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Abstract

Program faults are artifacts that are widely studied, but there are many aspects of

faults that we still do not understand. In addition to the simple fact that one important

goal during testing is to cause failures, and thereby detect faults, a full understanding of

the characteristics of faults is crucial to several research areas in testing. These include

fault-based testing, testability, mutation testing, and the comparative evaluation of

testing strategies. In this workshop paper, we explore the fundamental nature of faults

by looking at the di�erences between a syntactic and semantic characterization of faults.

We o�er de�nitions of these characteristics and explore the di�erentiation. Speci�cally,

we discuss the concept of \size" of program faults { the measurement of size provides

interesting and useful distinctions between the syntactic and semantic characterization

of faults. We use the fault size observations to make several predictions about testing

and present preliminary data that supports this model. We also use the model to o�er

explanations about several questions that have intrigued testing researchers.

Keywords: Faults and failures, mutation, fault seeding

1 INTRODUCTION

Many testing techniques and activities revolve around program faults. We often view testing

as a process of trying to cause failures, thereby looking for faults in the software, many testing
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techniques are speci�cally designed to identify faults, and we often evaluate testing techniques

on the basis of their ability to detect faults. Fault-based adequacy criteria [DLS78, Ham77,

Mor90] measure the quality of a test set according to its e�ectiveness or ability to detect

certain types of faults. Error seeding [Mil72, KA85, TH94] is a technique for estimating

the number of faults in the software. Arti�cial faults are seeded into the program, and the

testing is evaluated based on the number of seeded faults found.

The same criticism has been levied against both fault-based testing and error seeding:

the arti�cial faults are not necessarily representative of natural faults. The accuracy of

the evaluation during error seeding, and the e�cacy of fault-based techniques depend on

the actual faults. Although it is possible to avoid this problem by using natural faults,

this option is expensive and di�cult to automate, and makes it di�cult to impose proper

empirical controls.

In this paper, we argue that these problems, and others, can be better understood

and at least partially solved by looking at a syntactic and semantic characterization of

faults. Although this is not the �rst time faults have been viewed in this way, we present a

philosophical model and attempt to explore its rami�cations. In the rest of the paper, we

develop these ideas, discuss several implications of this characterization, and present data

that support the model.

2 THE SEMANTIC AND SYNTACTICMODEL OF

FAULTS

The IEEE standard de�nition of an error is a mistake made by a developer [IEE83]. An

error may lead to one or more faults. Faults are located in the text of the program. A fault

is the di�erence between the incorrect program and some correct program. Note that a fault

may be localized in one statement or may be textually dispersed into several locations in the

program. Similarly, a fault may be repairable in many ways { that is, there may be many

ways to correct a fault, each one leading to a correct, but di�erent program.

This de�nition is in terms of the syntactic nature of a fault. If the fault is being inserted

into the program, then the syntactic nature of the fault is described by the changes to the

program. If the fault occurs naturally in the program, then the syntactic nature of the fault

is described by the number of changes needed to correct the program. Examples of syntactic

characterizations of faults include using an incorrect variable name, or checking to see if a

called function fails. These are often things that programmers do by mistake { typos, or
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reading a design incorrectly.

A fault can also be characterized semantically. Each program P can be viewed as having

a speci�cation S that de�nes sets D (the input domain) and R (the output range), and a

mapping from D to R (D
S
�! R). The program may compute results on a superset of D,

or if the input is not in D, P may produce output that is not in R (unde�ned).

A semantic characterization of a fault views the faulty program as containing a compu-

tation that produces incorrect output over some subset of the input domain. That is, the

mapping of inputs to outputs (D
P
�! R) is incorrect (D

P
�! R 6= D

S
�! R) for some subset

of D.

What this characterization really does is give us di�erent ways to look at a fault. A given

fault has a syntactic aspect and a semantic aspect. This characterization is not particularly

new or profound, nor is it particularly useful by itself. But this characterization illuminates

some interesting aspects of faults when we consider the size of a fault. Generally, we say the

size of a fault is the scope of the di�erence between a correct and incorrect versions of the

program.

We initially de�ne the syntactic size of a fault to be the number of statements or tokens

that need to be changed to get a correct program1. This de�nition su�ers from the problem

that there may be many correct versions of the program; thus we re�ne the syntactic size to

be the fewest number of statements or tokens that need to be changed. Note that this does

not necessarily the \best" �x to the program in any sense. We de�ne the semantic size of a

fault to be the relative size of the subdomain of D for which the output mapping is incorrect.

Although the semantic size would ideally be based on a usage distribution that assigns a

non-uniform probability to each input, it could be approximated by considering a uniform

domain with each input having an equal probability of occurring, or by using some set of

inputs generated for testing purposes. When we consider size, the syntactic and semantic

characterizations of faults are very di�erent.

Consider very \small" faults. For a syntactically small fault, one token or one statement

may be incorrect. For a semantically small fault, P 's behavior on a very small portion of D

is incorrect. Clearly, a fault that is syntactically small can result in a fault that is very large

semantically { that is, the syntactic fault can e�ect arbitrarily many inputs. Also, a major

syntactic fault in P may a�ect only a few inputs. And of course, there is some intersection

where small semantic faults can be modeled as small syntactic faults, and small syntactic

1Note that there are many ways to de�ne the syntactic size, many based on the program representation.

We choose this de�nition because it is reasonable and useful { we do not claim that it is the \best" way to

de�ne syntactic size.
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faults can result in small semantic faults.

As an example, consider the program fragment:

for i := 1 to n do

B[i] := B[i]-1;

Suppose this program fragment contains the very small syntactic fault that the subtraction

operator should have been addition. Although this is small syntactically, the fault will not

only a�ect every input to the program, it will a�ect every element of B for every input, thus

the fault is semantically very large.

As another example, consider the calculation of the mean versus the median of a list

of numbers. Although the computation for the mean is very di�erent syntactically from

the computation of the median, there are many lists of numbers for which the mean and

median are the same. Thus, making the wrong calculation would be syntactically large, but

semantically small.

Finally, consider a program containing the very small syntactic fault that the >= operator

should have been strictly >. This small syntactic fault will result in a fault that is also

semantically small.

3 IMPLICATIONS

By considering this semantic model, and speci�cally the semantic size of faults, we can gain

insight into a number of testing issues. The central issue is that much of the fault-based

research has focused on faults that are small syntactically, without consideration of the

semantic size. In the following subsections, we discuss how this model relates to several

issues in testing.

3.1 Fault Seeding

Fault seeding refers to arti�cially introducing faults into programs, usually to measure the

quality of testing, or to empirically compare testing strategies. When we seed faults into

programs we often seed syntactically small faults { the are simpler to de�ne and manage. A

more e�ective consideration would be the semantic size. If we insert a large semantic fault,

then the fault is easy to detect via testing. Thus, if we are measuring the quality of testing,

we are biasing our results toward the testing strategy, and if we are comparing two testing

strategies, we will be less likely to detect any di�erence.
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On the other hand, faults that are too small semantically will have the opposite e�ect.

If we are measuring the quality of testing, we are biasing our results against the testing

strategy, and if we are comparing two testing strategies, neither will be likely to work very

well.

Hamlet [Ham89] pointed out that most empirical comparisons of testing techniques have

two problems: a particular collection of programs must be used; and a particular set of test

data must be created. Both of these are examples of internal controls on the empirical

process, and are the sorts of problems that are always present in any experiment. Internal

control problems mean that the results of the experiment may not scale up and be true in all

situations. We suggest that another potential problem is that if the techniques are compared

based on the faults they �nd, a particular collection of faults must be used.

Studies using fault seeding have been questioned on the basis of whether the faults were

\realistic" or \representative". Unfortunately, we do not know what a realistic, arti�cial fault

is. Although a few studies have successfully used naturally occurring faults, this necessitates

an expensive case study approach that is di�cult to control scienti�cally. Based on the

size model presented in this paper, we can reasonably consider a collection of faults to be

\realistic" if they have a distribution of semantic sizes that is similar to that of real faults. Of

course, we have little data about distributions of semantic fault sizes for naturally occurring

faults, but this is something that can be measured relatively easily. Then a collection of

arti�cially seeded faults can be validated by measuring their semantic size. We suggest three

ways to approximately measure the distribution of semantic sizes of seeded faults.

� Take the test cases that were used in the study and count how many test cases found

each fault.

� Generate many random test cases and count how many test cases �nd each fault.

� Obtain inputs following a usage pro�le and count how many test cases �nd each fault.

If this approach succeeds, we could develop reasonable estimations of the semantic size of

realistic faults. This could then be used to create a data base of programs that have arti�cial,

but representative faults.

3.2 Mutation Operators

Budd [BA82] discussed the concept of program neighborhoods. A neighborhood of a program

P is a set of programs that are \close" to P . The program neighborhood concept was used
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to present the competent programmer hypothesis [DLS78], which states that competent

programmers produce programs that are \close" to being correct. This was in turn used to

justify the operators that are used in mutation testing { the operators should create mutants

that are in the neighborhood of the original program.

In testing classes, this topic consistently generates the question of whether the neigh-

borhood should be semantically close or syntactically close. Budd's description was in terms

of semantic neighborhoods, and DeMillo, Lipton, and Sayward's description was in terms of

syntax. Although mutation systems create mutants that are small syntactically, semantically

small mutants would be harder to kill, thus have to the potential to lead to higher quality

tests. Mutants that are small syntactically but large semantically only generate noise; they

add di�culty to the mutation process without increasing the testing value of the resulting

test cases. This is evidenced by the fact that many mutants are trivially killed by almost

any test case that reaches the mutated statement, and less directly because there appears

to be a large amount of overlap in the mutants in the sense that a test case that kills one

mutant will invariably kill many others.

Of course one of the problems with mutation testing has always been that of equivalent

mutants { mutants that have no functional e�ect on the program and thus cannot be killed.

In terms of the semantic characteristic of a fault, an equivalent mutant represents a fault

whose semantic size is zero.

Considering the semantic size of mutants also relates to several other questions that

have been troubling mutation researchers.

1. Why does there intuitively seem to be a close correlation between killing \hard-to-kill"

mutants and detecting equivalent mutants? With the semantic size model, the answer

to this question becomes obvious. Hard-to-kill mutants are mutants with very small

semantic faults { and equivalent mutants have semantic fault size zero. Thus they are

related because their semantic sizes are almost the same. From a testing perspective,

it can be argued that semantically small mutants are more desirable { they lead to

stronger test cases.

2. Why does selectivemutation work? Selectivemutation [OLR+94, ORZ93] is an approx-

imation technique that selects only mutants that are truly distinct from other mutants.

Recent results have shown that of the 22 mutation operators used by the Mothra mu-

tation testing system [DGK+88], test data generated to kill mutants produced by �ve

operators are su�cient to kill mutants produced by the other operators.
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By considering the semantic fault model of faults, we can theorize that selective muta-

tion is trying to only use operators that tend to produce mutants that have semantically

small faults. If this theory is correct, the operators that work well empirically should

produce mutants that are, on average, small semantically. One easily checked corollary

to this theory is that selective mutants should contain a relatively high percentage of

equivalent mutants. Of course it is unfortunate that if we successfully create mutants

with smaller semantic size, then we also make the equivalent mutant problem worse.

3. Why does the coupling e�ect hold? The coupling e�ect says that complex faults are

coupled to simple faults in such a way that test data that detects all simple faults

in a program will detect most complex faults [DLS78]. The coupling e�ect has been

supported experimentally in a study that compared test sets generated for mutants

that involved changes in two places with test sets generated for single change mutants

[O�92], and shown to hold probabilistically for large classes of programs [Wah95].

Unfortunately, the coupling e�ect has not been adequately explained on an intuitive

basis. Although this is speculative, it seems that the semantic model might at least

partially explain the coupling e�ect. In the empirical study, simple faults were modeled

as single change mutants, and complex faults were modeled as multiple change mutants.

Thus, we could characterize the multiple change mutants as being syntactically larger

than the single change mutants.

There are two reasonable interpretations of the coupling e�ect within the semantic fault

model. One is that as faults get larger syntactically, there is a tendency for the faults

to also get larger semantically. If this is true, then faults that are larger syntactically

will tend to be easier to �nd via testing, because they will fail on larger portions of the

input space.

A second interpretation that we believe is more likely is that there is a true relationship

between syntactically small faults and semantically large faults. We can consider the

failure region for a fault to be the portion of the input space that causes the fault to

result in a failure. It might be the case that for every semantically large fault, there

are one or more syntactically small faults such that there is a large overlap in the two

faults' failure regions. In this case, we can expect the two faults to be coupled in the

traditional sense.

This discussion brings out a key di�erence between fault seeding and mutation analysis.

When doing fault seeding, we want faults that approximate natural faults as closely as
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possible { in our terms, by exhibiting a distribution of semantic fault sizes that matches

the distribution of natural faults. Mutation, however, may not want a similar distribution

of semantic fault size. Using faults that have smaller semantic size may lead to stronger

testing.

3.3 Testability

Testability is a software metric that quanti�es how di�cult it is to test software. This

"level of di�culty" could include the cost to generate test cases, write drivers or stubs, or

determine correctness for a speci�c test case. The PIE assessment method for measuring

testability [VMM91] is based on the following testability de�nition: the probability that

faults will result in observable failures for a given input distribution or test scheme. PIE

implements this de�nition by computing three measurements: execution, which estimates the

probability that a faulty statement will be reached; infection, which predicts the probability

that a fault on a given statement will cause the dynamic data state of the program to become

corrupted; and propagation, which predicts the probability that a corrupted data state will

propagate through the execution stream to cause a corrupted output. These three probability

estimates can be combined to gain overall predictions of the testability of statements, units,

and programs.

The testability of a program is closely related to the semantic model. If a statement in

a program has very low testability, we expect that faults associated with that statement will

be small semantically. Likewise, if \existing" faults associated with a given statement are

semantically large, we expect the statement to exhibit high testability.

True testability depends on faults, the code, and the test distribution. Our predictions

of this unknown entity depend partially on simulated faults; the infection probability is

measured by using mutation-like changes. In-depth understanding of representative faults

could improve the infection probability estimate, thus increasing the validity of the testability

estimates. This knowledge could also give us a more accurate knowledge of the bene�t of

testing, leading to more e�ective use of the measurements to complement software testing.

3.4 Impact Analysis

Goradia [Gor93] has suggested a technique called impact analysis that estimates, for a given

test case and statement, the \impact" that statement has on the output of the program. We

suggest that this is related to the semantic model in the following sense. If a statement has

a large impact on the program's output when averaged over a number of test cases, then
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faults that appear on or partially on that statement will tend to have a large semantic size.

4 EVALUATION

The model we are presenting in this paper is a conceptual tool, and does not provide new

testing techniques or directly provide new results about existing techniques. Rather, it

is a way of thinking about problems of existing testing techniques that may lead to new

insights and solutions to those problems. In this section, we provide data from preliminary

investigations into some of those problems, using the semantic model as a basis.

4.1 Equivalent Mutant Clusterings

As stated in Section 3.2, selective mutation tries to select only mutants that are truly distinct

from other mutants. Results [OLR+94] have indicated that not all of the 22 mutation

operators used by the Mothra mutation system are necessary; it has been found that test

data that kill all mutants created by only �ve of the operators will usually kill almost all

of the mutants created by all 22 operators. In terms of the semantic fault model, selective

mutation tries to create mutants that are semantically small. If this model is correct, then

we can predict that the �ve mutation operators used by selective mutation should contain a

very high percentage of equivalent mutants (semantic size of zero). For the programs used in

our previous study [OLR+94], it turns out that the �ve operators in the selective set create

about 23% of all the mutants, but account for 57% of all the equivalent mutants, thus this

prediction is true.

4.2 Selective Mutation

To extend the point in the previous subsection, we have investigated the semantic size of

mutants created by the �ve selective operators [OLR+94]. If the semantic fault model is

valid, and it can explain why selective mutation works, then the �ve selective mutation

operators should create mutants that have a smaller semantic fault size, on average, than

mutants created by the other operators.

To make a preliminary evaluation of this, we chose 10 programs for which Mothra

generated from 183 to 1048 mutants. For each of these, we created 500 random test cases.

The programs all took numeric inputs generated using a random number generator based

on the Unix library utility rand. We ran each test case against each mutant (note that this

is di�erent from the normal mutation testing process, which runs test cases only against
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mutants that were not killed by a previous test case), and counted how many test cases

killed each mutant. We use this as an approximation of the semantic size for each mutant.

We then averaged the semantic size of all the mutants created by the same operator.

We found that the average semantic size of the selective mutants was 31.60%, and

the average semantic size for the remaining mutants was 39.88%. While this is not an

exceptionally large di�erence (8%), it does at least agree with the prediction. There was a

lot of variation among the programs however. The di�erence between the average semantic

size of the selective mutants and non-selective mutants varied from 1% to 18%, and the

standard deviation was 7.6. This suggests that either the model is not quite accurate, or the

mutation operators that are used are not the most meaningful from the standpoint of this

model.

4.3 Object-Oriented Fault Seeding Data

In another study [OI95], we inserted 55 faults by hand into C++ programs to evaluate the

e�ectiveness of a particular testing technique. The faults were based on common mistakes

that are made in C++ programs as described by Meyers [Mey92], and on practical experience

from six years of developing C++ software.

Table 1 summarizes the percentage of test cases that detected each fault. The table

shows the faults divided into three ranges; for example, the �rst line indicates that 15 faults

were detected by between 80 and 100% of the test cases. It is interesting that the detected

faults fall into three discernable groups, one small, one medium, and one large.

# of Faults % of Test Cases
15 80 { 100%
14 20 { 52 %
26 .9% { 10%

Table 1: Summary of Fault Size Data

Although this is data from only one study, we feel that it is indicative of the kind of

data we should examine when arti�cially seeding faults into programs. It seems reasonable

to consider the 15 faults that were found by over 80% of the test cases to be close to useless

from an experimental sense, but this is an opinion based purely on intuition. To assess the

validity of faults that are seeded, the distribution of estimated semantic sizes should at least

roughly correspond with the distribution of semantic sizes of naturally occurring faults.
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5 CONCLUSIONS

In this paper, we have proposed a model for characterizing faults based on the syntactic and

semantic size, analyzed several implications of this model, and presented some preliminary

data to support this model. We feel that viewing faults via this characterization will help

us solve several problems in testing, particularly with fault-based testing techniques.

Although a \true" semantic size of a fault probably depends on usage distribution of

inputs, and possibly on the failures that the fault can cause, estimating the size based on the

inputs can be useful in a variety of ways. If a usage distribution is important, it could easily

be used to estimate the semantic sizes of faults. We hope that this model for looking at

faults will help generate new insights into testing, and foster new research into the discovery

of and use of faults.
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