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Abstract

The integration of information from multiple databases has been an enduring sub-

ject of research for almost 20 years, and many di�erent solutions have been attempted

or proposed. Missing from this research has been a uniform framework. Usually,

each solution develops its own ad-hoc framework, designed to address the particular

aspects of the problem that are being attacked and the particular methodology that

is being used. To address this situation, in this paper we de�ne a formal model for

multidatabases, which we call Multiplex. Multiplex is a simple extension of the re-

lational model, which may serve as a uniform abstraction for many previous ad-hoc

solutions. Multiplex is based on formal assumptions of integrability, which distinguish

between scheme and instance reconcilability among independent databases. Multiplex

supports database heterogeneity, and it provides several degrees of freedom that allow

it to model actual situations encountered in multidatabase applications. In addition,

in situations in which a single answer is not obtainable (either because the global query

is not answerable, or there are multiple candidate answers), Multiplex de�nes approx-

imative answers. Finally, Multiplex provides a practical platform for implementation.

A prototype of such an implementation is described briey.

�This work was supported in part by ARPA grant, administered by the O�ce of Naval Research under

Grants No. N0014-92-J-4038 and N0060-96-D-3202.



1 Introduction

The integration of information from multiple databases has been an enduring subject of

research for almost 20 years. (Surveys of this area include [5, 7, 27, 36]; collections of articles

on this topic include [19, 34, 18, 14]; recent workshops include [35, 13].) Indeed, while

the solutions that have been advanced tended to reect the research approaches prevailing

at their time, the overall goal has remained mostly unchanged: to provide exible and

e�cient tools for retrieving information from a collection of distributed, heterogeneous and

overlapping databases.
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A standard approach to this problem has been to integrate the independent databases

by means of a comprehensive global scheme that models the information contained in the

entire collection of databases (for example, [22, 38, 6, 29]). This global scheme is �tted

with a mapping that de�nes the elements of the global scheme in terms of elements of the

schemes of the member databases. Algorithms are designed to interpret queries on the

global scheme. Such global queries are translated (using the information captured in the

mapping) to queries on the member databases; the individual answers are then combined

to an answer to the global query. The global scheme and the scheme mapping constitute a

virtual database; the main di�erence between a virtual database and a conventional database

is that whereas a conventional database contains data, a virtual database points to other

databases that contain the data. An important concern is that this query processing method

be transparent; i.e., users need not be aware that the database they are accessing is virtual.

An attractive alternative to this architecture is the federated architecture [17]. Briey,

in a federated architecture each database system contains an import scheme which speci�es

the information available to it from external sources (and how it is obtained). In essence,

the import scheme and its mapping correspond to a partial global scheme, and the main

distinguishing feature of the federated architecture is that every database system plays the

role of both global and local database. Other approaches include multidatabase languages

(for example, [26]) and interoperable database systems (for example, [21]).

Much of the work in this area has been on the construction of global schemes (either

comprehensive or partial); the main issue here is the resolution of intensional inconsisten-

cies (semantic heterogeneity) among the member schemes (for example, [4, 15, 21]). Yet

the complementary problem of extensional inconsistencies has received much less attention.

This problem arises when alternative sources with overlapping information provide mutually

inconsistent information, and requires methods for resolving such inconsistencies in global

answers [32, 1].

Inconsistencies result in multiple candidate answers; the dual problem also exists, in

which a global query might have no answer at all. Such situations often occur when a

member database becomes temporarily unavailable. In such cases, rather then reject the

query altogether, it is desirable to approximate the global answer using whatever information

that is available [9, 8].

1More generally, the problem may involve other kinds of information sources as well.
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Often missing from multidatabase research is a uniform framework; each solution formu-

lates its own version of the problem, states its own assumptions, develops its own ad-hoc

model, and proposes its own solutions. Often missing as well is a formal treatment of the

subject, with precise formulation of all assumptions, de�nitions and algorithms.

In this paper we address these and other issues in a model and a system for multi-

databases, which we call Multiplex. Several important features of the Multiplex model are

elaborated below.

(1) Extension of the relational model. Multiplex extends the de�nition of relational

schemes, constraints, queries and answers to an environment of multiple databases, and it

provides a common ground for other de�nitions as they become necessary. The extension also

retains the attractive simplicity of the relational model, with relatively few new concepts.

(2) Formal assumptions of integrability. Most integration methods have operated

under tacit assumptions regarding the mutual consistency of the schemes and/or the in-

stances of the underlying databases. Multiplex de�nes two kinds of inconsistency (intensional

and extensional) and formulates two assumptions of integrability: the Model Consistency

Assumption and the Instance Consistency Assumption. These explicit assumptions, which

have been absent from previous work, provide an unambiguous framework, and help to

classify other integration approaches.

(3) Abstraction of various ad-hoc solutions. The Multiplex model can serve as an

abstract model behind most of the approaches that rely on a comprehensive global scheme.

In addition, the Multiplex model can capture the essential features of federated architectures.

(4) Full support for heterogeneity. The simplicity and popularity of the relational

model makes it an ideal integration model, and the integrated view that Multiplex provides

is indeed relational. Yet, there is no restriction on the underlying data models; the only

requirement is that they communicate their results in tabular form. Consequently, the

member databases in a Multiplex multidatabase may be relational, object-oriented, or, in

general, stored in any software system that can respond to requests with tabulated answers.

(5) Flexibility to model real-world situations. The Multiplex model is distinguished

by several degrees of freedom that allow it to model actual situations encountered in multi-

database applications. Speci�cally,

1. Source unavailability. Multiplex reects the dynamics of multidatabase environ-

ments where some member databases may become temporarily unavailable, and some

global queries might therefore be unanswerable in their entirety.

2. Source inconsistency. Multiplex accepts that requested information may be found

in more than one database, and admits the possibility of inconsistency among these

multiple versions.

3. Ad-hoc integration. Multiplex permits ad-hoc global schemes of limited scope, that

cull from existing databases only the information relevant to a given application.
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Intuitively, these degrees of freedom correspond to mappings (from the global scheme to

the member schemes) that are neither total, nor single-valued, nor surjective. We note that

earlier approaches to global scheme integration were based on often unrealistic assumptions

that existing database schemes could be integrated completely and perfectly in a single global

scheme (i.e., mappings that are total, surjective, and single-valued; sometimes even one-to-

one). The complexity of existing databases quite often renders this approach unrealistic. The

abovementioned degrees of freedom are therefore important, as they represent a signi�cant

departure from earlier approaches.

(6) Approximative answers. Because Multiplex mappings are not total, global queries

may be unanswerable; because the mappings are not single-valued and because there is

no assumption of mutual consistency among the member databases, global queries may

have several candidate answers. In both these situations, Multiplex de�nes approximative

answers. The overall concern is that when a single authoritative answer is unavailable, a

multidatabase system should approximate the request as best as possible. For example,

the best approximation in response to a query on the names, salaries, departments and

locations of all employees, could be the names and departments of all employees, the salaries

of some employees, and the locations for none of the employees. As another example, the

best approximation in response to a query on the employees who earn over 50, could be the

employees who earn over 40. Note that the former approximative answer was \less" than

what was requested, whereas the latter was \more" than what was requested, corresponding

to \below" and \above" approximations.

(7)Quick adaptation to evolving environments. Present data environments may be

highly dynamic; for example, newly discovered data sources may need to be incorporated,

the structure of existing data sources may change, or existing data sources may need to

be deleted altogether. In Multiplex such changes are easy to e�ect. As we shall see, the

integration consists of providing pairs of equivalent views: a view on the global database

(\the information needed"), and a view on a member database (\how it is materialized").

The complexity of these views can vary greatly: they could range from a complex calculation,

to a statement that simply denotes the equivalence of two attribute names.

(8) A practical platform for implementation. Finally and most importantly, the

Multiplex model is a practical platform for implementation. Hence, Multiplex is not only

a formal model, but a practical system as well. We note that the software architecture to

implement Multiplex is a relatively simple generalization of a relational database system.

With respect to limitations, we note that Multiplex queries and mappings are based on

conjunctive views (queries may also use aggregate functions). Although a language based

on conjunctive views and aggregate functions does not have the full power of the relational

algebra or calculus, it is a powerful language nonetheless. The Multiplex model involves

several major computations: the translation of a global query to a set of queries on the

member databases, the reduction of a set of database constraints to constraints that are

applicable to a given query, and the calculation of lower and upper approximations of the

requested answer either when this answer is not available or when multiple candidate answers

are available. Most of these problems were investigated and algorithms are known; e�cient
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algorithms for the other problems still need to be developed.

The recent explosion of on-line information sources on the Internet has increased the

interest in this area signi�cantly, with several systems that are roughly in the same class

as Multiplex. These include SIMS [3], TSIMMIS [16], UniSQL [20], and the Information

Manifold [2]. These systems are discussed later in this paper.

Section 2 de�nes the database concepts that will be used later. Section 3 discusses

integrability, and de�nes multidatabases and multidatabase queries and answers. Section 4

extends the model to approximative answers. Section 5 describes the Multiplex prototype,

Section 6 compares Multiplex to several other systems that share similar goals, and Section 7

concludes this paper with a brief summary and a discussion of further research issues.

2 Relational Databases

In this section we de�ne the database concepts that will be used throughout this work. Our

formalization of relational databases is mostly conventional, where it might di�er from the

standard de�nitions (e.g., the various view relationships and the treatment of constraints as

views) the new de�nitions are nevertheless strictly within the conventional axiomatization

of the relational model.

2.1 Schemes and Instances

Assume a �nite set of attributes T , and for each attribute A 2 T assume a �nite domain

dom(A), and assume a special value called null and denoted �, which is not in any of the

domains. A relation scheme R is a sequence of attributes from T . A tuple t of a relation

scheme R = (A1; : : : ; Am) is an element of dom(A1)[f�g�� � ��dom(Am)[f�g. A relation

instance (or, simply, a relation) r of a relation scheme R is a �nite set of tuples of R. A

database scheme D is a set of relation schemes fR1; : : : ; Rng. A database instance d of the

database scheme D is a set of relations fr1; : : : ; rng, where ri is a relation on the relation

scheme Ri (i = 1; : : : ; n).

As an example, consider the attribute set T = (Name; Level; Salary) and the domains

dom(Name) = fsmith; jones; browng, dom(Level) = fjunior; seniorg, and dom(Salary) =

f20; 30; 40g. Example of tuples of the relation scheme Emp = (Name; Level; Salary) are

(smith; junior; 20), (brown; senior; 40), and (jones; senior;�). A relation instance is usu-

ally written in tabular form; for example,
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Emp

Name Level Salary

smith junior 20

brown senior 40

jones senior �

is the relation instance that consists of the three aforementioned tuples,

Although the de�nition of a relation scheme maintains an order among its attributes, and

the de�nition of a tuple maintains an order among its values, we shall consider a relation

scheme R with m attributes and an instance r of R interchangeable with a relation scheme

R0
and an instance r0 of R0

, if there exists a permutation of the numbers 1; : : : ; m that maps

R to R0
and the tuples of r to the tuples of r0.

2.2 Views and Queries

Let D be a database scheme. A view V of D is an expression of the form:

V = f(a1; : : : ; ak) j (9b1; : : : ; bp)  1 ^ : : : ^  qg

Where the  's may be of two kinds:

1. membership: (c1; : : : ; cl) 2 R, where R is a relation scheme in D (of arity l), and the

cs are either as or bs or constants,

2. comparative: d1 � d2, where d1 is either an a or a b, d2 is either an a or a b or a

constant, and � is a comparator (e.g., <;�; >;�;=; 6=),

and each a must appear exactly once among the cs, and each b must appear at least once

among the cs.

Since each a appears in exactly one membership formula, it is associated with a unique

attribute. Consider the membership formula (c1; : : : ; cl) 2 R, where R = (A1; : : : ; Al). If

cj = ai, then ai is associated with the attribute Aj. The tuple of the attributes associated

with (a1; : : : ; ak) is the scheme of the view V .2

Given a database instance d of the database scheme D, the view V de�nes the following

relation v:

v = f(a1; : : : ; ak) j (9b1; : : : ; bp)  1 ^ : : : ^  qg

where each occurrence of a relation scheme R in a formula  is replaced by the corresponding

relation instance r. v is also called the extension of the view V in the database instance d.

A query Q on a database scheme D is a view of D. The extension of Q in a database

instance d of scheme D is called the answer to Q in the database instance d.

2We shall use V to denote both the view and its scheme.
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The views and queries de�ned in this way are known as conjunctive views [39]. Although

conjunctive views are a strict subset of the relational tuple calculus, they are a powerful sub-

set, corresponding to the set of relational algebra expressions with the operations Cartesian

product, selection and projection (where the selection predicates are conjunctive). We shall

also use the relational algebra notation in de�nitions of views.

As an example, assume the relation schemes Emp = (Name; Salary;Dname) andDept =

(Dname; Supervisor), and consider the view

Emp sup = f(a1; a2) j (9b1; b2) (a1; b1; b2) 2 Emp ^ (b2; a2) 2 Deptg

The scheme of Emp sup is (Name; Supervisor). Alternatively, this view can be expressed

with this relational algebra expression:

projectName;SupervisorselectEmp:Dname=Dept:DnameEmp�Dept

Assume a view V of a database scheme D. It is possible to add V to the database scheme

D, and to add to every database instance d of D the corresponding relation instance v (the

extension of V in d). It is then possible to de�ne views of the new database scheme. In

particular, it is possible to de�ne views of the view V , and to compute the extensions of

these views in every database instance.

Given views V 0
and V of a database scheme D, V 0

is a subview of V , denoted V 0 v V ,

if there exists a selection-projection view W of V , such that the schemes of V 0
and W are

identical, and in every database instance d of D, the extensions of V 0
and W are identical.

V is then a superview of V 0

Note the di�erence between this de�nition of subview and the common de�nition of

contained view, denoted V 0 � V , which is based on the containment of two sets of tuples.

By restricting W to selection only, the concept of subview is reduced to contained view. As

an example, assuming the same relation schemes, consider these views:

V = projectName;Salaryselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)Emp�Dept

V 0
= projectNameselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)^(Salary<30)Emp�Dept

W = projectNameselectSalary<30V

The view V' (names of employees who are supervised by Jones and who earn less than 30)

is a subview of the view V (names and salaries of employees who are supervised by Jones).

The view W establishes this relationship.

Assume that V 0
is a subview of V and now let W denote a relation scheme consisting

of the attributes that are in V but not in V 0
. Without loss of generality, we may assume

that W is the \su�x" of V (i.e., V 0
concatenated with W yields V ). Let w be the instance

of W which has a single tuple composed entirely of null values. The enlargement of V 0
to

V is a view whose scheme is V , and for every database instance d of D, its extension is

v0 �w, where v0 is the extension of V 0
in d. Intuitively, the enlargement of V 0

to V involves

extending the tuples of every instance of V 0
with null values.

6



Assume that V1 and V2 are subviews of V . The subview union of V1 and V2 over V , denoted

V1 t V2, is the union of their enlargements to V . Assume that V1 and V2 are superviews of

V . The superview intersection of V1 and V2 over V , denoted V1 u V2, is the intersection of

their projections on V .3

When the de�nition of V may be assumed from the context, we shall call these operations

simply the subview union and superview intersection of V1 and V2. Note that these operations

generalize the union and intersection operations on views, which are commonly de�ned only

for views that have the same scheme, because when V1, V2 and V all have the same scheme,

these new operations are reduced to the common view operations. As we shall see, the

subview union and the superview intersection will be used to provide lower and upper bounds

of the view V .

Views V1 and V2 of a database scheme D are overlapping, if there exists a view V of D,

such that V v V1 and V v V2, and there exists some instance d of D in which the extension

of V is non-empty.

As an example, assuming the same relation schemes, consider these views:

V1 = projectName;Salaryselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)Emp�Dept

V2 = projectName;DepartEmp

V = projectNameselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)Emp�Dept

The views V1 (names and salaries of employees who are supervised by Jones) and V2 (names

and departments of employees) are overlapping. The view V (names of employees who are

supervised by Jones) establishes this relationship.

2.3 Integrity Constraints

Quite often the information stored in a database must satisfy speci�c relationships. These

relationships, called integrity constraints, restrict the allowable instances of a database. Our

de�nition of integrity constraints follows the one in [30].

An integrity constraint I on a database scheme D is a view of D. A database instance d

of D satis�es an integrity constraint I, if the extension of I in d is the empty set.

As an example, consider the relation scheme Emp = (Name,Level,Title,Salary,Supervisor)

and the integrity constraints

I1 = projectNameselect(Level=junior)^(T itle=manager)Emp

I2 = projectName:1;Name:2select(Level:1=Level:2)^(Salary:16=Salary:2)Emp� Emp

The �rst integrity constraint is satis�ed in any database instance that does not have a tuple

in which Level = junior and T itle = manager. Intuitively, it models a real world restriction

3Note that it may be possible to identify separate tuples by using additional information that may be

available, such as functional dependencies [28].
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that junior employees may not be managers. The second integrity constraint
4
is satis�ed

in any database instance that does not have two tuples with the same Level but di�erent

Salary. It models the real world restriction that employees at the same level earn the same

salary; i.e., the functional dependency Level �! Salary.

Of course, the expressive power of integrity constraints corresponds to the expressive

power of queries. For example, if a query can be formulated to retrieve the employees

who are paid more than their supervisors, then the constraint could be formulated that all

employees may not earn more than their supervisors.

Assume a constraint I and a view V of a database scheme D. I is applicable to V , if

I v V .

For example, with the previous relation scheme consider the view

V1 = projectName;LevelselectT itle=managerEmp

The constraint I1 (there are no junior managers) is applicable to the view V1 (the names and

levels of managers).

Assume a constraint I and a query Q on a database scheme D, and assume that I and

Q are overlapping views. Let I 0 = I u Q. I 0, called the reduction of I to Q, is a constraint

applicable to Q.

Given a database scheme D, a set C of integrity constraints on D, and a query Q on D,

the answer q to Q in every instance d of D satis�es the reduction to Q of every constraint

in C.

For example, with the previous scheme consider the view

V2 = projectNameselectSupervisor=jones(Emp)

The reduction of the constraint I1 to the view V2 is given by

I3 = projectNameselect(Level=junior)^(T itle=manager)^(Supervisor=jones)(Emp)

The constraint I3 (there are no junior managers working for Jones) is applicable to the

view V2 (the employees supervised by Jones). The transformation of database constraints

to constraints that are applicable to a given view is similar to constraints residues [11] or

intensional answers [31].

2.4 Database

Finally, a database (D;C; d) is a combination of a database scheme D, a set C of integrity

constraints on the scheme D, and a database instance d of the scheme D that satis�es all the

4The de�nition uses a simple notational device to distinguish between multiple occurrences of an attribute

in the same view.
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integrity constraints in C. A database (D;C; d) acts as a function from queries to answers:

given a query Q on scheme D, it computes its answer q in the instance d. We shall use the

term database model to refer collectively to the scheme and the constraints.

3 Multidatabases

We begin by de�ning derivative databases; i.e., databases derived from other databases.

This notion is necessary to de�ne equivalence between views and constraints from di�er-

ent databases, which in turn provides a method for expressing the commonality of two

database models using model mappings. Model mappings are the basis for our de�nition

of multidatabases. We then formulate the Model Consistency Assumption and the Instance

Consistency Assumption. These assumptions lead to fundamental observations concerning

the integrability of independent databases. We complete the description of the Multiplex

multidatabase model by de�ning multidatabase queries.

3.1 Derivative Databases

Consider a database (D;C; d). Let D0
be a database scheme whose relation schemes are

de�ned as views of the relation schemes of D.5 Intuitively, the views that transform D to

D0
also imply a set of integrity constraints C 0

and a database instance d0. Altogether, these

views determine a derivative database (D0; C 0; d0). Formal de�nitions follow.

Consider a database scheme (D;C; d). Let D0
be a database scheme whose relations

schemes are views of the relation schemes of D. The database scheme D0
is said to be

derived from the database scheme D. Let d0 be the database instance of D0
which is the

extension of the views D0
in the database instance d. The database instance d0 is said to be

derived from the database instance d. Let C 0
be a set of integrity constraints on the scheme

D0
. The integrity constraints C 0

are derived from the integrity constraints C, if for every

database instance d of the scheme D that satis�es the integrity constraints C, the derived

database instance d0 satis�es the integrity constraints C 0
.

Altogether, a database (D0; C 0; d0) is a derivative of a database (D;C; d), if its scheme D0

is derived from the scheme D; its constraints C 0
are derived from the constraints C, and its

instance d0 is derived from the instance d. When extensions are ignored, we shall also refer

to the database model (D0; C 0
) as a derivative of the database model (D;C).

In this paper we are not concerned with an e�ective procedure for determining whether

one database is a derivative of another, a question that depends on the language for express-

ing views. For our purpose here, it is su�cient to note that a database may or may not be

a derivative of another database.

5Our present de�nition of views permits Cartesian products, selections, and projections, but could be

extended to views that involve additional operations, such as aggregations or attribute renaming.
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3.2 View Equivalence

Let (D1; C1; d1) and (D2; C2; d2) be two derivatives of a database (D;C; d). The derivative

databases are mutually \consistent" in the sense that \equivalent" views are extended iden-

tically in the databases in which they apply, and \equivalent" constraints are satis�ed (or

unsatis�ed) simultaneously in the databases in which they apply. These notions of view and

constraint equivalence are de�ned formally as follows.

A view V1 of D1 and a view V2 of D2 are equivalent, if for every instance d of D the

extension of V1 in d1 and the extension of V2 in d2 are identical. Intuitively, view equivalence

allows us to substitute the answer to one query for an answer to another query, although

these are di�erent queries on di�erent schemes.

A constraint I1 on D1 and a constraint I2 on D2 are equivalent, if for every instance d

of D I1 is satis�ed in d1 if and only if I2 is satis�ed in d2. Intuitively, two constraints are

equivalent if they model the same real world restriction.

Assume that views V1 of D1 and V2 of D2 are equivalent, and denote their view schemes

(A1; : : : ; Ak) and (B1; : : : ; Bk), respectively. Let U1 be a subview of V1 and let U2 be a

subview of V2, and assume that the de�nition of U2 is identical to the de�nition of U1, except

for consistent replacement of every attribute Ai in U1 with the corresponding attribute Bi

in U2. It is easy to verify that U1 and U2 are equivalent as well.

Recalling that constraints are views, a similar result can be stated for two equivalent

constraints I1 and I2 and two identical (up to variable renaming) constraints J1 and J2
which are subviews of I1 and I2.

3.3 Model Mapping

Given two di�erent database models, which are both derivatives of the same data model (the

\reference model"), we express their commonality by means of model mappings.

Assume two database models (D1; C1) and (D2; C2), which are both derivatives of a

database model (D;C). A scheme mapping (D1; D2) is a collection of view pairs (Vi;1; Vi;2) (i =

1; : : : ; m), where each Vi;1 is a view of D1, each Vi;2 is a view of D2, and Vi;1 is equivalent to

Vi;2. A constraint mapping (C1; C2) is a collection of constraint pairs (Ii;1; Ii;2) (i = 1; : : : ; k),

where each Ii;1 is derived from C1, each Ii;2 is derived from C2, and Ii;1 is equivalent to Ii;2.

As an example, the equivalence of attribute Salary of relation scheme Emp in database

schemeD1 and attribute Sal of relation scheme Employee in database scheme D2 is indicated

by the view pair

( projectSalaryEmp; projectSalEmployee )

As another example, given the relation schemes Emp = (Name,Title,Salary,Supervisor) in

database scheme D1, and Manager = (Ename, Level, Sal, Sup) in database scheme D2, the
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retrieval of the salaries of managers is performed di�erently in each database, as indicated

by the view pair

( projectName;SalaryselectT itle=managerEmp; projectEname;SalManager )

To illustrate a constraint mapping, assume that C1 includes the constraint Bonus � 0:2 �

Y ear Sal, whereas C2 includes the constraint Bonus � 200 �Hour Wage. The commonality

of these constraints is possibly expressed with the pair (for simplicity, we express these

constraints in logic formulas instead of views):

( 0:1 �Y ear Sal � Bonus � 0:2 �Y ear Sal; 200 �Hour Wage � Bonus � 400 �Hour Wage )

As with view equivalences, the statement of constraint equivalences reects additional knowl-

edge; in this case, that a work year is equivalent to 2,000 hours.

3.4 Multidatabase

A multidatabase is

1. A scheme D and a set C of integrity constraints on scheme D.

2. A collection (D1; C1; d1); : : : ; (Dn; Cn; dn) of databases.

3. A collection (D;D1); : : : ; (D;Dn) of scheme mappings.

4. A collection (C;C1); : : : ; (C;Cn) of constraint mappings.

The �rst item de�nes the model of a multidatabase, and the second item de�nes the

member databases in the multidatabase environment. The third item de�nes a mapping

from the global scheme to the schemes of the member databases. The fourth item de�nes a

mapping from the global constraints to the constraints of the member databases.

The \instance" of a multidatabase consists of a collection of global view extensions that

are available from the member databases. Speci�cally, the views in the �rst position of the

scheme mappings specify the \contributed information" at the global level, and the views in

the second position describe how these contributions are materialized.

As de�ned in Section 3.3, models (scheme and constraints) mappings allow to substitute

certain views (or satisfaction of certain constraints) in one database with equivalent views (or

satisfaction of equivalent constraints) in another database. In a multidatabase, the former

database is the global database, and the latter is a member database.

This de�nition may be considered a formalization of virtual databases de�ned in [29].

Scheme mapping may be considered an abstraction of di�erent solutions that have been

advanced to the task of relating global schemes to schemes of member databases (e.g., [22,

38, 6, 29]).
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3.5 Integrability Assumptions

The purpose of multidatabases is to integrate information from several, independent databases.

Of course, the problem of integration is trivial, unless the information sources are inconsis-

tent: i.e., a portion of the real world is described di�erently by more than one source. It has

been observed recently [32] that such inconsistencies fall into two categories: (1) intensional

inconsistencies, and (2) extensional inconsistencies.

Intensional inconsistencies, often referred to as semantic heterogeneity, are de�ned as

di�erences in modeling. For example, di�erences in relation schemes, or in the semantics

of individual attributes (e.g., measurement units). Extensional inconsistencies surface only

after all intensional inconsistencies have been resolved, at a point where the systems partici-

pating in a speci�c transaction may be assumed to have identical intensional representation

for all overlapping information. At that point it is possible that two information sources

would provide di�erent answers to the same query.

We shall assume that there exists a single (hypothetical) database that represents the

real world. This ideal database includes the usual components of scheme, constraints, and

instance. Its scheme and constraints constitute the perfect model, and its instance constitutes

the perfect data. We now formulate two assumptions. These assumptions are similar to the

Universal Scheme Assumption and the Universal Instance Assumption [28], although their

purpose here is quite di�erent. These two assumptions are statements of the integrability of

the given databases. They use the de�nition of derived databases in Section 3.1.

The Model Consistency Assumption (MCA). All database models (schemes and

constraints) are derivatives of the real world model. That is, in each database model, every

relation scheme is a view of the real world scheme, and every integrity constraint is implied

by the real world constraints. The meaning of this assumption is that the di�erent ways

in which reality is modeled are all correct; i.e., there are no modeling errors, only model-

ing di�erences. To put it in yet a di�erent way, all intensional inconsistencies among the

independent database models are reconcilable.

The Instance Consistency Assumption (ICA). All database instances are deriva-

tives of the real world instance. That is, in each database instance, every relation instance is

derived from the real world instance. The meaning of this assumption is that the information

stored in databases is always correct; i.e., there are no factual errors, only di�erent represen-

tations of the facts. In other words, all extensional inconsistencies among the independent

database instances are reconcilable.

Although these assumptions have not been articulated before in the context of database

integration, tacit assumptions have often been made. Most previous work on scheme in-

tegration has tacitly subscribed to the Model Consistency Assumption, and the di�erent

approaches to scheme integration are therefore implementations of speci�c techniques for

reconciling modeling inconsistencies. With few exceptions in the areas of logic databases [37]

and data fusion [1], most previous work on database integration has tacitly subscribed to the

Instance Consistency Assumption as well, thus avoiding any possibility of data inconsistency.
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The Multiplex model assumes that the Model Consistency Assumption holds, meaning

that all di�erences among database models (schemes and constraints) are reconcilable, and

that the Instance Consistency Assumption does not hold, allowing the possibility of irrecon-

cilable di�erences among database instances.

In other words, the member databases are all assumed to have models (schemes and

constraints) that are derivatives of a hypothetical real world database model; these models

are related through the multidatabase model, which is yet another derivative of this perfect

database model. But the member database instances are not assumed to be derivatives of

the real world instance.

Clearly, without subscribing to the MCA, it is not possible to integrate a given set of

databases. On the other hand, subscribing to the ICA would not reect the reality of

independently maintained databases.

3.6 Discussion

Our de�nition of multidatabases provides four important \degrees of freedom", which reect

the realities of multidatabase environments.

First, the mapping from D to the member schemes is not necessarily total; i.e., not all

views of D are expressible in one of the member databases (and even if they are expressible,

there is no guarantee that they are mapped). This models the dynamic situation of a

multidatabase system, where some member databases might become temporarily unavailable.

In such cases the corresponding mappings are \suspended", and some global queries might

not be answerable in their entirety. Similarly, if an authorization mechanism is enforced, a

user may not have permission to some views.

Second, the mapping is not necessarily surjective; i.e., the member databases may include

views that are not expressible in D (and even if they are expressible, there is no guarantee

that they are mapped). This models the pragmatism of multidatabases, which usually cull

from existing databases only the information which is relevant to a speci�c set of applications.

For example, a large database may share only one or two views with the multidatabase.

Third, the mapping is not necessarily single-valued; i.e., a view of D may be found

in several member databases. This models the realistic situation, in which information is

found in several overlapping databases, and provides a formal framework for dealing with

multidatabase inconsistency. Recall that if we do not assume that the Instance Consistency

Assumption holds, then we do not assume that the member instances are all derived from a

single instance. Thus, the inclusion of view pairs (V; V1) and (V; V2) in two scheme mappings

of a multidatabase does not imply that the extensions of V in the member databases are

identical. Rather, it implies that they should be identical.

Fourth, while the de�nition assumes that the member databases adhere to the relational

model de�ned here, they need not be relational, or even of the same data model. Recall that
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the only purpose of the views in the second position of the scheme mappings is to describe

how the views in the �rst position are materialized. Therefore, the member databases need

not be relational, and the views in the second position need not be relational expressions.

The only requirement is that they compute tabular answers.

The results stated at the end of Section 3.2 reduce substantially the number of view pairs

that need to be speci�ed in scheme mappings. For example, when the following view pair is

part of a mapping

( projectName;SalaryselectT itle=managerEmp; projectEname;SalManager )

many other view pairs are implied as well. For example, the equivalence of the attributes

Name and Ename, the equivalence of the views that describe in each database the names of

managers who earn less than 30, and so on. Hence, it is more economical to use the \largest"

views possible in mappings. A similar conclusion holds for constraints mappings.

3.7 Multidatabase Queries

An essential part of the de�nition of a database model is its query language. The de�nition

of a language must provide for syntax, as well as semantics; that is, one must de�ne not only

how queries are written, but also their extension in any database instance. In this section

we consider multidatabase queries.

Syntactically, a multidatabase query is simply a query Q of the scheme D. Intuitively, the

answer to a multidatabase query Q should be obtained by transforming it to an equivalent

query of the views in the �rst position of the scheme mappings (the available information).

These views would then be materialized (using the view de�nitions in the second position of

the scheme mappings), and the translated query would be processed on these materialized

views. Formally, the required transformation of Q is stated as follows.

Let D = fR1; : : : ; Rng denote a database scheme, and let M = fV1; : : : ; Vmg denote a set

of views of D. Translate a given query QD of the database scheme to an equivalent query

QM of the view schemes.

However, a solution to this translation problem may not exist, or there could be multiple

solutions. To observe that multiple solutions may exist, consider a database with a relation

R = (A;B;C) and views V1 = projectA;BR and V2 = projectA;CR, and consider the query

Q = projectAR. Q can be answered from both V1 or V2. To observe that a solution may

not exist, consider a database with two relations R = (A;B) and S = (B;C), and one view

V = R ./ S, and consider the query Q = selectA=aR. Clearly, Q cannot be answered from

the view V , because the join would not necessarily include all of R's tuples.

This translation problem (for conjunctive queries and views) has been addressed by Lar-

son and Yang [23, 24], by Levy et al. [25] and by Brodsky and Motro [8]. We shall assume

that a translation algorithm exists which is sound and complete; i.e., it computes all the

correct translations that exist.
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3.8 Multidatabase Constraints

Recall that a multidatabase query is simply a query Q of the scheme D. To answer this query

it must be translated to a query of the mapped views M (i.e., the views in the �rst position

of the view mappings; the views that can be materialized). In analogy, a multidatabase

constraint is simply a constraint I on the scheme D. This constraint is satis�ed if it can

be translated to a constraint derivable from the mapped constraints (i.e., the constraints in

the �rst position of the constraint mappings; the constraints that are known to be satis�ed).

Formally, the required transformation of the constraints is stated as follows.

Let D denote a database scheme, and let C denote a set of constraints on this scheme.

Let P denote another set of constraints on D. Given a constraint I in C, transform it to an

equivalent constraint de�ned by means of the constraints P .

However, such a transformation might not exist, or there could be multiple transforma-

tions. Hence, in general, it might not be possible to check whether a global constraint is

satis�ed in the multidatabase environment.

Note that under the model Consistency Assumption, the multidatabase and the member

database constraints are all implied by the real world constraints and are therefore mutually

consistent. If the Instance Consistency Assumption holds as well, then every multidatabase

query would have at most one answer, and that answer would satisfy the global constraints.

However, if the ICA does not hold, then it is possible that a multidatabase query would

have several candidate answers. Each of these answers was put together from \answer com-

ponents" that were retrieved from member databases, where they satis�ed the constraints.

Yet it is possible that some of the answers would fail the global constraints.

As an example, consider this simple multidatabase. The database scheme includes the

relation scheme Emp = (Name,Salary,Bonus), and the constraint that bonus is smaller

than salary. The two member databases include, respectively, the relation schemes Sal =

(Name,Salary) and Bon = (Name,Bonus), without any constraints. The view mapping

simply matches projectName;SalaryEmp with Sal, and projectName;Bonus with Bon. Consider

now a multidatabase query to list the Emp relation. Its answer will be formed by joining

the two views in the mapping. While each view is consistent with the member constraints

(there are none), the result may not be consistent with the global constraint.

Hence, the global integrity constraints should be used to prune the set of candidate

answers. Indeed, other than stating the semantics of the database, this is their sole purpose.

To test whether an answer satis�es the global constraints, it is necessary �rst to reduce the

global constraints to constraints that apply to the query (Section 2.3). We are now ready to

de�ne multidatabase answers.
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3.9 Multidatabase Answers

Assume a multidatabase with scheme D, constraints C, and mapped views M . The answer

to a query Q on this multidatabase is the set of answers produced by a sound and complete

translation algorithm, that satisfy the constraints C.

There are two possible cases:

1. When the translation algorithm produces more than one solution, these solutions may

evaluate to di�erent answers. Each such answer is a candidate answer. The answer to

Q is the set of all candidate answers.
6

2. When a solution to the translation problem does not exist, the answer to Q is the

empty set of answers. This empty set of answers should be interpreted as answer

unavailable.7

Of course, if we were to subscribe to the Instance Consistency Assumption, then all the

solutions generated in the �rst case would be guaranteed to evaluate to the same answer, and

the answer to Q would be this unique answer. In theory, this answer may be evaluated from

an arbitrary solution to the translation problem. In practice, however, some realistic model

of cost should be adopted, and the cheapest solution should be chosen. Note that under the

Instance Consistency Assumption, it is possible that the translation algorithm will have no

solutions. Hence, the possibilities under the ICA are one answer or no answer.

4 Approximative Answers

From a user perspective, each legitimate database query should evaluate to a single answer.

The multidatabase answers de�ned in the previous section deviate from this ideal in two

cases: when no answer is available, and when several di�erent answers are available. In

either case, it is clear that a single perfect answer (i.e., an answer identical to the real world

answer) cannot be determined from the multidatabase environment. At best, the system can

provide an approximation of this elusive perfect answer. In this section, we discuss important

extensions to the formal Multiplex model presented in Section 3, to handle these situations.

Intuitively, a global query cannot be translated to an equivalent query of the available

views, because the mapping of the global scheme to the member schemes is not total; i.e.,

some information \promised" in the global scheme cannot be \delivered". The most common

reason for this is that some member databases are not responding. But a similar situation

would occur if some of the requested information cannot be delivered due to insu�cient

permissions, or due to some resource having been exhausted before the entire answer could

6Note that possibly none of the candidate answers is consistent with the real world answer.
7Note the di�erence between an empty set of answers and an empty answer.
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be obtained (e.g., time, or some other cost measure). In situations where a query Q cannot

be rewritten as an equivalent query of the available views, an issue of great importance is how

well can Q be approximated using the available views; i.e., what is the best approximation

of Q that can be evaluated from the views?

Intuitively, a global query is translatable to di�erent equivalent queries over the available

views, because the mapping of the global scheme to the member schemes is not single-valued;

i.e., there exists a view of the global scheme that can be materialized in more than one way.

This happens when two view pairs of the mapping have the same view in their �rst position.

Obviously, for every translation that uses one view, there is an equivalent translation that

uses the other view. More generally, it happens when two pairs have overlapping views in

their �rst position, as this implies that the intersection view can be mapped in two di�erent

ways. The most common reason for such multivalued mappings is that the information

resources have overlapping information. Unless the ICA holds, these di�erent translations

could evaluate to di�erent answers. In situations where there are di�erent ways to rewrite

Q as an equivalent query of the available views, and they evaluate to di�erent answers, an

issue of great importance is whether any one speci�c answer should be preferred over the

others, or how the answers could be combined into a single answer.

Our discussion of approximative answers is divided into two. First we assume that the

ICA holds. Next we assume that the ICA does not hold. We begin with concepts that will

be used in both situations.

4.1 Sound and Complete Answers

Recall our assumption of a (hypothetical) database that represents the real world perfectly.

Under the Model Consistency Assumption (which is adopted in Multiplex) all database mod-

els (schemes and constraints) are derivatives of this database, and without loss of generality

we assume now that the model of the available database is identical to the real world model.

Let (D;C; d0) denote the real world database, and let (D;C; d) denote the actual database.

Therefore, the database instance d is an estimate of the real database instance d0.

Consider a query Q on the database scheme D. Let q denote its answer in the database

instance d, and let q0 denote its answer in the database instance d0; i.e., q0 is the perfect

answer, and q is its estimate from the actual database instance. Following [30], we say that

q is a sound answer if q � q0, and q is a complete answer if q � q0. If q is both sound and

complete then q has integrity.

Clearly, the perfect answer q0 lies \between" any sound answer qs and any complete

answer qc: qs � q0 � qc. When the perfect answer cannot be computed from the avail-

able database, sound and complete answers serve as \below" and \above" approximations.

Clearly, it is desirable to obtain the \largest" sound answer and the \smallest" complete

answer. Together, these provide the tightest approximation for the perfect answer.

Consider a subanswer of Q (a subview enlarged with nulls to the scheme of Q). The
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elements of the subanswer are elements of q0; hence the subanswer is a sound answer.
8

Consider a superanswer of Q (a superview projected on the scheme of Q). The elements of

q0 are elements of the supernaswer; hence the superanswer is a complete answer. Intuitively,

combining subanswers and superanswers (through union and intersection) will provide us

with the aforementioned \largest' sound answer and \smallest" complete answer.

However, when the ICA does not hold, inconsistencies among subanswers and superan-

swers are possible. For example, we may encounter a subanswer and a superanswer where

the former is not contained in the latter (i.e., some elements of the subanswer are not in the

superanswer).

It is possible to de�ne models where such inconsistencies are resolved by preferring certain

answers over others (based on known external properties of the answers). Multiplex assumes

that no such additional information is available, in e�ect accepting all answers, subanswers

and superanswers as \equally good". Inconsistencies are then resolved on the basis of voting.

Sound answers establish that certain data are included in q0; complete answers establish

that certain data are excluded from q0. Therefore, the soundness or completeness of an

answer may be interpreted as a claim (a vote) on each element of the domain of the answer:

a sound answer is a yes vote for its members, and a maybe vote for all its non-members. A

complete answer is a maybe vote for its members and a no vote for all its non-members.

The assumption that all information is \equally good" is interpreted that each subanswer

claims to be sound, each superanswer claims to be complete, and each answer claims to be

both sound and complete. Our assumption that no additional information is available implies

that all claims have the same likelihood of being correct; i.e., their individual votes have equal

weights.

We now propose the following three-valued operation to combine conicting votes:

yes no maybe

yes yes maybe maybe

no maybe no maybe

maybe maybe maybe maybe

Briey, this operation reects the attitude that the �nal verdict should be de�nite if and

only if all votes are consistent. It is easy to verify that this operation is associative.
9

Consider an example with two answers q1 and q2. There are four subsets of the answer

space that are treated homogeneously: q1 \ q2, q1 � q2, q2 � q1, and q1 [ q2, . The subsets

for which the vote is yes suggest a sound answer; the subsets for which the vote is not no

suggest a complete answer. It is easy to verify that the elements in q1 \ q2 have a yes vote,

elements in q1 � q2 and in q2 � q1 have a maybe vote, and all other elements have a no vote.

Hence, q1 \ q2 is voted as a sound answer, and q1 [ q2 is voted as a complete answer.

8We consider a tuple with null values to be sound if its non-null values match those of a tuple of q0.
9Associativity assures that the order in which the candidate answers are considered is immaterial.

18



4.2 Approximation under the ICA

If we assume that the Instance Consistency Assumption holds, then the only possible anomaly

are queries for which \full answers" (answers that respond to the entire query) are unavailable.
10

We de�ne \partial answers" (which the ICA would guarantee to be mutually consistent), and

we show how they should be combined into approximative answers, consisting of the largest

sound and the smallest complete answers.

Because the ICA holds, then every subview of Q that can be expressed with the available

views would evaluate to a sound approximation of the answer to Q, and any superview of Q

that can be expressed with the available views would evaluate to a complete approximation

of the answer to Q.

As an example, assume the global scheme Emp = (Ename; Salary;Department; Location)

and the views

V1 = projectEname;SalaryEmp

V2 = projectEname;SalaryselectDepartment=designEmp

V3 = projectEname;DepartmentEmp

V4 = projectEname;DepartmentselectSalary>40Emp

V5 = projectDepartment;LocationEmp

and consider these two queries:

Q1 = projectEname;Salary;Department;LocationEmp

Q2 = projectEname;DepartmentselectSalary>50^Location=midtownEmp

Consider �rst Q1. Normally, it would be answered by joining V1, V3 and V5. Suppose that V1
and V5 are not available. By substituting V2 for V1, the system can provide the names and

departments of all the employees, and the salaries of some of the employees, but locations

for none of the employees. In e�ect, this information is the union of two subviews of Q1.

Consider now Q2. Normally, it would be answered by joining V1, V3 and V5 and selecting

Location = midtown and Salary > 50. Suppose that V1 is not available. By joining V3 and

V5 and selecting location = midtown the system can provide the names and departments of

the midtown employees. By itself, V4 provides the names and departments of the employees

who earn over 40. Each of these answers contains the requested answer. The intersection of

these two superviews of Q2 provides the requested information for the midtown employees

who earn over 40, a set which is \close" to the answer.

Let D = fR1; : : : ; Rng denote a database scheme, let M = fV1; : : : ; Vmg denote a set of

views of D, and let Q be a query of D. A view V of M is a maximal sound approximation

of Q using M , if V v Q, and for every view V 0
of M : V 0 v Q ) V 0 v V . A view V of M

is a minimal complete approximation of Q using M , if V w Q, and for every view V 0
of M :

V 0 w Q) V 0 w V .

10If one or more full answers are available, then because they are mutually consistent, any answer may be

chosen at random.
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The following results follow from mathematical set theory. The maximal sound approx-

imation of Q using M is the union of all the subviews of Q that are expressible with views

of M :

S
fWM jWM v Qg. The minimal complete approximation of Q using M is the inter-

section of all the superviews of Q that are expressible with views of M :
T
fWM jWM w Qg.

Assume a multidatabase with scheme D, constraints C, and mapped views M . When a

query Q on this multidatabase has no answer, the approximate answer to Q is the pair of

maximal sound approximation and minimal complete approximation:

<
[
fWM jWM v Qg;

\
fWM jWM w Qg > (1)

Observe that, because the ICA holds, when Q is answerable in its entirety, this approx-

imation converges to a single answer, as described in Section 3.9. Note that a minimal

complete approximation is not guaranteed, because a query might have no superviews that

can be expressed with the available views. Assume a database scheme with two relations

R1 and R2 and one view V1 = R1, and consider the query Q = R2. Clearly, Q cannot be

expressed with the available views; moreover, there is no view of the available views that is a

superview of Q. On the other hand, a maximal sound approximation is guaranteed because

a subview (possibly empty) of a query always exists.

4.3 Approximation when the ICA Does Not Hold

Assume now that the Instance Consistency Assumption does not hold. In constructing an

approximation for a query, we must consider both full answers and partial answers (subviews

and superviews of the answer).

Let D = fR1; : : : ; Rng denote a database scheme, let M = fV1; : : : ; Vmg denote a set of

views of D, and let Q be a query of D. The result of the query translation algorithm is three

sets of views:

1. q1; : : : ; qk are the available answers,

2. s1; : : : ; sm are the available subviews of the answer, and

3. c1; : : : ; cn are the available superviews of the answer.

We assume that all these answers are independent of each other; that is, none of the trans-

lations are subviews of each other.

After the appropriate enlargements and projections, we have a total of k+m+n answers

that vote on the entire answer space. Every qi votes yes on its members and no on all other

elements; every si votes yes on its members, and maybe on all other elements; and every ci
votes maybe on its members and no on all other elements. Observe, however, that tuples
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may now be only partially speci�ed (i.e., with null values). The question whether a tuple is

a member of an answer is indeed whether a tuple could be a member of an answer.

The set of tuples for which the vote was unanimously yes is adopted as a sound estimate.

The tuples the vote was not unanimously no is a adopted as a complete estimate:

< ft j t has only yes votesg; ft j t does not have all no votesg > (2)

Observe that these are now estimates of a sound lower bound and a complete upper bound:

since the candidate answers and partial answers are not assumed to be sound or complete,

the lower approximation is not guaranteed to be sound, and the upper approximation is not

guaranteed to be complete.

Our assumption here is the most general: that the ICA does not necessarily hold, and

that the translation algorithm delivers both full answers and partial answers (i.e., subviews

and superviews). When more speci�c assumptions are made, this solution is simpli�ed.

First, if only full answers are considered, then these estimates are reduced, respectively, to

the intersection and union of the full answers: <
Tk
i=1 qi;

Sk
i=1 qi >. Second, if the ICA

holds, but only partial answers are available, then these estimates are reduced, respectively,

to the subview union and the superview intersection (Formula (1)). Finally, if the ICA holds,

and a full answer is available, then these estimates converge to the simple answer de�ned at

the end of Section 3.9.

The above estimates are aimed at maximizing soundness (the lower estimate) and com-

pleteness (the upper estimate). It is also possible to de�ne answers \in between" these two.

For example, the set of tuples for which at most one vote was not yes, the set of tuples for

which at most two votes were not yes, and so on. This creates a sequence of containing an-

swers that increase overall completeness while reducing overall soundness. It is then possible

to provide the most sound answer which meets a user requirement on minimal answer size,

or the largest answer which meets a user requirement on minimal soundness, and so on.

As mentioned earlier, when additional assumptions on the candidate answers can be

made, more elaborate consolidation techniques may be developed. Elsewhere, we describe

how the quality of databases can be measured using the dual measures of soundness and

completeness, which estimate the discrepancy between the given database and the perfect

database [33]. For example, a bibliographic source might estimate its collection of citations

on Italian Renaissance to be 85% sound 65% complete, an airline guide might estimate its

listings of transatlantic ights on non-American carriers to be 98% sound and 80% complete,

and so on. An essential part of that work is to accurately infer the quality (soundness and

completeness ratios) of the answers to arbitrary queries. In the context of Multiplex, this

means that candidate answers could have di�erent quality ratings. The aforementioned

voting schemes could then be adapted to consider this information.
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5 Implementation

As explained in the introduction, the Multiplex model is intended to provide both a formal

foundation for research in multidatabases, and a practical architecture for a multidatabase

system. Of course, actual implementations must consider additional details; yet the general

principles of the Multiplex model would be upheld. In this respect it is similar to the rela-

tional model itself, whose formal de�nitions must be augmented with practical considerations

in any implementation (e.g., optimization).

A prototype of the multidatabase model described in this paper has been implemented.

This software system is still evolving, and presently it does not yet include integrity con-

straints. A simple diagram of the system is shown in Figure 1.

Figure 1: A diagrammatic view of the Multiplex system.

The architecture and features of the Multiplex DBMS has six functional components:

(1) user interface, (2) query parser, (3) query translator, (4) view retriever, (5) query opti-

mizer, and (6) query processor, and it uses two sources of metadata: (1) a database scheme

�le, and (2) a database mapping �le.

The user interface, the query parser, the query optimizer, the query processor, and the

database scheme �le are functionally similar to those of generic DBMS. There are two signif-

icant di�erences between a generic DBMS and Multiplex: (1) Multiplex does not have any

relations; \instead" it has a scheme mapping �le that matches views of the global scheme with

views of the member databases. (2) Between the parsing and optimizing phases, which in a

generic DBMS follow each other, the Multiplex query translator translates the global query
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to a query of the \available views", and the Multiplex view retriever obtains the necessary

views from the member databases. The translated query is then optimized and processed

in the retrieved views in very much the same way as in a generic DBMS. Indeed, Multiplex

retrieves views into a commercial DBMS (Orcale), and then submits the translated query to

be optimized and processed by this DBMS.

The software architecture of Multiplex is described in a separate document. Here we

mention briey several notable aspects of the system:

1. Multiplex uses the HTTP protocol for communicating with the member databases. In

other words, it is a World Wide Web application. The user interface is accessible via

WWW browsers, and client databases are invoked by so-called \cgi scripts".

2. For its query translation, Multiplex uses the DRP software package [12], which has been

enhanced with many modi�cations and improvements. For example, the translated

query is modi�ed further in an attempt to reduce transmission costs, using techniques

known from distributed query optimization [10].

3. With respect to heterogeneity, presently, Multiplex can retrieve information from six

kinds of sources: (1) relational (using Oracle), (2) object-oriented (using Ode), (3) sim-

ple �les (using Unix shell scripts), and (4) Wide-area information services (WAIS, using

SWISH 1.1 and WWWAIS 2.5) (5) spreadsheets (Microsoft Excell, HTML output), and

(6) menu-based (the XLibris library retrieval system).

4. Multiplex answers (refer to Formula (2)) are presented, using color, as two relations:

one contains the sound estimate, the other contains the tuples that augment the sound

estimate to a complete estimate (i.e., the union of both relations is the complete es-

timate), and users are advised that the answer to their query is estimated to contain

the �rst relation plus a subset of the second relation.

5. Multiplex extends the query language of conjunctive queries with aggregate functions.

A language based on conjunctive queries with aggregation provides a fairly powerful

querying tool.

Overall, the linkage between the global database and the contributing sources is rather

quick, requiring only entering pairs of equivalent queries in the mapping �le. The result is

that new information sources may be \plugged-in" very quickly.

6 Comparison with Other Approaches

As mentioned in the introduction, there has been considerable work in the area of multi-

databases. A comprehensive discussion of every project or product is beyond the scope of this

paper. In this section we compare our model and system to four di�ernt works, representing

fairly di�erent approaches.
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UniSQL [20] is an example of a multidatabase system based on a comprehensive map-

ping of its global database scheme to the component database schemes. UniSQL provides an

exhaustive framework for handling schematic heterogeneity (i.e., intensional inconsistencies)

among the participating databases. Its reliance on pre-de�ned, comprehensive mappings dic-

tates that UniSQL may not be as suitable for ad-hoc integration, in which (1) relatively small

portions of the component sources are of interest (their entire schemes possibly being irrele-

vant, unavailable or incomprehensible), and (2) component sources change frequently, with

new sources being added and existing sources undergoing structural changes, or becoming

altogether obsolete.

The TSIMMIS project [16] is an example of a system that is based on mediators and

wrappers. Mediators [40] are software modules designed to deal with representation and

abstraction problems that occur when trying to use data and knowledge resources. Media-

tors are understood to be active and knowledge-driven. Wrappers [41] are simpler software

interfaces that allow a heterogeneous information sources to appear as if they conform to a

uniform design or protocol. For example, a wrapper could be built to make a legacy database

respond to a subset of SQL queries, as if it were a relational database. Multiplex makes fairly

standard use of wrappers. With respect to mediators, a Multiplex query (a global view) may

be considered a new \object". Its translation produces an ad-hoc \mediator", describing how

the global object is to be constructed from the presently available sources. The advantage

of such \dynamic mediation" are two: (1) Whereas with \static" mediators all integrated

\objects' must be anticipated and prede�ned, in Multiplex an unlimited number of global

objects may be de�ned spontaneously. (2) Static mediators need to be rede�ned whenever

the available information sources change, whereas Multiplex only needs to have its mapping

updated.

The approach of SIMS [3] to the integration problem is somewhat di�erent. SIMS creates

a domain model of the application domain, using a knowledge representation language to

establish a �xed vocabulary describing objects in the domain, their attributes, and the rela-

tionships among them. Given a global query, SIMS identi�es the sources of information that

are required to answer the query and reformulates the query accordingly. SIMS is similar to

Multiplex in that both do not rely on pre-programmed mediators, making the addition of

new sources relatively simple. In both systems new sources have only to be described to the

system. In SIMS, this description is in the knowledge representation language, using terms

in the shared domain model; in Multiplex it is via pairs of equivalent views. Arguably, the

SIMS descriptions are more demanding, but may allow the system to perform additional

tasks. In contradistinction, Multiplex makes no claims of \intelligence"; it is a direct exten-

sion of relational model concepts, without the costs, risks, and possibly some bene�ts of a

\knowledge-based" approach.

In many ways, the Information Manifold (IM) [2] is similar to SIMS. IM uses an object-

relational model to integrate the various information sources, called sites. The individ-

ual sites are described and related to the global scheme, called the world-view, using the

knowledge description language Classic. Like Multiplex, global query processing requires

translation from the global set of relations to the set of available views. Like SIMS, and
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unlike Multiplex, the selection of relevant sites depends heavily on the quality of the site

descriptions.

Finally, it should also be noted that none of these systems considers extensional inconsis-

tencies (\too much data") and their handling of partial ansewrs (\too little data") is quite

limited.

7 Conclusion

The Multiplex model that was described in this paper is both formal and pragmatic. It is

a formal extension of the relational database model to multidatabases. This formalization

reects the important pragmatic issues encountered in actual multidatabase environments,

and it can serve as the formal model behind many previous ad-hoc integration models that

have already been designed.

The Multiplex model is also simple to implement, and when various pragmatic issues are

addressed properly, it should prove to be highly practical. Towards this goal, we review here

its present limitations and discuss several open issues.

Multiplex assumes that both the multidatabase queries and the available views are con-

junctive (queries can also use aggregate functions). Queries to the member databases (to

materialize the available views) may be arbitrary. The assumption of conjunctive queries

and views follows from current translation algorithms. Multiplex also assumes that the mul-

tidatabase constraints are conjunctive. Again, the constraints on the member databases may

be arbitrary. The assumption on conjunctive constraints follows from current algorithms for

inferring the constraints that apply to a speci�c query from the global constraints. In addi-

tion to the algorithms just mentioned, we note the still open problem of providing minimal

complete estimations to unavailable answers.

Recall that the only role of multidatabase constraints in Multiplex is to possibly invalidate

candidate answers. A possible direction for research is to use multidatabase constraints also

to \clean-up" global answers that do not satisfy the constraints.

Multidatabase design may be described as a mediation between the information needed

(as expressed in the global database scheme) and the information available. The media-

tion process generates mappings that match information available (a view of some member

database) with information needed (a view of the global scheme). An interesting issue that

was not addressed in this paper is the design of the mapping. For example, a problem

that might concern the designer is whether a present set of mapped views \covers" the

global scheme. Formally, given a database scheme D = fR1; : : : ; Rng, does a set of views

M = fV1; : : : ; Vmg guarantee that every query of D is expressible with M . Moreover, is

it possible to characterize the queries that are not expressible, thus suggesting a view that

would complement M?
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One of the unique features of Multiplex is that it resolves cross-source inconsistencies,

essentially using the approximations in Formula (2). In this approach, every candidate tuple

t is voted upon by each of the candidate answers. Because there are no assumptions on tuple

identi�ers (keys), there is no attempt to coalesce tuples. For example, when two employee-

salary tuples (Jones, 33) and (Jones, 35) are contributed by two di�erent sources, each would

get only a single \yes" vote, implying that both would only be included in the upper bound.

The present direction in the development of Multiplex is to use information about keys to

coalesce tuples that share the same key. In this process, users would be given complete

control over the resolution of non-key conicts. In the above example, assuming that the

�rst attribute is a key, the two tuples would be coalesced: the user could resolve the conict

in the second attribute in variety of ways; e.g., by designating one source as preferred, by

using the median value (the value most cited), or by averaging the di�erent values. The

strategies for resolving conicts would be stated as part of the multidatabase design.
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