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Abstract

In several recent works a common scenario is described: a relational database
scheme R and a set of views V of this scheme are de�ned, and queries on the database
scheme R must be transformed to equivalent queries on the views V . Given a query Q
on R, the �rst problem is whether there exists a query QV expressed exclusively on V
which is equivalent to Q, and, if it exists, how to �nd it. Clearly, an equivalent QV may
not always exist. In such a case, it is important to approximate Q as best as possible
with a query on V . The problems here are to de�ne approximations, to determine
whether a best approximation exists, whether it is unique, and how to �nd it. In this
paper we formalize and answer these questions. Speci�cally, we show that the following
problems are decidable for a conjunctive query Q and a set of conjunctive views V :
(1) is there a conjunctive query QV on V that is equivalent to Q, and (2) is there a
union QU of conjunctive queries on V that is equivalent to Q? Furthermore, we show
that QV and QU are e�ectively computable if they exist. Moreover, the greatest lower
bound of Q exists and is unique up to equivalence. This is done by introducing lower
bound classi�cations, and proving their existence, �niteness and e�ective computabil-
ity. This problem has many interesting applications, including physical database design
(aimed at optimization of query processing), cooperative answering (where answers are
annotated with some of their properties), and multidatabase query decomposition. We
examine these applications, and we show how our work extends earlier results obtained
in these applications.

�The work of Brodsky was supported in part by NSF Research Initiation Award (1994) No. 92-122, and
by O�ce of Naval Research under prime grant No. N00014-94-1-1153. The work of Motro was supported in
part by ARPA grant, administered by the O�ce of Naval Research under Grant No. N0014-92-J-4038.
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1 Introduction

In several recent works a common scenario is described: a relational database scheme and
a set of views of this scheme are de�ned, and queries on the database scheme must be
transformed to equivalent queries on the views.

This problem has many interesting applications, including physical database design (aimed
at optimization of query processing), cooperative answering (where answers are annotated
with some of their properties), and multidatabase query decomposition. These applications
are described in more detail in Section 2.

The basic problem is formalized simply as follows. Let R = fR1; : : : ; Rng denote a set of
relation de�nitions (a database scheme), and let V = fV1; : : : ; Vmg denote a set of views of
these relations (a view scheme). Transform a given query Q on the database scheme to an
equivalent query QV on the view scheme.

Obviously, not all queries Q can be transformed in this way. As a trivial example, assume
a database with relations R = (AB) and S = (BC), and a single view V = R ./ S. Consider
the query Q = �A=aR. Clearly, Q cannot be answered from the view V , because the join
may have removed some of R's tuples. In situations where a query cannot be transformed,
an issue of great importance is how well can Q can be approximated; i.e., what is the \best
estimate" for Q that can be evaluated from the views?

Following the terminology of [6], every query that is contained in Q is a sound approxi-
mation of Q: it includes only data from Q, but possibly not all of it; and every query that
contains Q is a complete approximation of Q: it includes all the data of Q, but possibly
some other data as well. Thus, the answer to Q is \sandwiched" between a sound approx-
imation and a complete approximation. Clearly, it is desirable to �nd the greatest sound
approximation (GSA) and the least complete approximation (LCA). 1

We consider views and queries that are conjunctive. The family of conjunctive queries
has the same power as the family of relational algebra queries with the operators Carte-
sian product, selection (where the selection formula is a conjunction of attribute-attribute
or attribute-constant comparisons) and projections. Section 3 reviews basic de�nitions and
results concerning conjunctive queries; in particular, query containment and query equiva-
lence.

First, we adapt a known result on the containment of conjunctive queries to queries on
views, providing an e�ective method for determining whether one such query is contained in
another.

Using lower bound concepts, we then show that the following problems are decidable for
a conjunctive query Q and a set of conjunctive views V: (1) is there a conjunctive query QV

on V that is equivalent to Q, and (2) is there a union QU of conjunctive queries on V that is

1Of course, the term least complete approximation refers to the least approximation which is complete,
not to the approximation which is the least complete!
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equivalent to Q? Furthermore, we show that QV and QU are e�ectively computable if they
exist. Moreover, the greatest lower bound of Q exists and is unique up to equivalence. This
done by introducing lower bound classi�cations, and proving their existence, �niteness and
e�ective computability.

These results guarantee that we can either translate Q to QV, or �nd the \best" approx-
imation for Q using V.

When resorting to approximations, it is also important to consider answers that are
incomplete because they are missing some of the attributes of Q. That is, partial answers
should also include any projections of Q that are expressible in V. This may be done by
applying the above results for arbitrary projections of Q.

These results, described in Sections 4 and 5, allow us to extend the results that have
been previously obtained in each of the aforementioned applications (i.e., physical database
design, cooperative answering, and multidatabases). These extensions are described in the
next section, which is dedicated to a review of these applications.

Section 6 concludes this paper with a summary of the contributions of this work and the
issues that are still under investigation.

2 Applications

The problem of transforming a query on a given set of relations to a query on a given set of
views of these relations has been encountered in at least three applications. In this section
we describe these applications and we comment on the solutions that have been designed.

2.1 Physical Database Design

The �rst to have addressed this problem have been Larson and Yang [4, 5]. The context in
which the problem was discussed is physical database design for relational databases. The
standard approach to physical database design is to maintain a one-to-one correspondence
between the relations declared in the scheme of the database and the relations that are
actually stored. The authors point out that for reasons of performance it may advantageous
to forgo this correspondence, and design physical relations that correspond to the actual
queries that the database will process. Queries and updates on the database scheme must
then be transformed to queries and updates on the stored relations.

A variant of this problem appears in distributed database systems, where queries may
need to be transformed to queries on the relation fragments that are stored at speci�c sites.
Fragments, however, are usually limited to selections and projections of a single relation [1].
In the area of query optimization, it has been suggested that it may be advantageous to store
intermediate results of query evaluation, or the �nal results of recently evaluated queries, as
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these may speed up the processing of new queries.

The family of queries considered by Larson and Yang is considerably larger than the
queries considered in the aforementioned variants. Larson and Yang assume queries and
views that involve projections, selections and joins. However, several non-trivial assumptions
are made, the most important of which is that a relation name may not appear more than
once. This restriction makes the issue of decidability (can a query on the relations be
transformed to a query on the views) straightforward.

The results obtained in this paper allow us to extend this work in two ways. First, we do
not impose this restriction, and we allow arbitrary conjunctive queries. Additionally, Larson
and Yang do not address the issue of approximative answers, when a query is not expressible
in terms of the views. In virtually all the applications that they cite, the ability to compute
an approximation of the given query from the views is highly desirable.

2.2 Cooperative Answering

In [6] it is observed that the primary concern of users of any information system is the in-
tegrity of its answers. This concern may be divided into two parts: (1) Is the answer sound?
i.e., is the information accurate in all respects? (2) Is the answer complete? i.e., does it
include all the occurrences that actually exist? Hence, answers have integrity, if they con-
tain the whole truth (completeness) and nothing but the truth (soundness). A new model of
integrity was introduced which was based on new kinds of integrity properties, called sound-
ness properties and completeness properties.2 A soundness property asserts that a particular
view of the database is guaranteed to be sound, and a completeness property asserts that a
particular view of the database is guaranteed to be complete. More speci�cally, a hypothet-
ical database instance is assumed that models the real world perfectly. A database view is
sound if it is contained in the corresponding real world view, and it is complete if contains
the corresponding real world view. The integrity properties of a database are denoted as
view de�nitions. This information is then used to infer the soundness and completeness
properties of answers that are issued in response to individual queries.

Formally, assume a database scheme R1; : : : ; Rn and assume that S1; : : : ; Sm are def-
initions of views of this database that are declared to be sound and that C1; : : : ; Ck are
de�nitions of views that are declared to be complete. Consider a query Q on R1; : : : ; Rn.
The answer to Q is sound if it can be rephrased as a view of the sound views S1; : : : ; Sm,
and it is complete if it can be rephrased as a view of the complete views C1; : : : ; Ck. If the
answer to Q is not sound or complete, it is important to determine whether any part of it is
sound or complete; i.e., discover the views of Q that are views of S1; : : : ; Sm or of C1; : : : ; Ck.

In [8] the context is broadened to include arbitrary properties of the database (not neces-
sarily soundness and completeness). A database system is then described that allows users
to store various assertions about properties of the data (meta-information), and then uses

2Our terminology here is slightly di�erent from that used in [6].
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these assertions to infer properties of each answer computed by the system (meta-answers).
Meta-answers are o�ered to users along with each answer, and help them to assess the value
and meaning of the information that they receive. In many ways this process emulates the
cooperative behavior of humans, who, in response to questions, often volunteer additional
information about their answers.

In both papers, all queries and views are assumed to be conjunctive relational expressions;
speci�cally, each view or query is a Cartesian product of an arbitrary number of relations,
followed by a selection which is a conjunction of attribute-attribute or attribute-constant
comparisons, followed by an arbitrary projection. Let R1; : : : ; Rn denote the database rela-
tions, let V1; : : : ; Vm denote de�nitions of views with a speci�c property, and let Q denote
a query. A method is described for inferring views of Q that are views of V1; : : : ; Vm (i.e.,
views of the answer that have the speci�c property).

In the terminology of the introduction, ifQ itself is one of these inferred views, then Q can
be transformed. Otherwise, the union of the inferred views provides a sound approximation
of the query. The inference method is shown to be sound (i.e., it discovers only views that
indeed have the property), but is not necessarily complete (i.e., it may not discover all such
views).3 Consequently, it cannot be argued that this approximation is the best possible (i.e.,
the greatest sound approximation).

The results obtained in this paper allow us to extend the work described in [6, 8]. Specif-
ically, we provide the completeness missing from the previous results, which guarantees a
greatest sound approximation. In practice, when the database system issues an answer to a
user query, the user receives the most complete description of the portion of the answer that
possesses a speci�c property.

2.3 Multidatabases

One of the most challenging and applicative areas of research in information systems is
the integration of multiple information sources in a single virtual source that e�ectively
encompasses the information contained in the entire environment.

In [7] an attempt is made to provide formal de�nitions for fundamental concepts such as
a multidatabase, a multidatabase query and a multidatabase answer. These de�nitions are
intended to extend the commonly accepted de�nitions for a single database environment to
an environment of multiple databases, and to generalize many of the existing approaches to
database integration. A brief summary of this formalization follows.

A database is a database scheme D and an instance d of the scheme D. Assume two
database schemes D1 and D2. A scheme mapping (D1;D2) is a collection of view pairs
(Vi;1; Vi;2) (i = 1; : : : ;m), where each Vi;1 is a view of D1, each Vi;2 is a view of D2, and Vi;1 is

3Note that the soundness and completeness discussed here refer to the method of �nding views that have
a property; they should not be confused with soundness and completeness described earlier, which were two
speci�c examples of properties.
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equivalent to Vi;2. Intuitively, \equivalence" means that the materializations of both views
are always identical. A multidatabase is

1. A scheme D.

2. A collection (D1; d1); : : : ; (Dn; dn) of databases.

3. A collection (D;D1); : : : ; (D;Dn) of scheme mappings.

This de�nition provides three important \degrees of freedom" which reect the realities
of multidatabase environments.

First, the mappings from D to the individual databases are not necessarily \total";
i.e., not all views of D are expressible in every individual database (and even if they are
expressible, there is no guarantee that they are mapped). This models the dynamic situation
of a multidatabase system, where some component databases might become temporarily
unavailable. In such cases the corresponding mappings are \suspended", and some global
queries might not be answerable in their entirety.

Second, these mappings are not necessarily \onto"; i.e., the individual databases may
include views that are not expressible in D (and even if they are expressible, there is no
guarantee that they are mapped). This models the pragmatism of multidatabases, which
usually cull from existing databases only the information which is relevant to a speci�c set
of applications.

Finally, the mappings are not necessarily \single-valued"; i.e., a view of D may be found
in several component databases. This models the realistic situation, in which information
is found in several overlapping databases, and provides a formal framework for dealing with
multidatabase inconsistency.

Intuitively, the views in the �rst position of the mappings are \the answerable questions"
at the global level, and the views in the second position describe how these answers are
materialized. (Indeed, the component databases need not be relational, and the views in
the second position need not be relational expressions. The only requirement is that they
compute a tabular answer.)

A multidatabase query is simply a query on the schemeD. The answer to a multidatabase
query is obtained by transforming it to a query over the views in the �rst positions of the
mappings (the answerable questions). Speci�c solutions to this transformation problem are
not discussed in [7].

The results obtained in this paper extend this work described in [7] in two ways. First,
we provide accurate semantics to the concept of a multidatabase query, by showing how
a multidatabase query is transformed to a query over the \answerable questions". This
improves the speci�city of the formal model of multidatabases presented there. Moreover, as
explained above, in multidatabases it is essential to provide partial answers, when complete
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answers cannot be computed. The approximative answers we compute in this paper may
serve as partial answers.

3 Conjunctive Queries: Containment and Equivalence

In this section we review the de�nition of conjunctive queries and results regarding their
containment and equivalence. Most of the description here is from [10], with some changes
in notation.

We consider arbitrary conjunctive queries of the form

fX0 j R1(X1); : : : ; Rm(Xm); Cg

where R1; : : : ; Rm are predicate symbols and X0;X1; : : : ;Xm are tuples in which each po-
sition is either a variable name or a constant, and C is a conjunction of equalities of the
form x = y or x = const, where x; y are variables appearing in X0;X1; : : : ;Xm. Note that
R1; : : : ; Rm are not necessarily distinct. In the following sections we will consider a more
general form of conditions C.

A database is a collection of relations, one for each predicate symbol in the query. Thus,
each predicate symbol Ri in the query has an associated relation ri in the database. Note
that, if Ri = Rj for i 6= j (Ri and Rj is the same relation name), then ri = rj . The answer
to the query is a relation de�ned by

fX0 j (9Y )(X1 2 r1 ^ : : : ^ (Xm) 2 rm ^ Cg

where Y is the set of all variables in X1; : : : ;Xm which are not in X0.

Since constants and multiple occurrences of the same variable in X0;X1; : : : ;Xm can
always be expressed by adding corresponding equalities to C, we shall assume without loss of
generality that queries are recti�ed, that is, each position in tuples X0;X1; : : : ;Xm contains
a unique variable name. Thus, all equalities among predicate attributes and constants must
be stated in C.

Let Q1 and Q2 be two conjunctive queries. Q1 is contained in Q2, denoted Q1 � Q2, if
for every database the answer relation to Q1 is contained in the answer relation to Q2. Q1

is equivalent to Q2, denoted Q1 � Q2, if for every database the answer relations to Q1 and
Q2 are identical. Note that Q1 � Q2 if and only if Q1 � Q2 and Q2 � Q1.

The key to the testing of containment Q1 � Q2 is a variable mapping h from the set
W2 of variable names in Q2 to the set W1 of variable names in Q1. This mapping ex-
tends naturally to symbolic expressions that contain variables, by \pushing" h inside expres-
sions. That is, h((x1; : : : ; xn)) = (h(x1); : : : ; h(xn)), h(R(x1; : : : ; xn)) = R(h(x1; : : : ; xn)) =
R(h(x1); : : : ; h(xn)), and conditions x = y and x = const are mapped to h(x) = h(y) and
(h(x) = const, respectively.
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Let
Q1 = fX0 j R1(X1); : : : ; Rm(Xm); C1g
Q2 = fY 0 j S1(Y 1); : : : ; Sl(Y l); C2g

and let W1 and W2 denote the variable names in Q1 and Q2, respectively. A containment
mapping from Q2 to Q1 is de�ned as a variable mapping h from W2 to W1 that maintains

1. h(Y 0) = X0.

2. For every 1 � i � l there exists 1 � j � m such that h(Si(Y i)) = Rj(Xj) (in particular,
Si = Rj).

3. C1 j= h(C2); that is, for every mappingm of variables in C1 into constants, ifm satis�es
C1 then m satis�es h(C2).

The following is a result of Chandra and Merlin [2].

Theorem 1 Q1 � Q2 if and only if there exists a containment mapping from Q2 to Q1.

Theorem 1 was extended by Sagiv and Yannakakis to unions of conjunctive queries [9].
The conjunctive queries discussed so far allowed only equality comparisons. For comparisons
that involve inequalities, Klug showed a condition su�cient for containment [3].

Our results in this paper hold for conjunctive queries with arbitrary conditions C for
which Theorem 1 holds, and for which the following is computable: for given conditions C1

and C2, �nd the weakest condition CV such that C1 ^ CV j= C2.

4 Queries on Views: Containment, Expressibility, and

Approximation

We consider views expressed by conjunctive queries. Suppose views V = fV1; : : : ; Vkg

Vi = fX i j R
i
1
(Y

i

1
); : : : ; Ri

mi
(Y

i

mi
); C ig

We can de�ne queries on the views V, such as

QV = fX0 j V1(X1); : : : ; Vk(Xk); CVg

To evaluate QV, �rst the relations v1; : : : ; vk are evaluated by the queries V1; : : : ; Vk, then
QV is evaluated on the relations v1; : : : ; vk. The de�nition of containment and equivalence of
conjunctive queries naturally extends to the case of queries expressed on views. Note that
some of the views Vi can be database relation names, so queries may mix views and relations.

A query expressed on views can also be expressed as a query on the original database.
We assume now without loss of generality that the only common variables in QV and Vi,
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1 � i � k, are those in X i. For a query QV on views V, we de�ne its view-free counterpart
Q�

V
by replacing each Vi(X i) in QV with

Ri
1
(Y

i

1
); : : : ; Ri

mi
(Y

i

mi
); C i

which is the de�nition of Vi. More formally,

Q�

V = fX0 j R1

1
(Y

1

1
); : : : ; R1

m1
(Y

1

m1
);

R2

1
(Y

2

1
); : : : ; R2

m2
(Y

2

m2
);

...

Rk
1
(Y

k

1
); : : : ; Rk

mk
(Y

k

mk
);

C1 ^ C2 ^ � � � ^ Ck ^ CVg

The following proposition follows directly from the de�nitions:

Proposition 1 QV � Q�

v

Proposition 1 and Theorem 1 trivially imply

Theorem 2 QV1 � QV2 if and only if there exists a containment mapping from Q�

V2
to Q�

V1
.

For approximations of queries using views we need various notions of lower bounds.4

Consider a query QV on views V

fX0 j V1(X1); : : : ; Vk(Xk); CVg

De�nition 1 A query Q0

V
syntactically contains QV , if Q0

V
can be constructed from QV by

deleting some atoms Vi or replacing the constraint C by a strictly weaker constraint C 0 (that
is, C j= C 0, but C 6� C 0.)

De�nition 2 QV is a lower bound of a query Q on R if QV � Q. QV is a maximal lower
bound of Q if (1) it is a lower bound, and (2) no other lower bound Q0

V of Q syntactically
contains QV.

Consider now a query QU which is a union of conjunctive queries

QU =
n[

v=1

QV

De�nition 3 QU is a greatest lower bound of a query Q on R, if (1) it is a lower bound,
and (2) every lower bound Q0

U (that can be a union of conjunctive queries) is contained in
QU (Q0

U � QU).

4In this and the next section we shall use the term lower bound instead of the term sound approximation

that was used in Sections 1 and 2.
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We are interested in answering the following expressibility and approximation questions
for a given conjunctive query Q on R and a prede�ned collection V of views fV1; : : : ; Vkg.

1. Does a query QV exist, which is equivalent to Q and is expressed exclusively through
V? If so, how to �nd QV?

2. If QV does not exist, does a query QU exist, which is a greatest lower bound of Q and
is expressed exclusively through V? If so, is it unique up to equivalence of queries, and
how to �nd QU?

3. If QV does not exist, and P is an arbitrary projection of Q, does a query PV exist,
which is equivalent to P and is expressed exclusively through V? If so, how to �nd
PV?

4. If PV does not exist, does a query PU exist, which is a greatest lower bound of P and is
expressed exclusively through V? If so, is it unique up to equivalence of queries, and
how to �nd PU?

To illustrate the relevance of these questions to the applications described in Section 2,
consider the example of multidatabases (Section 2.3). Q is a multidatabase query and V
describes the local queries that are currently answerable. If the �rst question is answered
positively, then the multidatabase query Q can be processed successfully, and the expression
QV provides the necessary decomposition of the \global" query to \local" queries. The
second question becomes interesting when the �rst question is answered negatively. If a
unique QU exists and can be found, then a method is available for assembling from the
available information the best sound approximation for Q. Intuitively, this approximation
provides the largest number of tuples that satisfy the query that are currently obtainable. It
represents \the best the system can do at the moment". When resorting to approximations,
it is also important to consider answers that are incomplete because they are missing some
of the attributes of Q. That is, partial answers should also include any projections of Q that
are obtainable. The third and fourth questions repeat the �rst and second questions with
respect to projections of Q.

To answer these questions, we �rst develop the useful tool of lower bound classi�cation.

5 Lower Bound Classi�cation

Two queries may be identical, except for a renaming of their variables and a reordering of
their atoms. Formally, Q1 (with variablesW1) and Q2 (with variablesW2) are are isomorphic
if there exists a bijective variable mapping m from W1 to W2, such that both m and m�1

are containment mappings. Clearly, the isomorphism is an equivalence relation. We say also
that two sets of queries S1 and S2 are identical up to isomorphism, if there exists a bijective
function m mapping each query in S1 to an isomorphic query in S2. Note that in this case
S1 and S2 have the same cardinality.
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De�nition 4 A lower bound classi�cation of Q is a �nite set S of query maximal lower
bounds QV having the following properties:

1. Completeness: for every lower bound Ql of Q, there exists QV in S containing Ql

(Ql � QV).

2. Minimality: no two maximal lower bounds in S are isomorphic.

Lower bound classi�cation, if it exists, allows answering all the expressibilty and approx-
imation questions formulated in the previous section.

Theorem 3 The following problems are decidable: For a lower bound classi�cation C of a
conjunctive query Q and a collection of views V, whether there exist

1. a conjunctive query QV on V that is equivalent to Q and

2. a union of conjunctive queries QU on V that is equivalent to Q.

Furhermore, given C, each of QV and QU is e�ectively computable if it exists. Moreover, the
greatest lower bound of Q exists and is unique up to equivalence.

Proof If a conjunctive query QV on V is equivalent to Q, it is a maximal lower bound
of Q. In this case, we can �nd it in C, which is �nite. This proves the decidability of the
�rst problem, and the e�ective computablitly of QV .

Consider
QU =

[
fQV j QV 2 CVg

The query QU is a greatest lower bound of Q, since every lower bound of Q is contained in
QU , and thus, so is every union of lower bounds.

Clearly, a greatest lower bound QU is equivalent to Q if and only if Q is expressible as a
union of conjunctive queries on V. This proves the decidability of the second problem and
the e�ective computability of QU .

Finally, the uniqueness of the greatest lower bound up to equivalence follows from its
de�nition. 2

Theorem 4 A lower bound classi�cation (LBC) of Q and V exists. Furthermore, all LBCs
are identical up to isomorphism, and �nite (and therefore have the same number of queries).
Moreover, the LBC is e�ectively computable.

11



Proof (sketch)
Let Q be

fX0 j R1(Z1); : : : ; Rm(Zm); Cg

and the views Vi be of the form

Vi = fX i j R
i
1
(Y

i

1
); : : : ; Ri

mi
(Y

i

mi
); C ig

Consider an arbitrary query on V

QV = fX0 j V1(X1); : : : ; Vk(Xk); Cg

which is a lower bound of Q. Then, by Theorem 2, there exists containment mapping h from
Q (Note that Q� = Q) to Q�

V, where Q
�
V is of the form

Q�

V = fX0 j R1

1
(Y

1

1
); : : : ; R1

m1
(Y

1

m1
);

R2

1
(Y

2

1
); : : : ; R2

m2
(Y

2

m2
);

...

Rk
1
(Y

k

1
); : : : ; Rk

mk
(Y

k

mk
);

C1 ^ C2 ^ � � � ^ Ck ^ CVg

The mapping h maps each Ri-atom in Q to a Rj
k-atom in Q�

V. Recall that each R
j
k-atom

originates from the corresponding Vj -atom of QV. In this case we say that the Rj
k-atom is

mapped inside the Vj atom of QV.

Clearly, the number of Vj -atoms inside which Ri-atoms are mapped is bounded by the
number of atoms Ri in the original query. If we eliminate all other Vj-atoms from QV, we
create a queryQ0

V , which still, by Theorem 2, is a lower bound of Q, and syntactically contain
QV.

We may conclude, that the number of Vj -atoms in every maximal lower bound Q is
bounded by the number of Ri-atoms in the original query Q.

The main idea of the lower bound classi�cation construction is based on the above prop-
erty. In the full paper, we build a �nite number of variables mapping h from Q to a \skeleton"
of Q�

V
, which looks exactly as Q�

V
, except it has a \?" in place of CV .

To produce a maximal lower bound for each such mapping h, we need to �nd the \weak-
est" condition CV such that

C1 ^ C2 ^ : : : ^ Ck ^ CV j= h(C)

In the full paper we show that by this construction we do not lose any maximal lower
bounds, and that no two of them are isomorphic. Thus produces maximal lower bounds
constite lower bound classi�cation. 2
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6 Conclusion

In this paper we have described preliminary results on the problem of optimal approximation
of queries on a database scheme by queries on a given view scheme. Much work remains to
be done, and we mention here two important issues.

We have mentioned in the introduction that the answer to a query Q is \sandwiched"
between a greatest sound approximation, and a least complete approximation. In this paper
we focused on the former (it also appears that to have more practical value). Further work
is necessary on the dual estimate LCA.

An important concept behind our techniques was query containment. Query containment
is based on tuple subset relationship: Q1 is contained in Q2 if every tuple of Q1 is a tuple
of Q2. In most of the applications, it is just as useful to provide approximations that are
based on a more general relationship by which Q1 is \contained" in Q2 if every tuple of Q1

is a subtuple of some tuple of Q2. For example, in the multidatabase application, a global
query on the positions and salaries of all employees could be approximated by the union of
the positions of all employees and the positions and salaries of all junior employees. We have
touched upon this issue when we discussed optimal approximations for arbitrary projections.
Yet, the problem of optimal approximations based on this broader notion of containment
requires further work.
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