
The E�ectiveness of Category-Partition Testing of

Object-Oriented Software

Alisa Irvine and A. Je�erson O�utt�

ISSE Department

George Mason University

Fairfax, VA 22030

phone: 703-993-1654

fax: 703-993-1638

email: ofut@isse.gmu.edu

March 3, 1995

Abstract

When migrating from conventional to object-oriented programming, developers face di�cult

decisions in modifying their development process to best use the new technology. In particular,

ensuring that the software is highly reliable in this new environment poses di�erent challenges.

Developers need understanding of e�ective ways to test the software. This paper presents

empirical data that show that the existing technique of category-partition testing can e�ectively

�nd faults in object-oriented software, and new techniques are not necessarily needed. For this

study, we identi�ed types of faults that are common to C++ software and inserted faults of

these types into two C++ programs. Test cases generated using the category-partition method

were used to test the programs. A fault was considered detected if it caused the program to

terminate abnormally or if the output was di�erent from the output of the original program.

The results show that the combination of the category-partition method and a tool for detecting

memory management faults may be e�ective for testing C++ programs in general. Since there

is no evidence that traditional techniques are not e�ective, software developers may not need

new testing methods when migrating to object-oriented development.

1 Introduction

Although a signi�cant amount of research has been accomplished in object-oriented analysis, design

and programming, very little has been done in object-oriented software testing. We are interested

in whether traditional software testing techniques are e�ective for testing object-oriented software.

�Partially supported by the National Science Foundation under grant CCR-93-11967.

1

We chose to focus on speci�cation-based testing of object-oriented software. We used the category-

partition method because we felt this technique was appropriate for object-oriented software. To

measure the e�ectiveness of the category-partition method for testing object-oriented software,

faults unique to object-oriented software were inserted into C++ programs. For our purposes,

e�ectiveness is a measure of the fault detection ability of a testing technique [FW91].

The rest of Section 1 provides a brief introduction to the basic concepts of object-oriented program-

ming and software testing. Section 2 surveys seven papers that have been published on this subject

and relates their positions on two questions: How can we use the properties of object-oriented soft-

ware to reduce the e�ort required to test object-oriented programs? and How can we e�ectively test

object-oriented programs? The latter question involves two issues: whether traditional techniques

are e�ective for object-oriented software and whether new techniques need to be developed. We

focused on the �rst of these issues. Section 3 describes our approach to measuring the e�ectiveness

of the category-partition method for testing C++ programs and our results. Section 4 discusses

conclusions and Section 5 considers future work.

1.1 Introduction to Object-Oriented Concepts

Object-oriented programs model objects in the real world to solve problems. An object-oriented

program consists of a number of objects, each exhibiting behavior, having a state and an identity

[Boo91]. These objects work together to perform the actions required of the program.

A class packages data with functions that may operate on that data. An object is a speci�c instance

of a class. For example, Cat is a class; Flu�y is an instance of the class, or, in other words, Flu�y

is an object that is a member of the Cat class. A method or member function of a class de�nes how

the objects belonging to that class will behave: Flu�y, Mittens and Snowball all eat, purr, sleep

and pounce in the same way. A client is an object that uses the resources of another by calling its

member functions. An object has state, which encompasses all of the properties of an object and all

of the values of those properties [Boo91]. For example, Flu�y weighs 1.2 pounds and has black fur;

Mittens weighs 2.5 pounds and is brown with white paws. Each object also has identity, meaning

that we can distinguish among the objects of a class. In our feline example, the names that we

have given our objects indicate their identity: Mittens is distinguishable from Snowball. The terms

function, member function (from C++) and method (from Smalltalk) are used interchangeably to

refer to \operations that a client may perform upon an object" [Boo91].

2

Two key concepts of object-oriented programming are encapsulation and inheritance. Encapsu-

lation, also known as data hiding, prevents clients from knowing about or depending on the im-

plementation of a class. For example, a Stack class is de�ned to have the methods push(item),

pop() and numElements(). This interface is the only way that the elements stored in the stack

may be accessed by a user of this class. An implication of this is that the Stack may be originally

implemented using an array and later changed to a linked list. Any code that uses the Stack cannot

depend on the implementation, and therefore, will not have to be modi�ed.

Encapsulation allows classes to be de�ned outside of the context of a particular program. The

Stack class described above provides the ability to store objects and retrieve them in a Last-In-

First-Out ordering. Any program requiring that capability is able to use the Stack class. In this

way, encapsulation promotes reuse of classes.

Inheritance allows common features of many classes to be de�ned in one class. Then other classes

(derived classes)may be de�ned by taking the features they need from the existing class (base class).

These features may be enhanced or restricted in the derived class. For example, an AirlineTicket

has certain properties: it may be purchased and refunded; it keeps track of the purchaser, the

ight number, the seat number, the date of the
ight and the cost. A SuperSaverTicket has these

methods and the same data, but modi�es them slightly. For example, the ticket must be purchased

more than 21 days before the
ight and cannot be refunded fewer than 14 days from the
ight.

The cost of the ticket is also signi�cantly lower. In this example, the AirlineTicket is the base class

and the SuperSaverTicket is a derived class. By allowing classes to share features, inheritance also

promotes software reuse.

The terms parent class and superclass are equivalent and refer to \the class from which another

inherits" [Boo91]. Base class is similar, referring to \the most generalized class in a class structure"

[Boo91]. The terms child class, derived class and subclass are also equivalent and refer to \a class

that inherits from one or more classes" [Boo91].

Parameterized classes, called generics in Ada and templates in C++, are another, somewhat less

common, feature of object-oriented programs. A parameterized class provides a capability that is

not dependent on a speci�c type. For example, a LinkedList could be written as a parameterized

class. At the time of instantiation of a LinkedList, inventory list, the type of objects that it stores,

InventoryItem, would be speci�ed:

LinkedList inventory_list<InventoryItem>;

3

Since the capability need only be written once but may be used with many di�erent types, param-

eterization is a third way that object-oriented programming promotes software reuse.

Di�erent languages may support di�erent features, but in order to be called object-oriented, a lan-

guage must meet minimum requirements. An object-oriented programming language must [CW85]:

1. support programming with abstract data types and information hiding

2. associate a type (class) with an object, and

3. support inheritance.

According to these requirements, Smalltalk, C++, and Ada9X are object-oriented languages. All

three support single inheritance; C++ and Ada9X also support multiple inheritance. Ada83 is

referred to as an object-based language since it does not support inheritance [CW85], but it does

support encapsulation and parameterization.

Object-oriented programs can be used to model real world objects, and thus are considered to be

easier for a programmer to understand and maintain [CM90, SR90]. In addition, encapsulation

should localize modi�cations, making maintenance easier [CM90].

Consider a common example, a graphics program. This simpli�ed system draws, moves and rotates

circles and squares. An object-oriented design for this system might de�ne an abstract base class,

Shape, that will de�ne the feature that are common to circles and squares (and any geometric

shapes to be added at a later date). It might also derive two classes, Circle and Square, from

Shape to de�ne those features they do not have in common. For example, they all have a reference

point; they all may be told to draw themselves, move themselves or rotate themselves. In some

cases, these functions may be done the same way, so these are de�ned in Shape. For example, all

shapes move by adding the given o�sets to their reference point and re-drawing themselves. In

other cases, these functions may be done di�erently, depending on the speci�c shape. These would

be de�ned in the derived class. For example, a Circle draws itself di�erently than a Square does.

Figure 1 shows an object-oriented design for this hierarchy, using Coad's notation [CE91]. In C++,

these classes might be implemented as shown in Figure 2. (draw square() and draw circle() are

functions provided by a separate graphics package.)

C++ has some specialized kinds of functions. Constructors are responsible for allocating any

memory needed and initializing all data members. The object should be in a valid state when the

4

Circle

radius

draw()

Square
length

draw()
rotate (deg)

x
y
angle
color

draw()
move (x, y)
rotate (deg)
setColor (color)

Shape

Figure 1: Object-oriented design of Shape hierarchy

constructor exits. A constructor is automatically called when an object is de�ned, when an object

is passed by value into a function or when a function returns an object. Also, a constructor is called

explicitly by the new operator.

Destructors are responsible for cleaning up (including de-allocating memory) when an object is

destroyed. An object is destroyed either implicitly or explicitly. If the object is a data member

of another class, it is automatically destroyed when the destructor of the object it is a part of

is executed. If the object is local to a function, it is automatically destroyed when control of the

program leaves the function. If the object was created dynamically, it is destroyed when the delete

operator is explicitly called with it as the parameter. A virtual destructor will automatically call

the destructors of all parent classes.

In C++, di�erent functions may be de�ned with the same name if they have di�erent functional

prototypes. This capability, called function overloading, allows functions that perform the same

conceptual task within a class to be de�ned with the same name. For example, a String class could

have two insert functions, one that takes an integer i and a character and the other that takes an

integer i and a String object. The �rst function inserts the character at location i and the second

inserts the string at location i. Operators such as +, =, ==, etc. may also be overloaded. This

capability should not be confused with polymorphism, which allows a subclass to rede�ne a function

inherited from its parent. From the graphics example above, the rotate function was de�ned in a

generic way in the base class, Shape, then rede�ned as necessary in derived classes, such as Square.

5

class Shape {

public;

Shape (int new_x, int new_y, Color clr)

: x(new_x), y(new_y), color(clr) { }

~ Shape ();

virtual void draw () { }

void move {int x_offset, int y_offset) { x += x_offset;

y += y_offset;

draw (); }

virtual void rotate (float degrees) { }

void setColor (Color new_color) { color = new_color; }

protected:

int x;

int y;

float angle;

Color color;

};

class Circle :: public Shape {

public:

Circle(int new_x, int new_y, float rad, Color clr)

: x(new_x), y(new_y), radius(rad), color(clr) { }

~ Circle ();

virtual void draw () { draw_circle(x, y, radius, color); }

protected:

float radius;

};

class Square :: public Shape {

public:

Square(int new_x, int new_y, float len, Color clr)

: x(new_x), y(new_y), length(len), color(clr) { }

~Square ();

virtual void draw () { draw_square(x, y, length, angle, color); }

virtual void rotate (float degrees) { angle += degrees;

draw(); }

protected:

float length;

};

Figure 2: C++ code for graphic example

6

Polymorphismmay be thought of as replacing a function, where overloading adds a function. Also,

polymorphism involves a parent and a child class, where overloading only involves one class.

The C++ compiler will generate certain functions if they are not de�ned explicitly. If no constructor

is de�ned, one will be de�ned that takes no parameters. A non-virtual destructor will be de�ned if

the class' parent de�nes a destructor. A copy constructor, an assignment operator and two address-

of operators will also be de�ned implicitly if they are not de�ned explicitly. If the class is at all

complex (for instance, if it dynamically allocates memory), these implicit functions will probably

not perform as desired.

1.2 Introduction to Testing Concepts

Software testing techniques are roughly divided into two categories: white box and black box

[Whi87]. White box techniques are also known as structural techniques, because they explicitly use

the structure of the program to generate test data. Black box techniques, which are also known as

functional testing techniques, generate test data with no knowledge of the code or the structure of

the software.

Examples of white box testing methods are path analysis, data
ow testing, domain testing, and

mutation testing. The path analysis strategies [How76] select a set of paths to execute during

testing, and test cases are derived to cause these paths to be executed. A set of coverage measures

have been de�ned to indicate the extent of coverage. For example, statement coverage indicates that

every statement has been executed at least once; branch coverage indicates that every conditional

has evaluated to true and false at least once. Data
ow testing [RW82, FW88] de�nes a new set

of criteria based on data
ow analysis [AC76], which determines the de�nition-use relationships of

variables in a program. Data
ow testing then uses this information to determine if a program has

satis�ed a certain testing criterion. For example, the all-de�nitions criterion requires that every

global de�nition is used. The all-uses criterion requires that a path from every global de�nition

to each of its uses is executed by the test set. The all-du-paths criterion is satis�ed if a path from

every de�nition of every variable to every use of the variable is executed. If there are multiple

paths from a de�nition to a use, they must all be executed, up to but not including loops. Domain

testing [WC80] involves partitioning the input domain into segments determined by the predicates

in the path condition. Then the values on and around the border are tested, since it has been

shown that these points are most sensitive to domain errors. Mutation testing [DLS78] produces

a large number of \mutant" programs, each of which has a small modi�cation from the original

7

program, as de�ned by one of a set of mutation operators. The test data is then run against these

mutant programs to see how well the test data performs at detecting the modi�cations. The test

set is su�cient when all mutant programs have been detected by the test set or determined to be

functionally equivalent to the original program.

Examples of black box testing methods are functional testing, speci�cation-based testing, and

category-partition testing. The goal of functional testing [How85] is to identify the requirements

or speci�cations of the functions to be tested and to derive the test data from these. Test cases

focus on boundary conditions, special cases, error handlers and cases that are potentially dangerous

[OB88]. Speci�cation-based tests [Whi87] are a specialized type of functional test, where test cases

are generated from formal or informal function speci�cations. The input domain of the function is

partitioned into equivalence classes, where one value in a class is essentially the same as any other

value in that class for testing purposes. Then at least one value is selected from each equivalence

class to generate the test data. A weakness of functional testing, and speci�cally, speci�cation-

based testing, is that there is no well-de�ned method of partitioning the input domain [OB88]. The

category-partition method was developed in response to this weakness. It de�nes a systematic way

to develop test speci�cations and test cases. For this project, the category-partition method was

used to generate the test cases, so a more detailed description of this method follows.

1.3 The Category-Partition Method

In general terms, the category-partition method [OB88] identi�es those elements that in
uence a

function and generates test cases by methodically varying these elements over all values of interest.

The steps of this method are summarized below.

1. Determine the functional units to be tested and identify the parameters and environmental

conditions that a�ect each unit. Then determine the categories, which are the major charac-

teristics of the input domain of the function under test. For example, a copy �le function may

take a �le name and a directory name as its parameters and the environment could represent

the current state of the �le system. Categories of this function could include the validity of

the �le name and the validity of the directory name. Categories may include preconditions if

formal methods were used to write the speci�cations. In the copy �le example, one category

might re
ect a precondition regarding the existence of the given �le in the speci�ed directory.

8

2. Partition the categories into choices, where each choice represents an equivalence class - a

set of values that are considered to be the same for testing purposes. By de�nition, choices

in each category must be disjoint, and together, the choices in each category must cover the

input domain [AO94]. The choices for the File Existence Precondition might be:

(a) No �le or directory with the given �le name exists in the speci�ed directory.

(b) A directory with the given �le name exists in the speci�ed directory.

(c) A �le with the given �le name already exists in the speci�ed directory.

The structure of the code, if known, may in
uence the selection of categories.

3. Determine constraints among the choices, including restrictions on particular choices or in

cases where a combination of choices might be impossible or undesirable.

4. Write the formal test speci�cation for this function, indicating the parameters, environmental

conditions, categories, the choices for each category, and the constraints on the choices. From

this test speci�cation, an automated tool may be used to generate test frames, which consist

of a set of choices from the speci�cation.

5. Evaluate test frames and determine if any changes are required. For example, look for test

situations that need to be added or constraints that should be placed on a choice.

6. Convert test frames to test cases by selecting values to satisfy all the choices. Finally, write

test scripts for the tet cases. Test scripts set up appropriate environmental conditions and

parameters, run the test case, verify the result and clean up as needed.

1.4 A Re�nement of the Category-Partition Method

The category-partition work has left a considerable amount of detail in steps 4-6, generating test

scripts from test speci�cations, to the discretion of the tester. In particular, which combinations

of categories to use is an important problem whose solution a�ects the strength and e�ciency of

testing. One problem solved by this re�nement is that some of the combinations of categories

are impossible, because they have con
icting requirements. Thus these combinations must be

recognized and avoided. Another problem resolved is that the number of combinations of categories

can be quite large and repetitious.

9

A re�nement of the category-partition method [AO94] isolates those tasks of producing a test

speci�cation that are mechanical. The following seven steps may be performed to generate test

scripts from test speci�cations.

1. Create an N-dimensional matrix, where N is the number of categories, that will represent

all possible combinations of choices of categories. Entries in the matrix will specify a corre-

sponding test frame.

2. Identify a base test frame by designating one default (normal) choice for each category.

3. Choose other combinations as test frames by combining each choice in a category with the

base choice for all other relevant categories. This causes each non-base choice to be used at

least once, and the base choices to be used several times. More combinations may be chosen

by the test engineer as desired.

4. Identify infeasible combinations and determine a feasible combination by varying other choices

until a possible combination is found.

5. Re�ne test frames into test cases by selecting a value for each choice.

6. Write operation commands, setup commands, verify commands and cleanup commands.

7. Create test scripts by combining the appropriate setup script, the operation command, verify

command and cleanup command.

As an example, suppose the following was the test speci�cation for a function pattern match that

takes two parameters: a pattern of up to 5 characters to search for and an expression of unlimited

length in which to search for it.

Functional Unit: pattern match

Inputs: p? : String

e? : String

Env. Variables: None

Categories: Type of p?:

Choice 1: len(p?) >= 1 ^ len(p?) < 5

Choice 2: len(p?) = 0

Choice 3: len(p?) = 5

10

Choice 4: len(p?) > 5

Type of e?:

Choice 1: e? contains p?

Choice 2: e? does not contain p? ^ len(e?) = 0

Choice 3: e? does not contain p? ^ len(e?) > 0

Step 1: The combination matrix for this example will be a 2-dimensional matrix (because there

are 2 categories) with dimensions 4x3 (because there are 4 choices for one category and 3 for the

other). This is shown in Figure 3.

E2

Type of p?

P1

P2

P3

P4

Type of e?
E1 E3

Figure 3: Example of a combination matrix

Step 2: The normal choice for each category will be the �rst choice. The base test frame will be

the combination of (P1, E1).

Step 3: The other combinations chosen are shown in Figure 4. The choice of (P2, E2) was added

at the tester's discretion.

Step 4: The combination (P2, E1) is not a feasible combination, since an expression cannot contain

an empty pattern. E1 is the normal choice, so this is the choice varied. (P2,E3) is not already

selected and is feasible, so this combination will be substituted.

Step 5: Test cases are chosen for the test frames:

11

E2

Type of p?

P1

P2

P3

P4

Type of e?
E1 E3

1 2 3

4

5

6

7

Figure 4: Example of choosing combinations

Test case 1: p? = \pat"; e? = \pattern"

Test case 2: p? = \pat"; e? = \"

Test case 3: p? = \pat"; e? = \category"

Test case 4: p? = \"; e? = \pattern"

Test case 5: p? = \other"; e? = \another test"

Test case 6: p? = \testing"; e? = \testing is fun"

Test case 7: p? = \"; e? = \"

Steps 6 and 7, writing commands and setting up test scripts, are not speci�c to category-partition,

so they will not be shown here.

There are several bene�ts of this re�nement. It frees the test engineer for more intellectually

demanding tasks. It also provides a method of resolving infeasible tests caused by con
icting

choices. Using formal speci�cations reduces the amount of e�ort required, since less e�ort is required

to produce test speci�cations from formal speci�cations. A favorable side e�ect is that sometimes

anomalies may be uncovered in the functional speci�cations.

12

2 Previous Work in Object-Oriented Software Testing

There are two general questions that are the focus of current object-oriented software testing

research: How can we use the properties of object-oriented software to reduce the e�ort required

to test object-oriented programs? and How can we e�ectively test object-oriented programs? The

�rst question follows the intuitive notion that inheritance, encapsulation and parameterized classes

should reduce the e�ort involved in testing software. The second question involves two issues:

whether traditional techniques are e�ective for object-oriented software and whether new techniques

need to be developed. In this section, seven papers are brie
y presented and the positions expressed

in each on the questions above are described.

2.1 Fiedler

Fiedler [Fie89] describes a testing methodology that was applied to a small set of generic classes.

First, speci�cation-based tests were performed by the development team. Then path analysis

testing was done by an independent team to satisfy the all-branches criterion, and extra test cases

were added based on testers' experience. These extra tests exercised object-oriented features:

constructors, destructors, initialization of data members, casting and combinations of member

functions. The methodologies of equivalence partitioning and boundary value analysis were also

used in the generation of test cases. Defects were found by the white box technique that had not

been uncovered by the black box technique.

Fiedler states that e�ort can be saved by using the inheritance property: \Provided that the

functionality of the base class has been proven, any member function of the target class that

leverages directly from a base class member function will require minimal testing," which is later

described as \a basic functionality test" [Fie89]. There is no evidence given in the paper to support

this claim.

Although the results from Fiedler's study indicate that speci�cation-based testing is not e�ective

for testing object-oriented software, it should be noted that the development team itself performed

the speci�cation-based tests. Software developers are notoriously bad at �nding defects in software

they have developed [Bei90].

13

2.2 Perry and Kaiser

Perry and Kaiser [PK90] disagree with the intuitive notion that classes may be reused without

re-testing in the new, derived context. They feel that most inherited code must be re-tested. This

theory is proven by applying Weyuker's test adequacy axioms [Wey88] to object-oriented features.

Perry and Kaiser believe that object-oriented techniques promote reuse, but do not always aid the

testing phase. They do not discuss the e�ectiveness of traditional testing techniques on object-

oriented programs.

2.3 Cheatham and Mellinger

Cheatham and Mellinger [CM90] address the impact of object-oriented properties on unit- and

system-level testing of object-oriented software. They claim that inheritance reduces the amount

of testing required during unit-testing. If the member function being tested is derived unaltered,

little additional testing is needed - only the interface needs to be re-tested. If the member function

modi�es the function from which it is derived, then the parent's version may be used for black box

testing. If the member function completely replaces the function from which it is derived or is not

related to existing functions, then it must be re-tested as a new member. No evidence is given to

support this claim.

While they do not address speci�c testing methodologies, Cheatham and Mellinger state that white

box techniques are appropriate for member functions, and black box testing may be done against

the requirements and interface descriptions for each class. It is not clear from these descriptions to

what extent testing is necessary nor which testing methods are e�ective.

2.4 Smith and Robson

Smith and Robson [SR90] discuss the problems of using current testing techniques for object-

oriented programming systems. They do not attempt to de�ne solutions, but emphasize that new

techniques must be developed and suggest areas where further research is needed.

One reason that testing object-oriented software is more di�cult is that the elements cannot be

dynamically tested directly. A class does not actually exist - an instance of the class, an object,

exists and is testable. Parameterized classes also cannot be tested directly because a parameter

14

must be replaced by an actual type. A third example is abstract base classes, which are designed

to allow subclasses to inherit the same features. Because these features are left to the subclasses

to de�ne, they are not implemented in the abstract base class. These types of classes cannot be

instantiated (because they are not fully de�ned), and may only be tested indirectly.

The manner in which classes evolve also causes testing problems. A change to a parent class can

potentially a�ect all descendants. These changes may require signi�cant revisions to tests and

standard (traditional) regression testing techniques may not apply.

Traditional methods may not be e�ective with object-oriented programs. For example, the data

ow analysis approach is questionable for object-oriented software since the
ow through object-

oriented code is much more complex than traditional programs.

Smith and Robson divide inheritance into four categories: simple, simple non-strict, multiple and

repeated. The issue of minimizing e�ort in testing is not discussed directly, but they do indicate

that when testing classes of the �rst category, the test cases of the parent class may be reused.

2.5 Doong and Frankl

Doong and Frankl [DF91] describe a new approach to testing object-oriented programs. This new

method, which is based on the theory of algebraic speci�cations, focuses on the state into which

a message or sequence of messages puts an object. Correctness is tested by determining if two

sequences put an object into the same state, i.e., if it is impossible to distinguish between the

two results by applying methods of the class (or related classes). Their research also focuses on

automation of the testing process: test and test driver generation, test execution and test results

hecking.

Case studies done using this technique show that the property of inheritance can reduce e�ort in

testing. In most cases, the derived class should be tested against its own speci�cation and the

speci�cation of the parent class for methods that have been modi�ed by the derived class. There

are exceptions to this, when it is not necessary for a subclass to conform to its parent's speci�cation.

When testing a subclass against its own speci�cation, it is only necessary to test methods that are

new or that interact with methods from the parent class.

Since the goal of their new technique is to reduce the e�ort in testing, speci�c testing methods

and their e�ectiveness with object-oriented software are not discussed in their paper. Speci�cation-

15

based tests were used and it was noted that program-based testing may be useful.

2.6 Harrold and McGregor

Harrold and McGregor [HM92] have developed an incremental technique for testing that reduces

that amount of testing needed by exploiting inheritance relationships among classes. The axioms

from Perry and Kaiser [PK90] are used to determine which functions need to be re-tested in the

context of the subclass and which may inherit the test results from the parent class. Multiple

inheritance is not discussed in the method.

Each class has a testing history associated with it. Base classes have a test suite designed that tests

(using both speci�cation-based and program-based tests) each member function and the interactions

among the member functions. Derived classes inherit the base class' test history, then the test

history is updated to re
ect di�erences between the base and derived classes. In this step, the

derived class' member functions are identi�ed as �tting into one of six categories: new, inherited,

rede�ned, virtual-new, virtual-inherited and virtual-rede�ned. Based upon the category, di�erent

levels of re-testing must be done. Experimental results show that sometimes signi�cant savings in

testing e�ort may be achieved.

The e�ectiveness of traditional testing techniques was not discussed. Although the incremental

technique is independent of the testing methodology used, it was noted that data
ow testing was

used in their experiments.

2.7 Turner and Robson

Turner and Robson [TR93] introduce state-based testing, outline a process for testing object-

oriented programs and describe a set of tools developed for assisting with state-based testing. The

goal of state-based testing is to detect when a function changes the state of the object to an

unde�ned or inappropriate state, which includes not changing the state when it is expected. The

state of an object is the combination of the values of all data members at any given time.

Turner and Robson claim that speci�cation-based tests and structural tests, while necessary, are not

su�cient for testing object-oriented programs. Unfortunately, there is no evidence given to support

this. Speci�cation-based tests validate the external view of the clas. Structural tests are required

to ensure e�ective coverage. State-based tests emphasize that the methods correctly modify the

16

class' data members. State-based tests are most e�ective with classes that have a high degree of

interaction with their data members. It was noted that classes developed for the set of tools were

undergoing testing using these three techniques, but the results were not available in their paper.

2.8 Summary

For the �rst question that we posed in Section 2, How can we use the properties of object-oriented

software to reduce the e�ort required to test object-oriented programs?, there is agreement that

e�ort in testing may be reduced by taking advantage of inheritance relationships where member

functions are inherited unchanged from the base class. The extent of e�ort that may be saved and

the best technique to use are not yet clear.

The second question we posed in Section 2 was How can we e�ectively test object-oriented programs?

We focused on the �rst issue of this question: whether traditional techniques are e�ective for

object-oriented software. None of these seven papers directly addresses this issue. Three papers

[PK90, DF91, HM92] did not approach the issue. Cheatham and Mellinger [CM90] claim that

traditional white box and black box techniques are e�ective, although they have no evidence to

support this. Of the other three [Fie89, SR90, TR93] who do not believe traditional techniques

(alone) to be e�ective, only Fiedler has any evidence, and that evidence is inconclusive. It should

be noted that Turner and Robson do not reject traditional techniques for object-oriented software;

they just do not believe that they are thorough enough. The technique they are developing is for

use in addition to traditional techniques.

The second issue was whether new techniques need to be developed to e�ectively test object-

oriented software. Although 3 papers describe new techniques being developed, 2 of these are

aimed at reducing the e�ort involved in testing [DF91, HM92]. Only Turner and Robson [TR93]

are developing a technique to improve the e�ectiveness of testing object-oriented software. Again,

they showed no evidence that adding their technique improves testing results.

3 Do Traditional Testing Techniques E�ectively Test Object-

Oriented Software?

White box and black box techniques are quite di�erent. White box techniques use the source code

for generating test cases. Black box techniques generate test cases based on information external to

17

the source code, for example, requirements and function speci�ations. Because of these di�erences,

the e�ectiveness of white box and black box techniques need to be considered separately. We chose

to focus on black box techniques, speci�cally the category-partition method, because we felt this

technique was appropriate for object-oriented software. C++ was chosen as the programming lan-

guage because it is becoming one of the most widely used object-oriented programming languages.

Since category-partition is a speci�cation-based technique, the programming language used should

not be signi�cant.

3.1 The Approach

To measure the e�ectiveness of the category-partition method in detecting faults inherent to object-

oriented C++ programs, twenty-three types of faults were identi�ed and two object-oriented pro-

grams were chosen to insert faults of these types into. Test cases were generated using the category-

partition method with the re�nements described in Section 1.4. The faults were inserted into the

two programs, and they were then run with the test cases. If the program crashed or if the out-

put was di�erent from the output of the original program, the fault was considered to have been

detected.

3.1.1 Types of Faults

Two sources were used to identify types of faults that are unique to object-oriented C++ programs:

a book that describes common mistakes that are made with C++ programs [Mey92] and practical

experience from 6 years of developing software using C++. Twenty-three types of faults were

identi�ed: 20 from the book of mistakes, 3 from experience. The fault types considered were

divided into �ve categories: memory management, implicit functions, initialization, inheritance

and encapsulation

A program exhibits memory management faults when it improperly allocates or releases memory

when creating or destroying objects. There are two typical problems that occur: dangling references

and memory leaks. A dangling reference is created when memory storage is freed while there are

still active pointers or references to it [WSHF81]. A memory leak occurs when there exists memory

storage that is allocated but inaccessible. In some programming languages, such as PASCAL, this

is referred to as garbage, and garbage collection may be performed by the programming system

to reclaim this memory space [WSHF81]. The detection of garbage requires signi�cant execution

18

time, however, and is not done in C++.

Implicit functions are those functions that C++ compilers will generate automatically if they are

not written explicitly: a copy constructor, an assignment operator, two address-of operators, a

default constructor and a destructor. Initialization faults occur after an object has been created but

before the constructor runs. The initialization list follows the single colon between the constructor's

function prototype and the code (see the Shape constructor in Figure 2). Inheritance faults are

related to improper design or implementation of an inheritance hierarchy. Encapsulation faults

violate the principle of encapsulation, or information hiding.

For our purposes, a fault is de�ned to be a mistake that will result in a failure on certain inputs.

A fault may consist of multiple pieces, or potential faults. A potential fault is de�ned to be a

characteristic of the program that will result in a fault only if certain other characteristics also

appear. For example, a pointer being assigned a value of NULL is a potential fault; it is part of a

fault only if the pointer may be dereferenced later during execution. For example, a class String

contains a potential fault: one function returns a pointer to internal data. A program using this

class only exhibits the fault if the other two pieces of the fault also exist: the object's internal data

is changed by using the pointer and the String object is used again. We were careful as we were

inserting faults into the programs to include all the pieces of the faults.

The potential fault types are listed below. First, the potential fault type is brie
y explained, then

any other characteristics required to create a complete fault are described.

Memory management:

1. Use new and free with a built-in type. (mm-nf-builtin)

2. Use malloc and delete with a built-in type. (mm-md-builtin)

3. Use new and free with an object. (mm-nf-object)

Note: The combination of malloc and delete with an object is not feasible, since there is

no way to initialize the objects after the malloc.

These three types of potential faults mix the use of malloc and free with new and delete.

The Annotated Reference Manual [ES90], which de�nes the C++ language, states that these

functions must never be mixed, even for built-in types. The results of doing so are unde�ned.

Malloc and free have a di�erent purpose from new and delete, and they are not inter-

changeable. Malloc allocates a speci�ed amount of space, but does not run constructors as

19

new does. Free deallocates the speci�ed space, but does not run destructors as delete does.

Characteristics:

Fault Type 1:

(a) A variable of a built-in type is created using new.

(b) The variable is destroyed using free.

Fault Type 2:

(a) A variable of a built-in type is created using malloc.

(b) The variable is destroyed using delete.

Fault Type 3:

(a) An object is created using new.

(b) The object has dynamically allocated memory (that is deleted in the destructor). This

will cause a memory leak.

(c) The object is destroyed using free.

4. Allocate a single object using new, destroy it using delete[]. (mm-del-arr)

This type of potential fault uses inconsistent forms of the new and delete functions. New

allocates space for the speci�ed number of objects, a single object or an array of objects,

and runs constructors for each. Delete will run destructors and deallocate the space, but it

must be told whether the pointer it is given refers to a single object or an array. Adding the

notation \[]" tells the compiler that the pointer refers to an array of objects. If the pointer

refers to a single object, delete should be called; if it refers to an array of objects, delete[]

should be called.

This type of potential fault allocates a single object, but then attempts to delete an array

of objects. The opposite, creating an array of objects and using delete, is also a potential

fault, since deleting a single object when an array was allocated creates a memory leak. This

second type of potential fault was not used in this project because an array of objects could

not be created naturally.

Characteristics:

(a) A single object is allocated using new.

(b) The object is deleted using delete [].

20

5. Neglect to delete a pointer data member in a destructor. (mm-no-del)

If a data member of an object points to memory it allocated dynamically, not deleting that

memory in the destructor will cause a memory leak.

Characteristics:

(a) The object dynamically allocates memory.

(b) A pointer to this memory is not deleted in the destructor.

6. Return a reference to a local variable. (mm-ret-local-ref)

The gnu compiler gives a warning about this potential fault type. The warning is quite

speci�c, but a new user might not understand its signi�cance. When the function returns,

the local variable is destroyed, and the reference that is returned points to a non-existent

object. A failure may result if the reference is used.

Characteristics:

(a) A function that returns a reference is de�ned.

(b) Within that function, a local object is de�ned.

(c) From that function, a reference to this local object is returned.

(d) The reference that was returned is used.

7. Return a reference to an object created by new in that function. (mm-ret-new-

ref)

The object created by new, as any dynamically allocated memory, must be deleted somewhere

in the program or a memory leak will result. Clearly, this object is not intended to be deleted

inside the same function it was created in, since a reference to the object is returned. This

means that the caller of the function is expected to delete the object. The caller must take

the address of the result of the function in order to delete the object. This is not likely to

happen in every case, and the result is a memory leak.

A second scenario is even worse: this function call, which may be an operator, might be

embedded in other function calls. This means that no reference to the object is saved, so it

cannot be deleted. This will always be a memory leak.

Characteristics:

(a) A function that returns a reference is de�ned.

(b) Within that function, an object is created using new.

21

(c) From that function, a reference to the new object is returned.

(d) The address of the reference returned is not deleted.

Or,

(a) This function or operator call is embedded in another function call.

Implicit functions:

8. For a class that dynamically allocates memory, neglect to create a copy construc-

tor. (impl-no-cc)

9. For a class that dynamically allocates memory, neglect to create an assignment

operator. (impl-no-op=)

Neglecting to de�ne a copy constructor or an assignment operator is probably incorrect if the

class dynamically allocates memory [Mey92]. If a copy constructor (or assignment operator)

is not de�ned, the compiler will generate one that will copy (or assign) each data member

using that member's copy constructor (or assignment operator). Built-in types are copied

(or assigned) bit-wise. This means that if an object with no copy constructor (or assignment

operator) has a pointer to dynamically allocated memory, and this object is copied (or as-

signed) to another object, these two objects will refer to the same memory space. Since the

destructor for the class should delete the memory allocated by the object (see #5), when

either of these objects is destroyed, this memory should be deleted. The remaining object is

then left with a dangling pointer, which references freed memory. A failure may result if this

pointer is used.

Characteristics:

(a) The class allocates memory dynamically.

(b) A copy constructor/assignment operator is not de�ned.

(c) The object copied/assigned from deletes or modi�es its dynamically allocated memory.

(d) The object copied/assigned to uses that memory again.

Or,

(e) The object copied/assigned to deletes or modi�es its dynamically allocated memory.

(f) The object copied/assigned from uses that memory again.

10. Make a base class destructor non-virtual. (impl-nonvirt-destr)

22

If the base class destructor is non-virtual, then only the base class' destructor will be invoked

when an object of the derived class is destroyed. Any cleaning up performed by the derived

class' destructor will not be done because the destructor will never be called.

Characteristics:

(a) The base class destructor is de�ned to be non-virtual.

(b) An object that is a member of the derived class is created and dynamically allocates

memory.

11. Neglect an assignment to a data member within an assignment operator. (impl-

msng=-op=)

This type of potential fault may result in a failure if the assignment operator is used and the

data member that did not receive a value is also used.

Characteristics:

(a) An assignment to a data member is neglected.

(b) The assignment operator must be called.

(c) The neglected data member must be used after the assignment.

12. Duplicate the name of a data member. (impl-dup-name)

If the name of a data member of an object is duplicated in a function, the data member will

be hidden and cannot be referenced in that function. Thus, when the object by that name is

given a value, the local object will be modi�ed, rather than the object's data member. This

may result in a failure if the object is used later.

Characteristics:

(a) A local object is de�ned with the same name and class as a data member.

(b) An operation is performed on the local object (that is intended for data member).

(c) The data member is used later.

Initialization:

13. If the initial value of a data member depends on the value of another data mem-

ber, declare the dependent data member �rst. (init-dep-member)

Data members are created and initialized in the order of their declaration in the class so that

the destructor can be assured to delete the data members in the opposite order from which

23

they were created. If a data member is dependent on the value of another data member, but

the dependent data member is declared �rst in the header �le, then it will not be initialized

with the proper value [Mey92]. A failure may result if the dependent data member is used

later, before its value is set.

Characteristics:

(a) The initial value of one data member depends upon the value of another data member.

(b) The dependent data member is declared �rst in the header �le.

(c) The dependent data member is used later.

Inheritance:

14. Rede�ne an inherited non-virtual member function. (inherit-redef-nvmf)

Declaring a member function to be virtual tells the compiler that this object should always call

its own version of that function. If an inherited non-virtual function is rede�ned, the function

that will actually be called depends on how the object is referenced, because non-virtual

functions are statically bound [Mey92]. For example, suppose the rotate(degrees) function

for the Shape class described in Section 1.1 was not de�ned to be virtual, and that the Square

class rede�ned it anyway. If a Square object is referred to by a pointer to a Square object, as

in the example shown in Figure 5 below, the Square version of the rotate(degrees) function

will be called. However, if the same object is referred to by a pointer to a Shape object, the

Shape version will be called. The same result occurs with a reference as with a pointer.

Square square (1, 1, 5, 5, blue);

Square* ptr1 = square;

ptr1->rotate(degrees); // Calls Square::rotate(degree)

Shape* ptr2 = square;

ptr2->rotate(degrees); // Calls Shape::rotate(degrees)

Figure 5: Behavior of a rede�ned non-virtual function

Characteristics:

(a) An inherited, non-virtual function is rede�ned.

24

(b) A pointer or reference is used to refer to a derived object as its parent's class.

(c) The function is called via this pointer or reference.

15. Rede�ne an inherited default parameter. (inherit-redef-param)

Functions may be dynamically bound by being declared virtual, but default parameter values

are always statically bound [Mey92]. These two rules are inconsistent, but were de�ned this

way for e�ciency purposes: the overhead of virtual functions was deemed acceptable; the

overhead of virtual default parameter values was not.

Suppose the Shape class from Section 1.1 de�nes a function setColor with a parameter

color, and the default parameter value is red. Then suppose Square rede�nes setColor,

giving it the default parameter value of green. When the setColor function is called for a

Square object, the value of the parameter will be red and the rede�ned value is ignored.

Characteristics:

(a) A default parameter is rede�ned for a rede�ned virtual function.

(b) A pointer or reference is used to refer to an object of a derived class as its parent's class.

(c) The function is called using the pointer or reference.

16. Cast down the inheritance hierarhy. (inherit-cast-down)

Given a pointer to a base class object, casting down means assuming that the object is a

member of one of the derived classes and forcing (via an explicit cast) the pointer to be

treated as a pointer to an object of that derived class. A failure may result if the object

pointed to is not actually a member of the class it is cast to, and a function of that class is

called for the object.

Characteristics:

(a) A pointer or reference is used to refer to its parent's class.

(b) The pointer or reference is cast to be one of its sibling classes.

(c) A function of the sibling's class (one that does not exist for this class) is called.

17. Pass and return objects of a derived class by value. (inherit-slicing)

This type of potential fault, also called the \slicing problem," occurs when an object of a

derived class is passed by value into a function expecting an object of the parent class. The

new object created as the local object will be a member of the parent class, and information

25

pertaining to the derived class does not exist in this object. A failure may occur if a function

de�ned by the derived class is called or if information speci�c to the derived class is required.

This slicing problem also occurs when a function expects to return an object of a parent class,

but an object of a derived class is actually returned. Again, the object returned is an object

of the parent class, and any information pertaining to the derived class does not exist in this

object.

Characteristics:

(a) An object of a derived class is passed by value into a function that is expecting an object

of its parent's class.

(b) A function of the derived class is called for the object that is local to the function.

Or,

(a) An object of a derived class is returned from a function de�ned to return an object of

its parent's class.

(b) A function of the derived class is called on the returned object.

18. Duplicate in a derived class the name of a data member used in a parent class.

(inherit-member-name)

Suppose two classes are de�ned, one derived from the other. If the derived class duplicates

the name of a data member used by any parent class, the results will probably be incorrect.

When an object is constructed, typically a constructor is run for each of its parent classes, and

their parent classes, and so on, up the hierarchy to the base class(es). Since the constructor

for the parent class is run before the constructor for the derived class, the constructors run

in order from the base class to the most derived class. At the time that any constructor is

running, the object does not \know" what type of object it \will be". At that moment, the

object is a member of the same class as the constructor that is running.

Thus, for this type of potential fault, when the object's parent class constructor is running, the

constructor initializes that class' data member, for example, ParentClass::my name. When

the object is fully created, the data member used will be the instance of the data member

de�ned by the derived class, for example, ChildClass::my name. A failure may result if the

data member ChildClass::my name is used before it is initialized.

Characteristics:

26

(a) In a derived class, the name of a data member used in a parent class is duplicated.

(b) The data member of the derived class is used before its value is set via a function of the

derived class.

19. Invoke a virtual function from the constructor of a parent class that will be called

by a derived class. (inherit-virt-func)

This type of potential fault is very similar to #18. As described above, when an object is

created, a constructor may be run for each of its parents, and each of their parents, all the

way up the hierarchy. Since the constructor for the parent class is run before the constructor

for the derived class, the constructors are run in order from the base class to the most derived

class. At the time that any constructor is running, the object does not \know" what type

of object it \will be". At that moment, the object is a member of the same class as the

constructor that is running.

Suppose a virtual function is called inside the constructor of BaseClass, the class from which

ChildClass is derived. When a ChildClass object is constructed, the constructor of BaseClass

will be run �rst. When the virtual function is called, the BaseClass version of this function

will be called, not the ChildClass version.

Characteristics:

(a) A virtual function is derived in the parent class.

(b) This function is called from a parent class constructor.

(c) This function is rede�ned in the derived class.

(d) That parent class constructor is called from the derived class constructor.

Encapsulation:

20. Return a reference to a protected or private data member from a const member

function. (encap-ret-ref-const)

21. Return a pointer to a protected or private data member from a const member

function. (encap-ret-ptr-const)

22. Return a reference to a protected data member from a public function. (encap-

ret-ref-prot)

27

23. Return a pointer to a protected data member from a public function. (encap-

ret-ptr-prot)

All four of these types of potential faults return a handle (a pointer or reference) to internal

data, which allows the caller to modify the state of the object directly. This is particularly

serious for potential fault types 20 and 21, which are const functions. Const functions should

ensure that the state of the object will not change.

Characteristics:

(a) A reference/pointer to a data member is returned from a (const for Fault types 20 and

21) member function.

(b) The value returned is modi�ed.

(c) The object is used again such that the data member changed is also used.

3.1.2 Empirical Procedure

After the 23 potential fault types were identi�ed, two programs were chosen to insert the faults into.

The �rst was the MiStix �le system [AO94], which was used as an example in the paper discussing

the re�nement of the category-partition method [AO94]. The original version was written in C, so

it was rewritten as an object-oriented system using six small classes, including one derived class.

The second program exercises a small inheritance hierarchy of string validation classes. Figure 6

shows these classes. See Appendix A for the source code for the MiStix �le system and Appendix

B for the source code for the validation program.

We were concerned about possible bias since one person would generate the test cases and insert

the faults. The concern was that knowledge of one task might in
uence choices made when doing

the other task. We decided that knowledge of test cases would be less likely to impact the insertion

of faults than vice versa, because fault insertion is based on following a set of clearly de�ned rules.

For this reason, we generated the test cases before inserting faults. (For the validation program, the

categories and choices were complete, but the test frames and test cases were not �nished before

fault insertion began. Generating test frames and test case values is a purely mechanical procedure

that requires no decisions on the part of the tester, so this step could not result in a bias.)

To generate the test cases, previously developed formal speci�cations for the MiStix �le system

[AO94] were used with minor modi�cations for input validation. Then the steps of the category-

28

String

Vec

FileSysUI

FileSystem

DirObj

Directory

Mistix file system

ValidData

ValidDate

String Validation

Figure 6: Class Relationships of Test Programs

partition method described in Section 1.4 were followed. 106 test cases were generated for the

MiStix program. 31 test cases were generated for the validation program, also using the re�nement

to the category-partition method. The test speci�cations and test cases for MiStix are shown in

Appendix C, and the test speci�cations and test cases for the string validation program are shown

in Appendix D.

Faults were inserted by determining the characteristics necessary to complete the potential fault.

These characteristics are shown for each type of fault in Section 3.1.1. Without all the character-

istics of a fault, the program may be equivalent to the original. Knowledge of the program was

used to determine these characteristics. Nineteen of the twenty-three fault types were inserted

into the MiStix program, creating sixty faulty programs. Appendix E contains the source code

di�erences between the original MiStix program and each fault-inserted program. These programs

were compiled with the g++ version 2.6.0 compiler on a Sun workstation running SunOS 4.1.3.

The four remaining fault types, all inheritance faults, could not be inserted into MiStix, so they were

inserted into the string validation program, creating �fteen faulty programs. These programs were

compiled with the SunC++ 2.1 compiler on a Sun running SunOS 4.1.3. The source code di�erences

between the original validation program and each fault-inserted program are in Appendix F.

Table 1 shows which program each type of fault was inserted into and how many faulty programs

were created. Section 3.1.4 contains more information about how the faults were inserted.

29

Fault Type Fault Type Number of Program
Number Identi�er Faults

1 mm-nf-builtin 4 MiStix
2 mm-md-builtin 5 MiStix
3 mm-nf-object 2 MiStix
4 mm-del-arr 2 MiStix
5 mm-no-del 4 MiStix
6 mm-ret-local-ref 2 MiStix
7 mm-ret-new-ref 2 MiStix
8 impl-no-cc 2 MiStix
9 impl-no-op= 1 MiStix
10 impl-nonvirt-destr 1 MiStix
11 impl-msng=-op= 6 MiStix
12 impl-dup-name 5 MiStix
13 init-dep-member 5 MiStix
14 inherit-redef-nvmf 1 MiStix
15 inherit-redef-param 2 Validation
16 inherit-cast-down 2 Validation
17 inherit-slicing 7 Validation
18 inherit-member-name 2 MiStix
19 inherit-virt-func 4 Validation
20 encap-ret-ref-const 4 MiStix
21 encap-ret-ptr-const 3 MiStix
22 encap-ret-ref-prot 5 MiStix
23 encap-ret-ptr-prot 4 MiStix

Total 75

Table 1: Number of Faults Inserted For Each Fault Type and Program

Both sets of programs were compiled and the output from the compiler was examined. Then the

programs were run with their respective test cases. If the faulty program crashed while running

the test cases, the fault was considered to have been detected. The output of each program

that did not crash was compared to the output of the original programs using the UNIX utility

diff. (The output of the original program had been validated by hand before fault insertion

began.) A di�erence in the outputs was considered a failure, and the fault was considered to have

been detected. This is valid for these programs, since they have a single correct answer, i.e. no

concurrency or output tolerance interval.

30

3.1.3 The Results

As shown in Table 2, of the seventy-�ve fault-inserted programs, �fty-�ve were detected using the

category-partition method. This means that these programs either produced a di�erence in the

output or crashed while running the test scripts. Twenty faults were not detected by category-

partition.

One of these undetected faults could have been detected by category-partition, but was not due to

an artifact of the conduct of the experiment, speci�cally, because of the way the test scripts were

written. At the beginning of each test script, the INIT command was given. In most cases, this

command is redundant, since a correctly operating program will put the �le system into a valid,

empty state when it begins running. In the case of this undetected fault, however, the �le system

was not initially put into a valid state. But because the INIT command was then run, the �le

system was put into a valid state, so none of the test cases detected the fault. Beginning each

script with INIT was an artifact of the way the test scripts were created, and not related to the

category-partition method of generating the test cases. For this reason, this fault could have been

detected by category-partition.

As shown in Tables 3 and 4, the other nineteen undetected faults were all memory management

faults. These types of faults are typically memory leaks, which do not a�ect the output of a

program. We would not expect to detect memory leaks through a method of testing that analyzes

output; a method that analyzes the allocation and deallocation of memory is required.

Number of Faults Percent of Faults

Detected 55 73.3%
Could Have 1 1.3%
Not Detected 19 25.3%

Table 2: Results by Number and Percentage

Category Detected Could Have Not Detected

Memory Management 2 0 19
Implicit Functions 15 0 0
Initialization 4 1 0
Inheritance 18 0 0
Encapsulation 16 0 0

Totals 55 1 19

Table 3: Results by Category

31

Fault Type Fault Type Detected Could Have Not Detected
Number Number

1 mm-nf-builtin 0 0 4
2 mm-md-builtin 0 0 5
3 mm-nf-object 0 0 2
4 mm-del-arr 2 0 0
5 mm-no-del 0 0 4
6 mm-ret-local-ref 0 0 2
7 mm-ret-new-ref 0 0 2
8 impl-no-cc 2 0 0
9 impl-no-op= 1 0 0
10 impl-nonvirt-destr 1 0 0
11 impl-msng=-op= 6 0 0
12 impl-dup-name 5 0 0
13 init-dep-member 4 1 0
14 inherit-redef-nvmf 1 0 0
15 inherit-redef-param 2 0 0
16 inherit-cast-down 2 0 0
17 inherit-slicing 7 0 0
18 inherit-member-name 2 0 0
19 inherit-virt-func 4 0 0
20 encap-ret-ref-const 4 0 0
21 encap-ret-ptr-const 3 0 0
22 encap-ret-ref-prot 5 0 0
23 encap-ret-ptr-prot 4 0 0

Total 75 1 19

Table 4: Results by Fault Type

3.1.4 Discussion

To evaluate the e�ectivenes of category-partition with object-oriented programs, we would like to

select faults that represent small semantic changes to the programs. A semantic change is a change

in meaning or interpretation of some part of a program. For example, a function that calculates a

distance in miles is changed to calculate the distance in kilometers. We de�ne the fault size, or the

size of a semantic change, as the number of inputs for which the output of the modi�ed program

is di�erent from the output of the original program. Large semantic changes, such as the distance

function example above, would be caught on almost any input and would therefore bias the results

in favor of category-partition.

A semantic change to a program is implemented by making syntactic changes to the source code.

32

A syntactic change is a change in the form of the source code, for example, changing a for loop to

a while loop. The number of syntactic changes is not necessarily related to the size of the semantic

change. A single syntactic change, such as replacing a \+" with a *" in an initialization statement

in an algorithm, represents a large semantic change, while many syntactic changes are required to

change a data member from being created automatically with the object to being created by new in

the constructor, even though this is a small semantic change. So, although the di�erences between

the original programs and the fault-inserted programs may occasionally be extensive, the size of

the semantic change is the signi�cant factor.

In addition to making syntactic changes to implement the semantic change for each potential fault,

if a program did not have all the required characteristics of the fault when the potential fault

was added, the missing characteristics were also inserted. Care was taken that these additional

characteristics were natural statements that could occur and that they alone would not cause a

failure. For example, Fault 10-1, making a base class destructor non-virtual, is only a fault if the

base class dynamically allocates memory. In order to insert this fault into the DirObj class, one

of the data members needed to be dynamically allocated. Since the design of this class could have

been implemented by dynamically creating this data member, a set of modi�cations were made to

the class to do so.

In other cases, a fault might be placed in a function that was not called in the original program.

For example, the fault type might be that an assignment to a particular data member is neglected

in the assignment operator (Fault type 11). The assignment operator obviously must be called for

this function to be detected. Since no assignment operators were used in the original program, use

of assignment operators was forced where it could have occurred naturally. For example, the String

assignment operator was not used in the original program, but an assignment operator that took

a char* was. So to cause the String assignment operator to be called, a String object was made

from the char*, then the String object was used where the char* had been used.

The results show that the category-partition method found all but one of the non-memory man-

agement faults. The one that it did not �nd actually demonstrated a fault in the way that the test

scripts were written: the INIT command should not have been called. If it had not, this fault also

would have been detected. This tells us that the category-partition method is e�ective at detecting

certain types of faults for these two programs: faults involving implicit functions, initialization,

inheritance and encapsulation.

The fact that only two of the memory management faults were detected shows that category-

33

partition was not e�ective at detecting these types of faults, which are typically memory leaks. As

noted in Section 3.1.3, we would not expect to detect memory leaks through a method of testing

that analyzes output; a method that analyzes the allocation and deallocation of memory is required.

The two faults of Fault type 6, which are memory management but not memory leak faults, caused

warnings to be generated by the gnu compiler, but since they caused no di�erence in the output of

the program, they were not considered to have been detected by category-partition.

3.1.5 Measuring Fault Size

As de�ned in the previous section, the fault size provides a measurement of how many test cases in a

test set detect a fault. Measuring the size of a fault is interesting because it gives more information

about the e�ectiveness of a testing strategy. For example, a fault that is detected by 98% of the

test cases is a relatively large fault and would be less interesting than a fault that is detected by

1% of the test cases.

At the same time, analysis of fault sizes is di�cult for two primary reasons. First, we do not have

a basis for comparison. We cannot say that our fault sizes are better or worse than any others.

Second, we have no measurement of a \good" fault size. We want our faults to represent those

made by typical programmers, but we have no measurement of \typical" faults.

The following two tables show the sizes of the faults inserted for this project. The �rst table shows,

for each fault, the percentage of test cases that detected the fault, and which program this fault

was inserted into. (MiStix had 106 test cases; the String Validation program had 31 test cases.)

The second table shows a summary of these results. Faults that are not shown in the tables were

not detected, i.e., the fault size was 0.

4 Conclusions

This paper presents empirical data that show that the category-partition testing technique is very

e�ective at �nding faults in object-oriented software. We conclude that existing testing techniques

are e�ective for testing object-oriented software, and new techniques are not necessarily needed.

The research on object-oriented software testing to date has focused on two questions: How can

we use the properties of object-oriented software to reduce the e�ort required to test object-oriented

34

Fault % of Program
Number Test Cases

4-1 96.2% MiStix
4-2 100.0% MiStix
8-1 100.0% MiStix
8-2 100.0% MiStix
9-1 100.0% MiStix
10-1 80.0% MiStix
11-1 1.9% MiStix
11-2 1.9% MiStix
11-3 7.5% MiStix
11-4 .9% MiStix
11-5 2.8% MiStix
11-6 2.8% MiStix
12-1 7.5% MiStix
12-2 2.8% MiStix
12-3 .9% MiStix
12-4 1.9% MiStix
12-5 99.0% MiStix
13-2 98.1% MiStix
13-3 98.1% MiStix
13-4 98.1% MiStix
13-5 .9% MiStix
14-1 88.7% MiStix
15-1 6.5% Validation
15-2 51.6% Validation
16-1 45.2% Validation
16-2 45.2% Validation
17-1 51.6% Validation
17-2 51.6% Validation

programs? and How can we e�ectively test object-oriented programs? The latter question involves

two issues: whether traditional techniques are e�ective for object-oriented software and whether

new techniques need to be developed. We focused on the �rst of these issues.

We examined the e�ectiveness of the category-partition method at detecting faults in C++ pro-

grams. First, we identi�ed 23 types of faults that are common to C++ programs and two programs

to insert faults of these types into. A re�nement to the category-partition method was used to

generate 137 test cases for both programs and these were put into test scripts. Then faults were

inserted into the program, creating 78 faulty programs. Finally, the faulty programs were run

against the test scripts. A fault was considered detected if it caused the program to crash or if the

output was di�erent from the output of the original program.

35

Fault % of Program
Number Test Cases

17-3 51.6% Validation
17-4 96.8% Validation
17-5 22.6% Validation
17-6 51.6% Validation
17-7 29.0% Validation
18-1 100.0% MiStix
18-2 88.7% MiStix
19-1 45.2% Validation
19-2 22.6% Validation
19-3 22.6% Validation
19-4 22.6% Validation
20-1 7.5% MiStix
20-2 .9% MiStix
20-3 8.5% MiStix
20-4 3.8% MiStix
21-1 100.0% MiStix
21-2 1.9% MiStix
21-3 .9% MiStix
22-1 .9% MiStix
22-2 36.8% MiStix
22-3 7.5% MiStix
22-4 1.9% MiStix
22-5 2.8% MiStix
23-1 .9% MiStix
23-2 1.9% MiStix
23-3 3.8% MiStix
23-4 2.8% MiStix

Table 5: A Measure of Fault Size

The results of this study show that the category-partition method is e�ective for detecting certain

non-memory leak types of faults in these two C++ programs. This study also shows clearly that

memory management types of faults are not likely to be found using category-partition. However,

memory management faults are not unique to object-oriented programs, and there are e�ective

testing techniques available, with tools already on the market1 , to help detect them.

These results indicate that the combination of the category-partition method and a tool for de-

tecting memory management faults may be e�ective for testing C++ programs in general. Since

there is no evidence that traditional techniques are not e�ective, we may not need to develop new

methods of testing object-oriented programs.

36

of Faults % of Test Cases

15 80 { 100%
14 20 { 52 %
26 .9% { 10%
20 0% (not detected)

Table 6: Summary of Fault Size Data

5 Future Work

This project examined one small part of the issue of how to e�ectively test object-oriented software.

This study examined one speci�cation-based technique with two small programs. It should be

replicated with larger programs which may provide opportunities to insert faults more naturally

and may provide opportunities to insert other types of faults. Similar studies should be performed

using other testing techniques, both black box and white box. C++ was chosen for this project, but

the programming language used should not be signi�cant for a speci�cation-based testing technique.

The programming language may be signi�cant for white-box testing, however.

This study implemented system-level tests. A study at the unit-level would indicate whether unit-

level tests are as e�ective as system-level tests.

A more objective way of inserting faults into programs would be helpful. Specifying all the pieces

required to complete a fault before attempting to insert the fault helps make the process more

objective. There are situations, however, when it is up to the person inserting the faults to determine

whether the other pieces of the fault can be put in { whether they re
ect a design decision and

whether they would be considered \naturally occurring."

6 Acknowledgements

We would like to thank Pi-Hui Hsiang for help preparing the Latex version of this report.

References

[AC76] F. E. Allen and J. Cocke. A program data
ow analysis procedure. Communications
of the ACM, 19(3):137{146, March 1976.

37

[AO94] P. Ammann and A. J. O�utt. Using formal methods to derive test frames in category-
partition testing. In Proceedings of the Ninth Annual Conference on Computer As-
surance (COMPASS 94), pages 69{80, Gaithersburg MD, June 1994. IEEE Computer
Society Press.

[Bei90] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, Inc, New York NY,
2nd edition, 1990. ISBN 0-442-20672-0.

[Boo91] G. Booch. Object-Oriented Design With Applications. Benjamin-Cummings Publishing
Co. Inc., Reading, MA, 1991.

[CE91] P. Coad and Yourdon E. Object-Oriented Analysis. Prentice Hall, second edition, 1991.

[CM90] T. E. Cheatham and L. Mellinger. Testing object-oriented software systems. In 1990
ACM Eighteenth Annual Computer Science Conference, pages 161{165, February 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):481, Decmber 1985.

[DF91] R. K. Doong and P. G. Frankl. Case studies on testing object-oriented programs. In
Proceedings of the Fourth Symposium on Software Testing, Analysis, and Veri�cation,
pages 165{177, Victoria, British Columbia, Canada, October 1991. IEEE Computer
Society Press.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

[ES90] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley
Publishing Company Inc., Reading, MA, 1990.

[Fie89] S. P. Fiedler. Object-oriented unit testing. Hewlett-Packard Journal, 40(2):69{74, April
1989.

[FW88] P. G. Frankl and E. J. Weyuker. An applicable family of data
ow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483{1498, October 1988.

[FW91] P. G. Frankl and S. N. Weiss. An experimental comparison of the e�ectiveness of
the all-uses and all-edges adequacy criteria. In Proceedings of the Fourth Symposium on
Software Testing, Analysis, and Veri�cation, pages 154{164, Victoria, British Columbia,
Canada, October 1991. IEEE Computer Society Press.

[HM92] M. J. Harrold and J. D. McGregor. Incremental testing of object-oriented class struc-
tures. In 14th International Conference on Software Engineering, pages 68{80, Mel-
bourne, Australia, May 1992. IEEE Computer Society.

[How76] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Transactions on
Software Engineering, 2(3):208{215, September 1976.

[How85] W. E. Howden. The theory and practice of function testing. IEEE Software, 2(5),
September 1985.

[Mey92] Scott Meyers. E�ective C++: 50 Speci�c Ways to Improve Your Programs and Designs.
Addison-Wesley Publishing Company Inc., 1992.

[OB88] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and
generating functional tests. Communications of the ACM, 31(6):676{686, June 1988.

38

[PK90] D. E. Perry and G. E. Kaiser. Adequate testing and object-oriented programming.
Journal of OOP, 2:13{19, Jan/Feb 1990.

[RW82] S. Rapps and E. J. Weyuker. Data
ow analysis techniques for test data selection.
In Software Engineering 6th International Conference. IEEE Computer Society Press,
1982.

[SR90] M. D. Smith and D. J. Robson. Object-oriented programming { the problems of valida-
tion. In Proceedings of the 1990 IEEE Conference on Software Maintenance (CSM-90),
pages 272{281, San Diego, CA, Nov 1990.

[TR93] C. D. Turner and D. J. Robson. The state-based testing of object-oriented programs. In
Proceedings of the 1993 IEEE Conference on Software Maintenance (CSM-93), Septem-
ber 1993.

[WC80] L. J. White and E. I. Cohen. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering, 6(3):247{257, May 1980.

[Wey88] E. Weyuker. The evaluation of program-based software test data adequacy criteria.
Communications of the ACM, 31(6):676{686, June 1988.

[Whi87] L. J. White. Software testing and veri�cation. In Marshall C. Yovits, editor, Advances
in Computers, volume 26, pages 335{390. Academic Press, Inc, 1987.

[WSHF81] W. A. Wulf, M. Shaw, P. N. Hil�nger, and L. Flon. Fundamental Structures of Computer
Science. Addison-Wesley Publishing Company Inc., Reading, MA, 1981.

39

