2[Cax] to eliminate referential ambiguity, because Enterprise in SOD has classifica-
tion U rather than S in CS. In MLR, the S-tuple of CS references the S-tuple of SOD without
loss of any modeling power.

4 Expressive Power

In this section we compare the expressive power of the MLR data model with respect to several
other data models. This is done by giving ER (Entity-Relationship) style diagrams to show how
entities, tuples and elements are related in different models. We address the tuple-level labeling
model first, because it is the simplest data model and is theoretically discussed in [16].

The tuple-level labeling model has simple schemes as follows

(& (A, [ [ A, [TC]

where there is only one label on the entire tuple.

The expressive power of the tuple-labeling data model is shown in Figure 1. Every entity
is identified by Ay and can have at most one tuple for each classification level. Each tuple has
its class level recorded in T'C', and consists of n — 1 elements associated with A;. The value of
every element is kept in Ag (2 <k < n).

Note that there is no entity polyinstantiation in the tuple-level labeling model, because here
an entity is identified only by A;. Fundamentally, tuple-level labeling can directly provide either
element polyinstantiation or entity polyinstantiation, but not both. An alternate interpretation
can be shown as Figure 2, in which every entity, identified by A; and (', can only have one
tuple. It is obviously more useful to opt for element polyinstantiation, because it meets the
multilevel requirement within some specific entities.

The expressive power of the MLR data model can be shown as Figure 3. Here an entity is
identified by Ay and (1, and may have at most one tuple for each classification level. Fach tuple
has its class level recorded in T'C', and consists of n — 1 elements. The value and owner’s level of
every element are kept in Ay and Cj (2 < k < n). It is clear that both entity polyinstantiation
and element polyinstantiation are allowed here, because each entity is identified by both A and
(1, and both tuple and elements have their own classification levels.
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Figure 4: The expressive power of the semi-tuple-level labeling data model

What we called the semi-tuple-level labeling data model has schemes as follows.

(&[G [ A [ A, [TC]

This is exactly the same as the model provided by Smith-Winslett [15]. The expressive power of
the semi-tuple-level labeling data model can be shown as Figure 4. Both entity polyinstantiation
and element polyinstantiation are allowed here.

The semi-tuple-level labeling model can also be seen as coming from restricting the MLR
model in such a way that no C (2 < k < n) is allowed. By this restriction, the model would
no longer take care of the sources of element data, and at the same time no upward information
flow by data borrow would exist. In other words, no “write up” is allowed.

Now let us compare MLR with SeaView. Although the SeaView model is not grounded on
the belief-based semantics, we can still establish some relationship between SeaView and MLR.
The expressive power of the SeaView data model can be shown as Figure 5. The T'C' in SeaView
is redundant and can be calculated from C4, ..., (. Hence, it is attached by a dotted line in
the diagram.

What SeaView can do to counter the semantic ambiguity problem addressed in section 1 is
very limited. The model-theoretic semantics of [9] is slightly different from the SeaView’s original
“fact-based” semantics [10], in that it integrates some ideas from the belief-based semantics to
overcome semantic ambiguity. However, as long as believability is equated to visibility, it is
quite possible that either believability is maximized or visibility is minimized. To differentiate
believability from visibility, operational semantics and performance may become two problems.

As an example, let us consider an MLR instance

\ SHIP \ OBJ | DEST |[TC |
Enterprise U | Mining S | Talos U | TS
Enterprise U | Mining S | Rigel S| S
Enterprise U | Exploration U | Talos U | U

In this case, all data accepted by TS-subjects are borrowed from lower-level subjects. Further-
more, T'S-subjects take DEST from U-subjects instead of S-subjects, and the data Talos can be
changed by U-subjects. Neither SeaView nor semi-tuple-labeling model can express this case,
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because it concerns data-borrow. In SeaView, TS-subjects should accept S-tuple if they do not
have their own data. In semi-tuple-labeling model, TS-subjects can only accept the data owned
by themselves.

So far, we can see that the MLR model is a very powerful multilevel relational data model,
which can be used as a unified data model to support general MLS database design.

5 Manipulation

There are five data manipulation statements in the MLR data model. Four of them are the
traditional SQL statements of INSERT, DELETE, SELECT and UPDATE. The fifth statement
is UPLEVEL and is new to MLR. The UPLEVEL statement is introduced to solve the data
manipulational incompleteness problem discussed in section 1.

Compared to the Sandhu-Jajodia model of [13], we have redefined the semantics of the
four traditional SQL statements, and have replaced PUPDATE by UPLEVEL. The SELECT
statement given here is similar to that of Smith-Winslett [15], and our intent is to provide a
friendly interface upward-compatible to the standard SQL.

We first give several examples to show how these data manipulations work. After that, we
present formal syntax and semantics for all these data manipulation statements, and explain
some important aspects. The syntax is similar to that in [6], and the explanation given here
concentrates on data-borrow and data manipulation propagation.

We are not going to discuss performance in detail, because it depends on physical strategies.
However, these data manipulations should not present a performance problem if we can use an
entity, instead of a tuple, as the basic storage and retrieval unit. As discussed in section 2.3, the
size of an entity will not be too large, comparing to that of a tuple.

5.1 Examples

First of all, we illustrate how can a subject add to an instance a tuple with some data taken
from lower levels. Suppose there is a relation instance as follows,
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\ SHIP \ OBJ | DEST | TC|

Enterprise U | Mining M; | Talos U | My
Enterprise U | Exploration U | Sirius My | My
Enterprise U | Exploration U | Talos U U

An S-subject applying to the instance the following UPLEVEL command

UPLEVEL SOD
GET OBJ FROM M;, DEST FROM M,
WHERE SHIP = “Enterprise”

will give us the following result

\ SHIP \ OBJ | DEST | TC|
Enterprise U | Mining My | Sirius My | S
Enterprise U | Mining M; | Talos U | My
Enterprise U | Exploration U | Sirius My | My
Enterprise U | Exploration U | Talos U U

An S-tuple is added into SOD, whose OBJ and DEST values are, respectively, borrowed from
the data owned by M;-subjects and Ms-sub jects.

Next, we illustrate how there is upward propagation of changes due to UPDATE, DELETE
and UPLEVEL statements. Suppose an S-subject executes the following UPDATE statement

UPDATE SOD
SET DEST = “Rigel”
WHERE  SHIP = “Enterprise”

the result is

\ SHIP \ OBJ | DEST | TC|
Enterprise U | Mining M; | Rigel S S
Enterprise U | Mining M; | Talos U | My
Enterprise U | Exploration U | Sirius My | My
Enterprise U | Exploration U | Talos U U

Only the S-tuple is changed. Now the S-tuple has an OBJ value taken from a lower level and a
DEST value from its own level.
After that, if an My-subject issues

UPDATE SOD
SET OBJ = “Spying”
WHERE  SHIP = “Enterprise”

the relation instance will be

\ SHIP \ OBJ | DEST | TC|
Enterprise U | Spying My | Rigel S S
Enterprise U | Spying My | Talos U | My
Enterprise U | Exploration U | Sirius My | My
Enterprise U | Exploration U | Talos U U
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The My-tuple is changed, and the change is propagated to the S-tuple. This is because the OBJ
value accepted by S-subjects is currently owned by M;-subjects.
Furthermore, a DELETE statement from an M;y-subject

DELETE
FROM SOD
WHERE  SHIP = “Enterprise”

will change the relation instance to

\ SHIP \ OBJ | DEST | TC|

Enterprise U | null M; | Rigel S S
Enterprise U | Exploration U | Sirius My | My
Enterprise U | Exploration U | Talos U U

The My-tuple is deleted and the OBJ value in S-tuple is set to null since no data is currently

owned by Mj-subjects.
If the My-subject issues an UPLEVEL instead of the DELETE,

UPLEVEL SOD
GET OBJ FROM U, DEST FROM U
WHERE SHIP = “Enterprise”

the result will be

| SHIP | OBJ | DEST | TC|
Enterprise U | null M; | Rigel S S
Enterprise U | Exploration U | Talos U | My
Enterprise U | Exploration U | Sirius My | My
Enterprise U | Exploration U | Talos U U

The M;-tuple is changed and all its values are borrowed from U-subjects. The OBJ value of the
S-tuple is null because there is no OBJ data currently owned by Mj-subjects.
To the instance above, an My-subject issuing

SELECT «
FROM SOD

will get the following result

| SHIP | OBJ | DEST |

‘ Enterprise ‘ Exploration ‘ Sirius ‘

i.e., the tuple at level My with neither classification attribute nor tuple-class attribute. This
looks like a traditional SELECT statement applied to a traditional relation, consisting of all
data in the My-tuple. If the issued statement is

SELECT %%
FROM SOD

the result is
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\ SHIP \ OBJ | DEST | TC|
‘ Enterprise U ‘ Exploration U ‘ Sirius My ‘ M, ‘

all data attributes, classification attributes as well as a tuple-class attribute are included.
Finally, let us consider the two examples from [14] mentioned in section 3.5. To both of
them, if a T'S-subject issues the following SELECT statement

SELECT CS.CAPTAIN, CS.CAPTAIN%, SOD.DEST, SOD.DEST%, SOD.TC
FROM  CS, SOD

WHERE  CS.SHIP=SOD.SHIP

AT S

where CAPTAINY and DEST% stand for the classification attributes of CAPTAIN and DEST

respectively, the results returned to the TS-subject are the same

| CAPTAIN | DEST | TC |
| Kirk U |Rigel S| S |

This is because in both cases the S-tuple of CS only joins with the S-tuple of SOD. Note that
the returned results do not have to satisfy the DBI property, since they are just a portion of
those two relation instances.

We now give the formal syntax and operational semantics of the INSERT, DELETE, SE-
LECT, UPDATE and UPLEVEL statements.

5.2 The INSERT Statement
5.2.1 Syntax

The INSERT statement executed by a c-subject has the following general form:

INSERT
INTO R[(Ai[, Aj].. )]
VALUES (ai,qj]...)

Symbol explanation: R is a relation name; A;, A;, ... are data attribute names, 1 <<¢,7,...<
n; a;, a;, ... are data values for A;, A;, ... respectively. (In this paper, as a syntax description
we use [ ] to stand for option and ... for repetition.)

Value specified must be from appropriate domains, i.e., a; € D;, a; € D;, and so on. Also,
celLl;, H],ce[L;, H;], and so on.

5.2.2 Semantics

Each INSERT data manipulation can insert at most one tuple into the relation R. The inserted
tuple ¢ is constructed as follows: for 1 < k < n,

1. if Ay is in the attribute list of INTO clause, t[Ag, Ck] = (ag, ¢);
2. if Ay is not in the attribute list of INTO clause,

(a) if ¢ € [Ly, Hi], {{Ak, Ck] = (null, ¢);
(b) if ¢ ¢ [Ly, Hi], t[Ax, C] = (null, null);
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Also, t{{TC] = .

The insertion is permitted if and only if:

1. There is no t’ € r such that t'[A;] = a1y A ¢[TC] = ¢; and
2. The resulting database state satisfy EI, FKI and RI.

If so, the tuple ¢ is inserted into r. Otherwise the data manipulation is rejected and the
original database state is left unchanged.

5.2.3 Commentary

The INSERT semantics is quite straightforward, except the (null, null) case, which was discussed
in section 2.1.

5.3 The DELETE Statement
5.3.1 Syntax

The DELETE statement executed by a c-subject has the following general form:

DELETE
FROM R
[WHERE ]

Symbol explanation: R is a relation name; p is a predicate expression which may include
conditions involving the classification attributes, in addition to the usual case of data attributes.

5.3.2 Semantics

Only tuples t € r with t{T'C'] = ¢ will be considered in the evaluation of p. That is, p is effectivly
changed to p A t{T'C'] = ¢. For those tuples t € r that are selected, r will be changed as follows:

1. ¢ will be deleted;
2. if t{C1] = ¢, all ¢ € r with '[A1, C1] = t[A1, C1] A ¢[TC] > ¢ will be deleted from 7;

3. if t[Cy] < ¢, for t' € r with '[Ay,Cy] = t[A1,Cy] A [TC] > ¢ AV[Ck] = ¢, t'[Ag] is set to
null.

The DELETE statement is successful if at level ¢ the resulting database state satisfy RI, i.e.,
the subview of the database state at level ¢, which consists of tuples with tuple classes equal
to ¢, satisfies RI. Otherwise the data manipulation is rejected and the original database state is
left unchanged.

In case that RI is not satisfied at levels ¢/ (¢/ > ¢), for the relation Ry with relation instance

r1 containing the referencing tuple ¢; and with apparent primary key AK; and the foreign key
FKq,

1. if FK1 N AK; = 0, there are two steps to be done,
(a) if t4[Crr,] = ¢, 1y is set as t[F K] = null, and for ¢} € ry with ¢j[AK,Cuk,] =
W[AKy, Cag ] NH[TC] > AN [Cri, ] = ¢, H)[FKq] is set to null;
(b) if t1[Crr,] < ¢ and #[F K] has not been set to null in step (a), #; is set as
W[FKy,Crr,] = (null,e');

2. if FKy N AK, # 0, t; (at level ¢’) should also be deleted, which appears as cascading
deletions.
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5.3.3 Commentary

Note that deleting lower-level tuples may lead to deletion of tuples or setting data attributes to
null at higher levels. This propagation is consistent with other issues of the data-based semantics,
because what a borrower borrows is the value currently owned by the owner. Therefore, in case
some changes happen to the owner, corresponding changes should happen to the borrower. Some
variations are possible, such as instead of deleting higher-level tuples or setting higher-level data
attributes to null, the system could just “freeze” and mark them, show subjects at these levels
some exceptions or warnings, and let these subjects fix them. These variations are important in
practice and should be explicitly added to the semantics in an actual implementation.

Adopting different policies in RI checking, at level ¢ and at levels ¢’ (¢/ > ¢), is because the
DELETE statement issued by a ¢-subject should not be rejected due to dissatisfying RI at levels
¢, otherwise there would be downward information leakage. In case of FKy N AK, # 0, the
referencing tuple can not be set as having F'K; being null, because by EI, null is not allowed
within an apparent primary key. For FFKy N AKy = (), step (b) deals with the possibility that
there are two tuples in 71, with the same (F' K7, Crg, ) value, referencing two different entities
with the same AK value in r, in which case t;[Crg,] should be set to ¢ to keep PI being
satisfied. These issues arise with the UPDATE statement also.

5.4 The SELECT Statement
5.4.1 Syntax

The SELECT statement executed by a ¢-subject has the following general form:

SELECT B[, Bs]...
FROM B[, R]...

[WHERE p]
[AT Cl[, CQ] .. ]

Symbol explanation: By, By, ... are attribute names, either data attribute or classification
attribute or tuple-class attribute (Wildcards are available, * for all data attributes, % for all
classification attributes and tuple-class attribute, *% for all attributes); Ry, R, ... are relation
names; p is a predicate expression which may include conditions involving the classification
attributes, in addition to the usual case of data attributes; ¢, co, ... are values of classification

levels (There is wildcard * standing for all levels lower than or equal to ¢).
Value specified must be from appropriate domains. Also, ¢1 < ¢, ¢3 < ¢, and so on.

5.4.2 Semantics

Only those tuples t € rq,73,... that have {{T'C'] being ¢ if there is no AT clause or otherwise
included in AT clause will be taken into the calculation of p. If there are more than one relation
included in FROM clause, the p is implicitly substituted by p A (R1.TC = R TC = ...).

For those tuples t satisfying p, the data of ¢t for those attributes listed in SELECT clause
will be included in the result.

A SELECT statement is assumed to always succeed, although the returned tuple set may
be an empty set.

5.4.3 Commentary

Replacing p with pA(R1.TC = R, TC = ...) serves to enforce that c-tuples in one relation only
join with c-tuples in other relations. This is based on the idea that a c-tuple contains all the
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data accepted by c-subjects, and therefore should be only joined with other ¢-tuples. Otherwise,
it would be difficult to interpret the returned result.

It is possible to combine AT clause into WHERE clause. However, it is more natural to
separate them, in the sense that most users, who have no need to see the lower-level data that
are not accepted by them, can omit the AT clause. Also, with wildcard * different from *%,
those users do not have to even see access classes.

5.5 The UPDATE Statement
5.5.1 Syntax

The UPDATE statement executed by a c-subject has the following general form:

UPDATE R
SET Ay = s, A; = s5]...
[WHERE  p]
Symbol explanation: R is a relation name; A;, A;, ... are data attribute names, 1 <<¢,7,...<
n; S;, S;, ... are scalar expression for A;, A;, ... respectively; pis a predicate expression which

may include conditions involving the classification attributes, in addition to the usual case of
data attributes.

Value specified must be from appropriate domains, i.e., |s;| € Dy, |s;| € D;, and so on (| |
stands for calculated result). Also, ¢ € [L;, H;], ¢ € [L;, H;], and so on.

5.5.2 Semantics

Only tuples t € r with t{{T'C'] = ¢ will be taken into the calculation of p. For those tuples ¢ € r
that satisfy the predicate p, r will be updated as follows:

1. if no attribute of Ay is in SET clause, for 2 < k < n, if Ay is in SET clause,

(a) t[Ak, Ck] = (Isk], 0);

(b) for tuples t' € r with t/[Ay,C1] = t{A1,C1] A U[TC] > ¢ AN [Ck] = ¢, '] Ax] = |si].
2. if some attribute of Ay is in SET clause,

(a) if t{C1] = ¢, all tuples ¢ € r that have t'[A;,Cy] = t[A1,C1] A V[TC] > ¢ will be
deleted;
(b) if t{C4] < ¢,
i. for 2 <k < mn,if Ay is not in SET clause and ¢[Cy] < ¢, t[Ag, Ck] = (null,c);
ii. for tuples ¢ € r with ¢'[41,C1] = t[A1,C1] A T[TC] > ¢ AN V[Cy] = ¢, '[Ax] =
null;

(c) for 1 <k < m,if Ay is in SET clause, t[Ag, Cx] = (|sk],¢);
The UPDATE data manipulation is successful if and only if:
1. The resulting database state satisfy EI, FKI and RI (at level ¢); and
2. In case that some attribute of Ay is in SET clause, there is no ¢ € r such that for the

resulting t[Ay], t'[A1] = t{A1] A U[TC] = c.
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Otherwise the data manipulation is rejected and the original database state is left unchanged.

In case that RI is not satisfied at levels ¢/ (¢/ > ¢), for the relation Ry with relation instance
r1 containing the referencing tuple ¢; and with apparent primary key AK; and the foreign key
FKq,

1. if FK1 N AK; = 0, there are two steps to be done,

(a) if t4[Crr,] = ¢, 1y is set as t[F K] = null, and for ¢} € ry with ¢j[AK,Cuk,] =
W[AKy, Cag ] NH[TC] > AN [Cri, ] = ¢, H)[FKq] is set to null;

(b) if t1[Crr,] < ¢ and #[F K] has not been set to null in step (a), #; is set as
W[FKy,Crr,] = (null,e');

2. if FKy N AK, # 0, t; (at level ¢’) should also be deleted, which appears as cascading
deletions.

5.5.3 Commentary

When the Ay of a base tuple is to be changed, all higher-level tuples of the entity will be deleted
rather than get a new Ay value. This is because changing A; means changing the entity, lower-
level subjects should not have the privilege of having higher-level subjects to accept any new
entity beyond their willingness to do so by UPLEVEL statements.

Loss of RI at ¢’ > ¢ is handled exactly the same way as for DELETE.

The UPDATLE semantics given here is a natural extension of the traditional one, in the sense
that no extra tuple is generated. In the MLR model, there are two ways to add tuples, INSERT
and UPLEVEL.

5.6 The UPLEVEL Statement
5.6.1 Syntax

The UPLEVEL statement executed by a c-subject has the following general form:

UPLEVEL R
GET A; FROM ¢;[, A; FROM ¢;] ...
[WHERE  p]
Symbol explanation: R is a relation name; A;, A;, ... are data attribute names, 2 <
iy Jy... < m; ¢, €5, ... are values of classification levels for A;, A;, ... respectively; p is a

predicate expression which may include conditions involving the classification attributes and
tuple-class attributes, in addition to the usual case of data attributes.

Value specified must be from appropriate domains, i.e., ¢; € [L;, H;], ¢; € [L;, H;], and so
on. Also, ¢; < ¢, ¢; < ¢, and so on.

5.6.2 Semantics

Only tuples ¢t € r with ¢{[T'C] < ¢ will be taken into the calculation of p. For every entity that
has at least one tuple ¢’ € r satisfying the predicate p, a c-tuple ¢ will be constructed as follows:

1. t[Ay, O] = t'[Ay, C4];

2. for 2 <k <mn,
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(a) if Ay is in GET clause,
i. if there is a tuple ¢ with t"[Ay,Cy] = t[A1,Cq] A '[TC] = '[CE] = ¢,
Ay, Cx] = t"[Ax, Ckl;
ii. if there is no tuple ¢ with t"[Ay,C1] = t[A1,Cq] A V'[TC] = t"[Cy] = e,
1Ak, Ck] = (null ek );
(b) if Ay is not in GET clause,
i. if ¢ € [Ly, Hi], t[Ag, Cx] = (null, ¢);
ii. if ¢ ¢ [Li, Hi], {{Ak, Cx] = (null, null).

After that,
1. if there is a tuple t” with t"[Ay, Cy] = t{A1, C1] A H'[TC] = ¢,

(a) replace ¢ with

(b) for any tuple " and any 2 < k < n such that t"/[Ay,C1] = t{A1,C1]) A U'[TC] > ¢ A
t'Ck] = e, if t{Ag, Cr] # [ Ak, Ck], set t"" as t"'[Ay] =null.

2. if there is no tuple ¢ with t"[Ay, C] = t[A1, C1] A "[TC] = ¢, add t into r.

The UPLEVEL data manipulation is successful if and only if the resulting database state
satisfy PI, FKI and RI. Otherwise the data manipulation is rejected and the original database
state is left unchanged.

5.6.3 Commentary

In the MLR data model, the only way to establish or reestablish connections between lower-level
data and higher-level datais using UPLEVEL statements. Having established these connections,
certain kind of “write up” can be done by subsequent UPDATE and DELETE statements at
lower levels. The connection established by UPLEVEL is exactly the data-borrow relationship,
which is the fundamental aspect of the data-based semantics. Note that UPLEVEL also allows
a c-subject to get data from the original c-tuple as well as borrow from lower level tuples, and
replaces the original c-tuple by the constructed one (with relative changes propagated to higher
level tuples).

Practically, it might be useful for UPLEVEL to have a SET clause just as that in UPDATE,
because it is quite possible that a subject needs to add a tuple with some data taken from lower
levels and others provided by itself. However, this is redundant in theory, because the subject
can use an UPLEVEL statement followed by an UPDATE statement to carry out this function.

6 Soundness

In this section we are going to prove that the MLR model is a sound data model. To clarify the
essential meaning of soundness, we give the following two definitions first.

Definition 6.1 In the MLR data model, a legal database state is one in which all relation
instances satisfy the five integrity properties. a

Definition 6.2 A sound data model is one in which any sequence of provided operational
statements will transform any legal database state to a legal database state. a
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From these two definitions we can see that integrity properties and operational semantics
will play important roles in the soundness proof. In fact, the traditional relational data model
also has some integrity properties regarding primary key, foreign key and reference control.
However, in comparison with MLR, they are much simpler. Also, the operational semantics
of the traditional relational data model is very straightforward; therefore its soundness proof
is really a trivial matter. For the MLR data model, because of its element-level labeling and
data-based semantics, the soundness proof is much more complicated.

Theorem 6.1 The MLR model is sound.

Proof: To prove the soundness of the MLR model, we need to prove that each of the INSERT,
DELETE, UPDATE and UPLEVEL statements will transform any legal database state to a legal
database state. Note that any SELECT statement will leave any database state unchanged. So
there are four cases.

Case (1) For an INSERT statement, since EI, FKI and RI are enforced by the INSERT
semantics, we only need to show that the resulting instance of relation R satisfies PI and DBI.

1. PI is satisfied, because
(a) thereis no t” in the original r with t"[Ay, C1] = t[A1, C1] A t'[T'C] = ¢, since inserting
t is permitted only if there is no ¢’ € r such that ¢[Ay] = t{A1] A V[TC] = ¢;

(b) there is no t” in the original r with t"[Ay,Cy] = t[A1,C4] A t"[TC] > ¢, since the
original r satisfies DBI;
(c) there is no t" in the original r with ¢"[A1,C1] = t[A1,C1] A t'[TC] < ¢, since the

definition of relation instance requires tc > cq.

2. DBI is also satisfied, because there is no t[A4;] (1 <4 < n) in t with ¢[C;] < {[TC].

Case (2) For a DELETE statement, since RI is enforced by the DELETE semantics, we only
need to show that the resulting database state satisfies EI, PI, DBI and FKI.

1. for relation R

(a) EI is satisfied, because no tuple ¢ in the original r, which satisfies EI, will have

t"[A1, C1] being changed.
(b) PI is satisfied, because

i. no new tuple is added;
ii. all tuples ' in the original r with t'[Ay, C1] = t[A1, Ci] A [TC] > ¢ A [C] = ¢
(2 <k < n) will be either deleted or set as t'[A;] = null;
iii. by the definition of relation instance, there is no tuple ¢ with ¢"[Ay,Cy] =
AL, CLIATTC) < e AN'[CR) = ¢ (2< k < n).
(c) DBI is satisfied, because all tuples ¢’ in the original r with ¢'[4y,C4] = t[A;,Cq] A
U[TC] > e AN[Ck] = ¢ (2 <k <n) will be either deleted or set as t[A] = null.
(d) FKI is also satisfied, because

i. all tuples in the original r satisfy FKI;
ii. all tuples ¢’ in the original r with t'[A1, C1] = t{{A1, C1] AV[TC] > c AN [Cri] = ¢
will be either deleted or set as t'[Apx, Cri] = (null,c).
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2. for relation Ry and so on, either FKy N AKy; = § or FKy N AK; # 0, the proof is similar
to that for R.

Case (3) For an UPDATE statement, since EI, FKI and RI are enforced by the UPDATE
semantics, we only need to show that the resulting database state satisfies PIT and DBI.

1. for relation R

(a) PIis satisfied, because
i. no new tuple is added;
ii. if t{Ay] is updated,
A. all tuples t' in the original r with #[A,C1] = t[{A1,C1] A V[TC] > ¢ A
U[Cy] = ¢ (2 < k < n) will be either deleted or set as t'[Ax] = null;
B. for the resulting entity ¢t[Ay, C'{], the proof is similar to that of an INSERT
statement;
iii. if t{A4] is not updated, for every updated t[Ax] (2 < k < n), all ¢ in the original r
with '[Ay,C1] = t[A1, C1] A U[TC] > ¢ A V[Ck] = ¢ will be set as t'[Ag] = t[Ag];
iv. by the definition of relation instance, there is no t” in the original » with t"[Ay, C4] =
A1, Ch) AN TCT < e AN'[Crl = ¢ (2 < k < n).
(b) DBI is also satisfied, because
i. every updated t[A4;] (1 < i < n) has t[C;] = ¢;
ii. if t{Ay] is updated,
A. all tuples t' in the original r with #[A,C1] = t[{A1,C1] A V[TC] > ¢ A
U[Cy] = ¢ (2 < k < n) will be either deleted or set as t'[Ax] = null;
B. for the resulting entity ¢t[Ay, C'{], the proof is similar to that of an INSERT
statement;
iii. if t{A4] is not updated, for every updated t[Ax] (2 < k < n), all ¢ in the original r
with t/[A1,C1] = t{A1,C1] AN V[TC] > ¢ AH'[Ck] = ¢ will be set as t'[Ag] = t[Ax].

2. for relation Ry and so on, the proof is similar to that of a DELETE statement.

Case (4) For an UPLEVEL statement, since PI, FKI and RI are enforced by the UPLEVEL
semantics, we only need to show that the resulting instance of relation R satisfies EI and DBI.

1. EI is satisfied, because for each added tuple ¢, there is ¢’ in the original r, which satisfies

EI, such that t[Al, Cl] = t/[Al, Cl]
2. DBI is also satisfied, because

(a) in the constructed c-tuple ¢,
i. all {{Ax] (2 < k < n) with {[C] = ¢ are either null or taken from the original
c-tuple that has t{Cy] = ¢;
ii. all {{Ag] (2 < k < n) with t[Cy] = ¢/ < ¢ are directly taken from tuples at levels
s
(b) in case that the original c¢-tuple t” is replaced by ¢, for any 2 < k < n such that
t"[Ar, Ck] # t[Ag, Ck, every tuples t" at levels ¢/ (¢/ > ¢) with ¢"/[C] = ¢ will have
t""[ Ar] set to null.

Hence in general, all these five operation statements will transform any legal database state
to a legal database state. Therefore, any sequence of these provided operation statements will
transform any legal database state to a legal database state. a
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7 Completeness

The completeness of the MLR data model is proved in this section. Again we give the following
definition first.

Definition 7.1 A complete data model is one in which any legal database state can be trans-
formed by a sequence of the provided data manipulation statements to any other legal database
state. a

The completeness of the traditional relational data model is very obvious, because we can
delete or insert any specific tuple without much limitations. However, it becomes an issue
in element-level labeling multilevel data models. Recall the last example in section 1, which
illustrates the incompleteness problem. That is why the MLR data model introduces a new
data manipulation statement UPLEVEL to complement the other four SQL statements.

Theorem 7.1 The MLR model is complete.
To prove the completeness of the MLR model, we need to prove the following lemmas.

Lemma 7.1 Any legal database state can be transformed by a sequence of the provided data
manipulation statements to an initial empty database state.

Proof: From the DELETE semantics, we can see the following points:
1. Any entity can be entirely deleted totally by deleting the base tuple of the entity.

2. In deleting an entity, if the values of Ay and (', which identify the entity, are given in the
WHERE clause, the operation will not change any other entity, except those with tuples
referencing this Ay, C].

3. If we delete entities with referencing tuples before we delete entities with referenced tuples,
RI will always be satisfied and the DELETE operation will not be rejected.

By deleting all entities in all relation instances, we can therefore get the initial empty database
state. a

Lemma 7.2 An initial database state can be transformed by a sequence of provided operation
statements to any legal database state.

Proof: Any legal database state can be constructed as follows:

1. Entities with referencing tuples are added before adding entities with referenced tuples.

2. A multilevel entity can be added as follows:

(a) All tuples of the entity are added in the reverse topologically sorted order of their
TC values;

(b) Each tuple is added by a subject at the level equal to the T'C' value of the tuple as
follows.

i. The base tuple t; is added by an INSERT statement with all A; that have t1[A;] #
null being listed in the INTO clause, and #;[A;] in the VALUES clause.
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ii. Adding any additional tuple t,, is done by an UPLEVEL statement, possibly
followed by an UPDATE statement. All A; and t,,[C;] that have t,,,[C;] < t,,[TC]
are included in the USE clause of the UPLEVEL statement; whereas all A; and
tm[Ai] that have t,[C;] = t,[TC] A t,[A;] # null are included in the SET
clause of the UPDATE statement. Also, A1, C; and their values are put into the
WHERE clauses of both UPLEVEL and UPDATE.

This process will be successful, because

1. adding one entity will not change any other entity, since Ay, 7 and their values are

included in the WHERE clauses of both UPLEVEL and UPDATE;
2. EI, FKI and PI are always satisfied, since the constructed database state is a legal one;
3. DBI is always satisfied, since

(a) the constructed database state is a legal one,

(b) all tuples of an entity are added in the reverse topologically sorted order of their T'C
values;

4. RI is always satisfied, since

(a) the constructed database state is a legal one,

(b) entities with referencing tuples are added before adding entities with referenced tuples.

From the INSERT, UPLEVEL and UPDATE semantics, we can easily see that the added
tuples are exactly those t; and t,,’s. a

We now have the proof of Theorem 7.1 as follows.

Proof: [Theorem 7.1] From Lemma 7.1 and 7.2, any legal database state can be transformed
by a sequence of provided operation statements to any other legal database state. O

8 Security

Security is the fundamental issue of the MLR data model, and is the essential difference between

the traditional data model and multilevel secure data models. Therefore, the security proof of the

MLR data model concerns whether or not the MLR data model satisfies the security requirements

of no “downward” information flow. Our proof is based on the concept of noninterference [4].
In this section we use the following notation:

e 5 : all subjects with varying clearance levels;
o T : all tuples with varying tuple classes in a database state.
Given any access level ¢,
e SV(c) : the set of subjects with clearance levels lower than or equal to ¢;
o SH(c): §—5V(e);

o T'V(c) : the set of tuples with tuple classes lower than or equal to ¢;
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Figure 6: The interface of the MLR data model

o TH(c): T—TV(c).

It is clear that for any access level ¢, S = SV (c¢) U SH(c), and SV(c) N SH(c) = (; while
T=TV(c)UTH(c),and TV(c)NTH(c) = 0.

The security requirement can now be defined as follows.

Definition 8.1 A secure data model is one which is non-interfering, i.e., for any access level ¢,
deleting any input from subject s; € S H(c¢) does not affect the output to any subject sz € SV (¢).
O

There are two assumptions here regarding to the term “output”. One is that we do not take
care of the response timing problem. Our security proof therefore does not deal with timing
covert channels (as is typical of non-interfering proofs). These channels arise due to imple-
mentation specific details, and are not inherent in the data model at this level of abstraction.
The second assumption is that all tuples returned for a SELECT are given in a deterministic
order rather than in different orders on different occasions. These two assumptions allow us to
concentrate on signalling channels, which are inherent in the deterministic data model.

As shown in Figure 6, the input to the MLR data model is a sequence of operations from
subjects with varying clearance levels, which are expressed by the INSERT, DELETE, SELECT,
UPDATE and UPLEVEL statement; the output is the results returned to the subjects, including

1. a set of returned tuples for any SELECT statement;

2. a SUCCESS or FAILURE (S/F) information for any INSERT, DELETE, UPDATE or
UPLEVEL statement.

Theorem 8.1 The MLR model is secure.
We prove the following lemmas first.

Lemma 8.1 For any access level ¢, changing T H(c) does not affect the output to any subject

s € S5V(e).

Proof: By the SELECT semantics, in processing a SELECT statement issued by a ¢-subject
s € 5V(c) (¢! <e¢),no tuples in TH(c") will be either taken into the calculation of p or put into
the returned tuple set. Since ¢’ < ¢ implies TH(¢') O T H(c), changing T H(c) does not affect
the tuple set output to s € SV (e).

By the INSERT, DELETE, UPDATE and UPLEVEL semantics, for any ¢’-subject s € SV/(¢)
(¢ <o),
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1. any INSERT statement issued by s could be rejected if and only if
(a) there is a tuple ¢’ € r with '[A1] = a1 A V[TC] = ¢; or
(b) the inserted tuple ¢ dissatisfies EI or FKI; or
(c) t references some ¢’-tuple ¢’ which is not existing.

2. any DELETE statement issued by s could be rejected if and only if the deleted tuple ¢ is
referenced by some ¢’-tuple t'.

3. any UPDATE statement issued by s could be rejected if and only if
(a) in case that some attribute of Ay is in SET clause, there is a tuple ¢’ € r with
t'[A1] = t[A1] A U[TC] = ¢, where t is the updated tuple; or
(b) t dissatisfies EI or FKI; or

¢) in case that some attribute of Ay is in clause, the original ¢ is reference some
| that ttribute of Ay is in SET clause, the original £ is referenced by
c’-tuple t'; or

(d) t references some ¢’-tuple ¢’ which is not existing.
4. any UPLEVEL statement issued by s could be rejected if and only if

(a) there is a tuple ¢ € r with ¢'[A1] = t[A1] A ¥'[C1] # t[C1] A V[TC] = ¢, where t is the
constructed tuple; or

(b) t dissatisfies FKI; or

(c) t references some ¢’-tuple ¢ which is not existing.

In all cases, only ¢ or ¢/-tuple t' need be considered. Since ¢,¢' ¢ TH(c') 2 T H(c), changing
TH(c) does not affect the S/F information output to s € SV(c). Therefore, changing T H(c)
does not affect the output to s € SV (c). O

Lemma 8.2 For any access level ¢, deleting any input from subject s € S H(c) does not change

TV (c).

Proof: Note that a subject can change database states only by an INSERT, DELETE, UPDATE
or UPLEVEL statement.

1. an INSERT statement issued by a ¢/-subject s € SH(c) (¢! > ¢) can only generate a
-tuple ¢'. Since ¢/ > ¢, ' ¢ TV (c).

2. a DELETE statement issued by a ¢/-subject s € SH(c) (¢/ > ¢) can only

(a) delete ¢/-tuples ', and may propagate changes to tuples ¢ at levels ¢ (¢ > ¢);

(b) may either update or delete referencing tuples ¢} at levels ¢ (¢” > ¢') and possibly
propagate changes to tuples t{" at levels ¢ (¢ > ¢").

Since ¢ > " > ' > ¢, all these ', ¢", 1, t]" ¢ TV (c).
3. an UPDATE statement issued by a ¢’-subject s € SH(c¢) (¢’ > ¢) can only

(a) change ¢/-tuples ¢/, and may propagate the changes to tuples t" at levels ¢ (¢ > ¢’).

(b) may either update or delete referencing tuples ¢ at levels ¢’ (¢ > ¢’) and possibly
propagate changes to tuples t{" at levels ¢ (¢ > ¢").

27



TH(c)

cannot affect
can affect T (lemmag.l)
SH(c) SV(c)

(lemma8.2)

TV(c)

Figure 7: Can Affect and Cannot Affect Relations

Since ¢ > ¢ > ¢ > ¢, all these t',t" ¢, t]" ¢ TV (c).

4. an UPLEVEL statement issued by a ¢’-subject s € SH(c) (¢/ > ¢) can either add a new
c’-tuple ' or change an original ¢’-tuple ¢” and propagate the changes to tuples t"’ at levels
" ("> ). Since " > ¢ > ¢, all these ¢/, 1", ¢"" ¢ TV(c).

From all of these, we can see that deleting any input from subject s € S H(c) does not change

TV (c). ]
These two lemmas are illustrated in Figure 7. Now we can prove Theorem 8.1.

Proof: [Theorem 8.1] From Lemma 8.1 and 8.2, for any level ¢, since S = SV(¢)U SH(c),
SV(e)N SH(¢)=0,T=TV(e¢)UTH(c), TV(c)NTH(c) =0, deleting any input from subject
s1 € SH(c) does not affect the output to sy € SV (¢). 0

9 Conclusion

In this paper we fully defined the MLR model and proved that the MLR model is sound,
complete and free of downward information flows. The redefined Polyinstantiation Integrity and
Referential Integrity as well as the newly introduced UPLEVEL statement and Data-Borrow
Integrity strongly support the fact that the MLR model is a simple, unambiguous and powerful
data model.

In the MLR data model, any subject can not only “read down”, i.e., get data accepted by
subjects at its level or at the levels below it; but also do some kind of “write up”, i.e., change
data accepted by subjects at levels above it, provided the data are owned by subjects at its level.

At any given level, an apparent primary key value identifies only one entity, which avoids
referential ambiguity. However in general, an apparent primary key value can indicate different
entities at different levels, therefore entity polyinstantiation is allowed across classification levels,
which prevents the downward information leakage arising from rejecting lower-level insertion.

Since the MLR data model has a clear and unambiguous semantics, some further extensions
are fairly straightforward. For example, many user-defined integrity constraints in the traditional
data model, some of which even include aggregation functions, can also be included into the MLR
data model. In the MLR model, all these traditional constraints are applied at each classification
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level, upon those tuples accepted by subjects at that level. Of course, some techniques will be
used to prevent downward information leakage, similar to what is done in the referential integrity
checking. These techniques will be further refined in future work, because they are important
in practice.

Another interesting issue is scheme classification. At present, a scheme is classified at the
greatest lower bound of L; (¢« = 1...n). However, there may be some cases where one wants
to entirely hide some attributes from lower-level subjects, i.e., subjects at different levels have
different scheme. There are several questions that arise: (1) Who is in charge of scheme creation
and maintenance? (2) What is the relationship between schemes at different levels? Would that
appears as “scheme polyinstantiation”? (3) How about those user-defined integrity constraints
with respect to scheme classification? These questions are left to future research.
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