
ViewFinder: An Object Browser�

Alessandro D'Atri

Dipartimento di Ingegneria Elettrica

Universit�a degli Studi di L'Aquila

I-67040 L'Aquila, Italy

Amihai Motro

Department of Information and Software Systems Engineering

George Mason University

Fairfax, VA 22030-4444

Laura Tarantino

Dipartimento di Ingegneria Elettrica

Universit�a degli Studi di L'Aquila

I-67040 L'Aquila, Italy

Technical Report ISSE-TR-95-115
February 1995

Abstract

ViewFinder is a graphical tool for browsing in databases that provides a exible,
yet intuitive environment for exploratory searches. The design approach has been
to provide maximum functionality and generality without sacri�cing simplicity. The
constructs of ViewFinder's external model are essentially object-oriented: class and
token objects, membership relationships between tokens and classes, generalization
relationships between classes, inheritance, and so on. This external model is based
on an internal model which resembles a semantic network. Such a network may be
extracted from a variety of data models, including object-oriented, entity-relationship
and extended relational models. This architecture gives ViewFinder a large degree
of model independence. The main construct of the external model are displays of
objects (either classes or tokens), called views. Commands are available for e�cient
traversal of the database, displaying views of any class or token. To speed up repetitive
searches, views may be synchronized: the user sets up several views, linked in a tree-like
structure, so that when the information displayed in the root view is modi�ed (e.g.,
scrolled by the user), the contents of the other views change automatically. Additional
commands are available to search, order, aggregate and select the information displayed
in a view, thus providing a simple query facility.

�The work of D'Atri and Tarantino was supported in part by the Commission of the European Commu-
nities under the projects ESPRIT 1117 (KIWI), ESPRIT 2424 (KIWIS) and AIM 2024 (MILORD). The
work of Motro was supported in part by NSF grants No. IRI-8609912 and IRI-9007106

1 Introduction

To improve their usability and responsiveness most database systems o�er their users a
wide variety of interfaces, suitable for di�erent levels of expertise and di�erent types of
applications. A particular kind of interface which is now commonly available are browsers.
Browsers are intended for performing exploratory searches, often by naive users. Thus, they
usually employ simple conceptual models and o�er simple, intuitive commands. Ideally,
browsing should not require familiarity with the particular database being accessed, or even
preconceived retrieval targets. Browsing may be used to gain insight into the contents and
organization of the searched environment, to arrive at speci�c retrieval targets, and even to
satisfy such targets.

In this paper we describe a new browsing interface to databases, called ViewFinder.
The design approach has been to provide maximum functionality and generality without
sacri�cing simplicity. These three design principles are explained below. A preliminary
design of ViewFinder was described in [28].

Simplicity. As already mentioned, browsers must be simple to use. ViewFinder commu-
nicates with its users mostly by graphical means (e.g., menus and icons) and it requires very
little typing. The ViewFinder model de�nes a small number of basic concepts and a small
number of operations (altogether, the global menu has six options and the browsing menu
has nine options). Indeed, it is possible to explore a database by using just two commands.
There is emphasis on economy of style, and consistency and predictability of behavior; the
authors believe that a graphical interface that employs a great number of di�erent graphical
constructs, can become just as complex and intimidating to use as the textual interface it is
supposed to replace.

Functionality. Most database browsers de�ne search processes that are indeed simple
to perform, but simplicity is often achieved by providing low-level commands, and limited
functionalities. Consequently, browsing sessions tend to be quite ine�cient, and may be-
come tedious after a while. ViewFinder incorporates several features that address these
de�ciencies. Additionally, where some browsers provide their users with graphical tools to
browse in the database scheme and then construct simple queries, users of ViewFinder can
browse in the database extension as well. For example, it is possible to enter the name of
database value (or to \click" on this value if it appears somewhere on the screen) and receive
a frameful of information on this value.

Generality. By and large, the approach to browsing has been ad-hoc: browsing is often
understood only in terms of the speci�c user interface being constructed. Additionally, most
browsers are designed to be used only with databases of a speci�c data model. The approach
of ViewFinder is more formal and more general. Rather then de�ne browsing in a given data
model, ViewFinder de�nes a data model (with its associated operations) for browsing. The
architecture of ViewFinder provides a large degree of model independence, which allows it
to be used with databases of a variety of data models. This independence is achieved by
a tiered architecture. ViewFinder employs two di�erent models: the external model de�nes

1

high level structures and operations; these are the structures that are displayed to users,
and the operations with which users can manipulate these structures. This external model is
mapped to an internal model whose structures are more primitive. These two generic models
are realized in speci�c environments. At the user's end, the external model is interpreted with
speci�c visualization structures and operations and implemented with a speci�c graphical
windowing environment. At the database end, the internal model is interfaced to a speci�c
database system; this database system can employ one of several possible data models. By
reprogramming the presentation of the external model and the database interface of the
internal model, the ViewFinder model can be implemented with di�erent graphical user
interfaces and with di�erent database systems.

The underlying internal model of ViewFindermay be characterized as a semantic network,
consisting of objects connected by binary relationships. Objects are merely names. It is
through their relationships with other objects that information about objects is expressed.
For each object, a structure called view is de�ned, that presents the relationships and objects
that are adjacent to the given object in the network. These structured displays of data are
the main component of the external model.

The information in each view is sorted into several frames. For example, the view of the
class employee will show its superclasses (e.g., person), its subclasses (e.g., manager),
its properties (e.g., salary), and its member tokens (e.g., john). By pointing to particular
object names in a displayed view, users may request to display other views, in addition to
or in place of views currently displayed. For example, while viewing the class employee,
users may request to view the class manager or the token john. Thus, users may navigate
in the class hierarchy, and move freely between class and token objects.

To speed up repetitive searches, which otherwise could become very tedious, views may be
synchronized: the user sets up several views, linked in a tree-like structure, so that when the
information displayed in the root view is modi�ed (e.g., scrolled by the user), the contents of
the other views change automatically. Additional commands are available to search, order,
aggregate and select the information displayed in a view. Indeed, these commands amount
to a exible, yet simple, query facility.

Whereas the internal model of ViewFinder resembles a semantic network, its external
model constructs are essentially object-oriented: class and token objects, membership re-
lationships between tokens and classes, generalization relationships between classes, inher-
itance, and so on. Note that the external model of ViewFinder is not a complete object-
oriented model, as this concept is commonly understood,1 because ViewFinder is not a
complete database management system. Rather, the external model of ViewFinder supports
those elements of object-oriented models that are relevant to browsing and presentation.
This object-oriented presentation can be provided for speci�c object-oriented models, as well
as for other data models that support generalization hierarchies and complex objects (e.g.,
various avors of the entity-relationship or extended relational models). In each case the
low-level semantic network would be extracted from the given database.

1For example, it does not have the equivalent of encapsulation.

2

In the remainder of this section we provide a brief survey of database browsing and
relate it to ViewFinder. The organization of the rest of this article follows closely the tiers
in the ViewFinder architecture. Sections 2 and 3 describe the internal and external models.
Section 4 describes in detail our implementation of the external model; the implementation
described is for the SunView windowing environment. Section 5 is devoted to the mapping
between the internal model and other data models; the mapping between the internal model
and ODMG, a generic object-oriented data model, is discussed in detail. Section 6 concludes
with a brief summary and discussion of additional research directions.

1.1 Background

Most browsers assume a conceptual model that interleaves the data in a network of some
kind, and browsing is done by navigation: the user begins at an arbitrary point in the
network (perhaps a standard initial position), examines the data in that \neighborhood",
and then issues a new command to proceed in a new direction.

An early example of this approach is the interface designed and implemented by Cattell
at Xerox [6]. The interface is to an entity-relationship database [9], and it features a set of
directives for scanning a network of entities and relationships, and presenting each entity,
together with its context, in a display called frame. A similar interface was later provided
for the entity-relationship database management system Cypress [7].

Cattel's model was further employed in the Living in a Database (LID) system [13]. But
whereas Cattel's system relied on textual interaction on a character-based display, the LID
system featured graphical interaction on a bit-mapped display. Users of LID \live" inside
an instance of an Entity-Relationship database. At each point in time they \reside" in a
particular tuple, from which they can view the data tuples and schema structures that are
associated with it.

BAROQUE [27] is a browsing interface to relational databases. BAROQUE establishes a
view of the relational database that resembles a semantic network (integrating both schema
and data), and provides several intuitive commands for scanning it. When a user \visits" a
particular node in the network (a data value) the system constructs a \frame" of information
on this value, showing its relationships to other data values. The user can then pick a value
mentioned in this frame and request to display its frame instead. In e�ect, the user is
traversing an edge in the network to visit an adjacent node. BAROQUE was recently ported
to a graphical environment of windows, menus and icons.

More recently, Cattell, Rogers and Learmont describe a system that provides an entity-
relationship view of relational databases [23], and a graphical tool that, like BAROQUE,
displays entities assembled from the underlying relational database [32]. The interface also
provides limited update capabilities, and it supports the display of pictures as well as text.

Browsing is o�ered as the principal retrieval method for loosely-structured databases [25].
Such databases are heaps of facts that do not adhere to any conceptual design. Facts are

3

named binary relationships between data values, so the data may be regarded as a semantic
network of values. This loosely-structured model of databases has been adopted by USD [20],
a system that provides database capabilities often required in scienti�c research. The main
retrieval and browsing paradigm of its graphical user interface is the matching of patterns
constructed by users.

Browsers have been developed for various relational systems, for example, SDMS [19],
INGRES [34] and DBASE-III [3]. These are primarily tools for scanning relations (including
relations that are results of formal queries), and therefore have only limited exploration
capabilities. Browsing is con�ned to a single relation at a time, and it is not possible to
browse across relation boundaries. If a user encounters a value while browsing, and wants to
know more about it, he must determine �rst in which other relations this value may appear
(quite di�cult), then formulate a formal query, and resume browsing in the new relation.

OdeView is a graphical interface to Ode, an object-oriented database system and envi-
ronment [2]. OdeView provides facilities for examining the class hierarchy, for navigational
browsing, for displaying parts of objects, and for selecting objects that possess speci�c charac-
teristics. One of OdeView's most important features is synchronized browsing. This feature
in particular, and OdeView's navigation model in general, were inspired by KIVIEW [28],
the predecessor of ViewFinder.

In the network structure assumed by most browsers, adjacency reects relationship. For
example, john is linked to manufacturing because John works in the manufacturing de-
partment, and manufacturing is linked to department because the former is an instance
of the latter. A di�erent approach is taken by Pintado and Tsichritzis [31] who propose to
place objects in a space, so that their mutual proximity reects their a�nity (as computed
from some measure). Users can then navigate among objects with the help of a two di-
mensional \map" that visualizes the distances between objects. By changing the measure,
di�erent maps can be derived for the same set of objects. Navigating from an object directly
to \similar" objects is also a feature of the BAROQUE browser, discussed earlier. When
viewing an object, a user may ask to display similar objects, where similarity is de�ned as
having identical values for a set of properties speci�ed by the user. Hence, similarity estab-
lishes an alternative network of objects, in which objects are adjacent if they are similar.

A database browser should allow its users to navigate freely in the database extension;
e.g., its users should be able to examine data items and follow their relationships to other
data items, or to name a data item and receive information about it. The next three systems
are in a somewhat di�erent class: they are essentially schema browsers, with built-in query
facilities.

GUIDE [38] is a graphical user interface which is based an Entity-Relationship model
extended with isa relationships. GUIDE's primary focus is to assist its users in the for-
mulation of queries. Typically, a user identi�es the relevant schema components, and the
system constructs a textual query. GUIDE provides many facilities for panning, zooming,
and hiding schema components, yet the layout of the database schema is essentially �xed
(i.e., individual schema components cannot be repositioned relative to each other).

4

SKI [22] is a user interface to the Sembase database system, a system that implements
a semantically-rich data model. Sembase's constructs include entity sets, single- or multi-
valued functional relationships, and isa relationships [21]. SKI provides powerful graphical
tools for browsing in the schema. Its schema layout is much more exible than GUIDE's,
enabling users to focus on the parts of the schema that are relevant to their retrieval goals.
Simple querying is provided by allowing users to de�ne ad-hoc subtypes and explore their
contents (the \answers") in scrollable windows. However, SKI has no facilities for browsing
through the data.

Closely related to SKI with respect to functionality and expressive power, SNAP [5] is a
general purpose schema manager which uses a coherent paradigm to support schema design,
schema browsing, and selection-type queries. SNAP is based on the IFO data model [1],
an object-based semantic data model which provides features for the representation of sim-
ple and complex objects, functional relationships, and isa relationships. As in SKI, users
operate on the schema of the database, which is displayed diagrammatically using di�erent
kinds of graphical shapes. For large database schemes, SNAP provides commands to repo-
sition objects, hide and redisplay objects, pan and zoom over the schema, and reformat isa
hierarchies and complex object representations. Users can also specify selection-type queries
graphically. All answers returned by the system have the structure of non-�rst normal form
relations, and are displayed as nested tables. Again, SNAP has no facilities for browsing in
the data.

Schema design, schema browsing, and query formulation are o�ered also by ISIS [15], a
graphical interface to a subset of the Semantic Data Model [17]. ISIS provides two alternative
views on the schema, depending on whether a user wishes to focus on the isa hierarchy or on
the attribute network. The presentation is again diagrammatic. However, unlike the systems
previously discussed, structured graphical symbols are used to visualize complex objects;
furthermore, patterns assigned to classes allow representation of semantic links in iconic
format. Browsing is mostly at the schema level, though a limited form of navigation can be
accomplished at the data level: scrollable windows list the instances of classes, and individual
instances can be selected to be analyzed in more detail. However, the visualization of the
entire state of an object is somewhat inconvenient, requiring users to follow the semantic
connections one at the time.

Database browsing has often been described as complementary to database querying.
A survey of the advantages and limitations of these two retrieval methods is given in [10],
which also suggests several ways to bridge these two methods. The automatic inference of
formal queries from information obtained in browsing sessions is the purpose of the Query-
by-Browsing system [12]. Users of Query-by-Browsing are presented with listings of database
records and mark them as relevant or irrelevant to their retrieval objectives. The system
then infers the pattern underlying the selections by means of an inductive learning-based
algorithm.

Whereas the subject of database querying has been approached formally, the approach
to database browsing has been mostly informal. Query languages are often based on formal
languages (e.g., relational algebra and calculus), and issues such as query language com-

5

pleteness or query language equivalence are often addressed. In contrast, database browsing
is usually de�ned by means of a particular interface that has been constructed. A more the-
oretical study of browsing is given in [11], which proposes a formal environment for de�ning
several browsing processes with increasing level of complexity.

More generally, the subject of user interfaces to databases, and browsers in particular,
have been recognized recently as an area of research and development within the �eld of
databases that faces important challenges and that deserves increased attention [29, 33].

Finally, it should be noted that the applicability of browsing is not limited to databases,
and the method has been applied successfully in other environments. Browsers have been
constructed for programming environments to support the development of software [14, 16,
18, 4], and in electronic reference and hypertext systems [37, 24, 30, 35].

2 The Internal Model

In this section we de�ne the underlying internal model of ViewFinder. This model is not ap-
parent to the users of ViewFinder, but is necessary for de�ning the structures and operations
of the external model.

2.1 Objects, Relationships and Facts

The underlying internal model is a semantic network, consisting of objects connected by
binary relationships. In many aspects it is similar to the model behind loosely-structured
databases [25, 26]. Such a network may be de�ned by a set of triplets (m; r; n), where m and
n are objects and r is a relationship. These triplets will be called facts; the �rst and third
objects of a fact will be called, respectively, the source and the target objects of the fact.

There are two kinds of objects: class objects and token objects. An object is either a
class or a token. Examples of class objects are employee and department; examples of
token objects are john and manufacturing. In addition to the classes that are speci�c to
the application, there are several type classes: a class called database, and a set of classes
that correspond to the common data types, such as integer and string. In the following
de�nitions the symbols a, b, c denote any class, t denotes a type class, x, y, z denote tokens,
m, n denote objects (either tokens or classes), and r denotes a relationship.

There are four kinds of facts: generalization facts, membership facts, intensional facts,
and extensional facts. These di�erent kinds of facts are described below, together with nine
requirements that must be satis�ed by any set of facts.

6

2.2 Generalization and Membership Facts

A frequent relationship between classes is generalization: one class is more general than
another class (the latter class is then a specialization of the former). The generalization
relationship will be denoted �. Examples of generalization facts are (employee,�,person)
and (department,�,unit).

A frequent relationship between tokens and classes is membership: a token is a member
of a class. The membership relationship will be denoted 2. Examples of membership facts
are (john,2,employee) and (manufacturing,2,department).

We require that generalization and membership satisfy �ve requirements:

1. Root of generalization hierarchy:
For every database class a other than database, (a;�;database) is a generalization
fact, and for every database class a which is not a type class, there exists a single type
class t other than database, such that (a;�; t) is a generalization fact.

2. Required membership for tokens:
For every token x there exists a class a which is not a type class and a membership
fact (x;2; a). If (x;2; a) and (x;2; b) and a 6= b, then there exists a type t, such that
(a;�; t) and (b;�; t).

3. Irreexivity of generalizations:
If (a;�; b) is a generalization fact then a 6= b.

4. Transitivity of generalizations:
If (a;�; b) and (b;�; c) are generalization facts, then (a;�; c) is also a generalization
fact.

5. Inheritance of membership over generalization:
If (x;2; a) is a membership fact and (a;�; b) is a generalization fact, then (x;2; b) is
also a membership fact.

The transitivity requirement models the accepted real-world semantics of this relation-
ship. For example, if person is a generalization of employee, and employee is a gen-
eralization of manager, then person is also a generalization of employee. Together,
transitivity and irreexivity guarantee acyclicity, so that the generalization relationship im-
poses a hierarchy on the classes of the database. The �rst requirement guarantees that this
hierarchy is connected and has a single root class, called database.2 Immediately below
the root there is a level of classes that correspond to types. Each type class is then the root
of a separate generalization hierarchy. Types are used to restrict operations on each object
to those that have been de�ned for its type. The second requirement states that every token
should be a member of at least one non-type class, but a token may not be a member of

2In practice, the name of this root class would be di�erent for each database.

7

classes of di�erent types. Finally, the inheritance requirement guarantees that the set of
member objects of each class is contained in the set of member objects of every more general
class.

2.3 Intensional and Extensional Facts

An intensional fact associates two non-type classes with a relationship other that �; for
example, (person,age,years). An extensional fact associates two tokens; for example
(john,age,32). The semantics of an intensional fact is that any extensional fact with source
and target tokens that are members of its source and target classes, respectively, is admissible.
Thus, an intensional fact de�nes a domain of extensional facts.

Given a fact (m; r; n), which is either intensional or extensional, the pair (r; n) will be
referred to as a property of m. Thus, the class person has the (intensional) property
(age,years), and the token john has the (extensional) property (age,32).

Extensional facts must belong to the domain of at least one intensional fact; that is,
for each extensional fact there must be an intensional fact and two membership facts that
associate the tokens of the extensional fact with the respective classes of the intensional fact.
Formally,

6. Required membership for extensional facts:
If (x; r; y) is an extensional fact, then there exist non-type classes a and b, membership
facts (x;2; a) and (y;2; b), and an intensional fact (a; r; b).

Intensional facts may possess two characteristics. Some intensional facts are designated
as mandatory: there must be an extensional fact that associates each of the members of
the source class with a member of the target class. Some intensional fact are designated as
single-valued: for each member of the source class there may be at most one extensional fact
that associates it with a member of the target class. Formally,

7. Instantiation of extensional facts for mandatory intensional facts:
If (a; r; b) is a mandatory intensional fact, then for every membership fact (x;2; a)
there exist a membership fact (y;2; b) and an extensional fact (x; r; y).

8. Instantiation of extensional facts for single-valed intensional facts:
If (a; r; b) is a single-valued intensional fact, then for each membership fact (x;2; a)
there exists at most one pair of membership fact (y;2; b) and extensional fact (x; r; y).

An important characterization of intensional properties is that they are inherited over
generalizations. Formally,

9. Inheritance of intensional properties over generalizations:
If (a; r; b) is an intensional fact and (c;�; a) is a generalization fact, then (c; r; b) is

8

also an intensional fact. Similarly, if (a; r; b) is an intensional fact and (c;�; b) is a
generalization fact, then (a; r; c) is also an intensional fact.

As an example, consider these three generalization relationships: manager�employee,
temporary�employee, and private-office�office-space. The inheritance rule guar-
antees that if o�ce space is available to employees, then it is available to managers; and if
employees may have o�ce spaces, then they may have private o�ces as well.

These de�nitions lead to various conclusions. When an intensional property is propagated
to the subclass of the source, it preserves the characteristics of being mandatory or single-
valued. For example, if o�ce space is available to every employee, then it is available to every
manager; and if employees may not have more than one o�ce space, then this restriction
also applies to managers. When an intensional property is propagated to the subclass of
the target, it preserves the characteristic of being single-valued, but not necessarily the
characteristic of being mandatory. For example, if employees may not have more than one
o�ce space, then they may not have more than one private o�ce; but when employees are
guaranteed o�ce spaces, they are not guaranteed private o�ces.

When an intensional property is propagated to the subclass of the source, it may ac-
quire the characteristics of being mandatory or single-valued. For example, o�ce space may
be available to employees, and guaranteed for managers; and several o�ce spaces may be
available to employees in general, but only a single o�ce space to temporaries. When an
intensional property is propagated to the subclass of the target, it could acquire the charac-
teristic of being single-valued, but never the characteristic of being mandatory. For example,
multiple o�ce spaces may be available to employees, but at most one private o�ce; how-
ever, if o�ce space is not guaranteed to every employee, then private o�ce could not be
guaranteed.

Rules 4{7 and 9 are illustrated graphically in Figure 1. The following graphical con-
ventions are used: Class objects are indicated with squares, token objects with circles.
Relationships are indicated with arrows directed from the source object to the target object.
Mandatory relationships are indicated with thick arrows, all other relationships with thin
arrows. Each of these rules was phrased as an implication, stating that if certain facts ex-
ist, then other facts are implied: existing facts are indicated with solid relationship arrows,
implied facts with dashed relationship arrows.

2.4 Immediate and Distant Objects and Properties

Rules 4, 5 and 9 (the transitivity of generalizations, the inheritance of membership over
generalizations, and the inheritance of intensional properties over generalizations) may be
regarded as closure properties of the generalization relationship. In these cases, it is useful
to distinguish between immediate and distant relationships.

A class a is an immediate generalization of a class b, if (b;�; a) and there is no class c
such that (b;�; c) and (c;�; a). For example, employee is an immediate generalization of

9

b c

a

-�
6
�

�

�

�

��

�

Rule 4

a b

�
��
x

-�
6
2

�

�

�

��

2

Rule 5

a b

c

-r

6

�

�

�

�

��

r

Rule 9a

a b

c

-r

6

�
@

@

@

@R

r

Rule 9b

a b

�
��
x �

��
y

-r

-r

6

2
6

2

Rule 6

a b

�
��
x �

��
y

-r

-r

6

2
6

2

Rule 7

Figure 1: Rules 4{9

10

manager, if it is a generalization of manager, but not a generalization of any other class
which is more general than manager.

A token x is an immediate instance of a class a, if (x;2; a) and there is no class b such
that (b;�; a) and (x;2; b). For example, john is an immediate member of employee, if
it is a member of employee, but not a member of any class which is more speci�c that
employee.

A property (r; b) is an immediate intensional property of a class a, if (a; r; b) is an inten-
sional fact and there is no class c such that (a;�; c) and (c; r; b) is also an intensional fact,
and there is no class d such that (b;�; d) and (a; r; d) is also an intensional fact. For example,
(work-for,department) is an immediate intensional property of employee, if it is an
intensional property of employee, but not an intensional property of any class which is
more general than employee, and employee does not have an intensional property with
relationship work-for and a target class which is more general than department.

Since the characteristics of intensional properties may be acquired after propagation,
we need to de�ne separately the immediate intensional properties which are mandatory or
single-valued.

A property (r; b) is an immediate mandatory intensional property of a class a, if (a; r; b)
is a mandatory intensional fact and there is no class c such that (a;�; c) and (c; r; b) is also
a mandatory intensional fact. For example, (salary,amount) is an immediate mandatory
property of employee, if it is a mandatory property of employee, but not a mandatory
property of any class which is more general than employee. A property (r; b) is an imme-
diate single-valued intensional property of a class a, if (a; r; b) is a single-valued intensional
fact and there is no class c such that (a;�; c) and (c; r; b) is also a single-valued intensional
fact, and there is no class d such that (b;�; d) and (a; r; d) is also a single-valued intensional
fact. For example, (office,private-office) is an immediate single-valued property of
manager, if it is a single-valued property of manager, but not a single-valued property
of any class which is more general than manager, and manager does not have a single-
valued property with relationship office and a target class which is more general than
private-office.

Objects and properties that are related to a given object, but are not immediate, will be
referred to as distant.

Finally, a database is a set of generalization facts, membership facts, intensional facts
(some of which are mandatory and/or single-valued) and extensional facts, over a set of
tokens, a set of classes and a set of relationships, that satisfy the nine requirements described
above.

11

3 The External Model

The external model (the user model) de�nes higher level structures and operations. These are
the structures that are displayed to users and the operations with which users can manipulate
these structures.

3.1 Views, Frames and Windows

For every database object, we de�ne a structure called view. This structure is assembled
from facts in which this object participates, and it has several independent components
called frames. The de�nition of views is di�erent for class objects and token objects.

Let a be a class object. The view of a is de�ned as four frames:

1. members: the tokens that are immediate members of a.

2. superclasses: the classes that are immediate generalizations of a.

3. subclasses: the classes that are immediate speci�cations of a.

4. properties: the immediate intensional properties of a (properties that are mandatory
or single-valued are marked as such).

Note that the members of the class in view are those shown in the members frame, as well
as the members of any subclass. Similarly, the subclasses of the class in view are those shown
in the subclasses frame, as well as their subclasses; and the superclasses are those shown in the
superclasses frame, as well as their superclasses. Similarly, the intensional properties of the
class in view are those shown in the properties frame, as well as the intensional properties
of any superclass, and the intensional properties obtained from the intensional properties
shown by substituting subclasses in the target.

For example, a class employee may have the following view (m means mandatory and
s means single-valued):

employee

members superclasses subclasses properties m s
adam person inactive work-for department

p p
betty manager position title

p p
frank technical salary amount

p p
mary temporary office room

p
tom secretary employee

12

Let x be a token object. The view of x is de�ned as two frames:

1. classes: the classes of which x is immediate member.

2. properties: the extensional properties of x.

For example, a token john may have the following view:

John

classes properties
employee work-for manufacturing

parent position supervisor

salary 46,000
office mb475
age 32
child jeffrey

child julie

Note that di�erent real-world objects should be modeled by database objects with di�er-
ent names, or else information about di�erent real-world objects would be combined into a
single view. Using the same name for di�erent real-world objects may cause other modeling
problems as well. For example, consider the intensional facts (city,population,citizens)
and (county,population,citizens). If the object fairfax is chosen to designate both
the city of Fairfax and the county of Fairfax, then it would be impossible to associate the
two extensional facts that state the actual populations of the city and the county of Fairfax
with their corresponding intensional facts (also, the single-valuedness of these intensional
facts would be violated).

Finally, a window is a display structure for presenting the contents of a frame. A window
presents only a �xed interval of elements of the frame; a speci�c position in this interval
(e.g., the �rst, middle or last position) is established as the distinguished position. A frame
may be presented in several independent windows simultaneously. Each window displays a
\version" of the frame, which may be subjected to useful manipulations, such as ordering
and selection. These and other manipulations are described next.

3.2 Basic View Operations

The basic operations that may be applied to views are: display, scroll, search, order, aggre-
gate, selection, and closure.3

The most elementary browsing operation is to display a frame of an object in a window
(to \open" a window). The particular object must be speci�ed by the user, either by typing

3Although we shall refer to an operation as being applied to window or a frame, it is always applied to a
copy of a frame which is associated with a particular window.

13

its name, or, more often, by selecting it from some window which is already open. When an
object is thus speci�ed, the system selects a default frame and presents it in a window. The
user can then replace the contents of this window with any other frame of the same object,
or he can open another window with any other frame of the same object.

The process of repeatedly opening new windows on objects that are referenced in current
windows (and closing some windows as well) corresponds to navigation in the underlying
semantic network. When a node m of the network is visited, a portion of its immediate
neighborhood is displayed in window. Opening a new window on an object n which is
referenced in a window on m, corresponds to crossing an edge from m to visit its adjacent
node n.

The number of elements displayed in each window is limited by the size of the window.
The user may control the frame interval that is currently being displayed, either by the
sequential process of scrolling the frame in the window, or by the direct process of searching
a particular element and displaying it in the distinguished position.

The default order of the elements (tokens, classes, or properties) is implied by the order
in which they have been arranged in the database, but each frame may be reordered by
the user. Frames of classes (the superclasses and subclasses frames in the view of a class,
and the classes frame in the view of a token) may be ordered lexicographically by the name
of the class. Frames of properties (the intensional properties in the view of a class, and
the extensional properties in the view of a token) may be ordered lexicographically by the
name of the relationship. If several properties have the same relationship, they are ordered
by the target object. In the case of intensional properties, the targets are classes and a
lexicographical order is used; in the case of extensional properties, the targets are tokens,
and the order is determined by the type class to which these tokens belong (e.g., numerical
for the class number, lexicographical for the class string). Frames of tokens (the members
frame in the view of a class) may be ordered by an order which is determined by the type
class to which the tokens belong.

In addition, frames of tokens may also be ordered with respect to the target token of
any single-valued property of that class.4 For example, the members of person may be
ordered by age. This kind of order is extensible in two ways. By using aggregate functions,
multi-valued properties may be used as well. For example, the members of person may
be ordered by the total number of occurrences of the property (child, x). Also, orders on
several properties may be combined in sequence to resolve the ordering of members that
have the same value by the previous orders. For example, the members of employee can
be ordered by position and level (within a position).

Each of these orders may be speci�ed as either ascending or descending. Note that the
same frame may be displayed in multiple windows, each using a di�erent order.

4If the property is not mandatory, the elements for which this property is not de�ned are grouped at the
end and marked appropriately.

14

Several standard aggregate functions may be computed on the elements of a frame. A
count function that computes the total number of elements is de�ned for all frames,maximum
and minimum functions that compute, respectively, the element with the lowest and highest
value (with respect to the prevailing order) are available for frames of tokens or classes, and
sum and average functions that compute, respectively, the sum and average of all the elements
are available for the members frame of classes that are subclasses of the class number.

Frames of tokens allow users to apply the numerical functions (i.e., maximum, minimum,
sum, and average) also to any numerical property of the class.5 For example, when viewing
the members frame in the view of person, users may request the average age.

The set of elements of a frame may be restricted temporarily to a selected subset, and
future operations on this frame will ignore all other elements. There are two basic selection
methods. In the �rst method, which is available for all frames, the user enumerates the
subset, either by specifying individual elements, or by specifying the end-points of intervals
of elements. In the second method, which is available only for members frames, the user
speci�es a property and a condition, selecting all the tokens whose values for the property
satis�es the condition. A variation of this method does not require a condition, and selects
all the tokens for which this property is de�ned. Evidently, this feature resembles a simple
querying tool. The e�ect of selection can be canceled.

As de�ned, the various frames include only immediate objects and properties. At times,
it may be desirable to view distant objects and properties as well. A closure operation is
available for augmenting the contents of the window with distant objects and properties.
The e�ect of closure can be canceled.

3.3 Synchronization

In the process of browsing, the di�erent windows, once opened, are independent: the in-
formation displayed in any window may be modi�ed without any e�ect on the information
displayed in the other windows. Synchronization allows users to set up several windows,
connected in a tree-like structure, so that when the information displayed in any window
of this tree is modi�ed (by scrolling or searching), the contents of its descendent windows
change automatically.

Let W1 be an open window, displaying the object name p1 in its distinguished position.
Assume that the user opens a second window W2 by selecting p1 in W1. W1 and W2 are
then called parent and child windows, respectively.6 The operation sync(W1;W2) establishes
a synchronization link between the child window and its parent window: W2 will always
display a frame of the object appearing in the distinguished position of W1.

5An intensional property whose target class is a subclass of number. This property need not be manda-
tory or single-valued.

6When W2 is used for opening another window W3 on the same object, W1 would still be the parent of
W3.

15

Such synchronization links may be repeated to form a tree of windows (note that the
children of a window are always synchronized with the same object in the parent window).
When the information in one of these windows is modi�ed, changes will be made to all its
descendent windows.

Synchronization is terminated with the operation break(W), whereW is an open window.
This operation breaks the synchronization between W and its parent. Synchronization is
broken automatically when the parent window is closed or is changed to display another
frame, or when the child window is closed.

The precise e�ect of synchronization depends on the speci�cs of the child window W2.
When synchronization is establishedW2 has speci�c window attributes. As much as possible,
these attributes should be maintained whenW2 is refreshed to display new objects. When the
same attributes cannot be maintained, a policy should establish the new attributes. There
are �ve such window attributes: frame (the speci�c frame which appears in the window),
closure (whether the window shows the closured set of items or only the immediate items),
ordering (the ordering of the frame), interval (the speci�c interval of the frame which is
displayed in the window), and selection (the selection criterion applied to the frame).

The policy for determining the attributes of a refreshed window could be quite complex.
Consider, for example, the interval attribute. A window of members will be refreshed to show
the interval occupying the same relative position in the new frame; e.g., if the original frame
has 200 objects, with objects 41 through 60 displayed in the window, and the new frame has
only 100 objects, the refreshed window will now display objects 16 through 35. A window of
properties will be refreshed to show the same property in its distinguished position. If this
property does not exist for the new object, the next property in the present ordering would
be shown; unless this window itself has a child window synchronized with it, in which case
this window will be scrolled until its distinguished position is empty (and its child window
will display the window null).

We illustrate the use of synchronization with a description of a browsing session that
involves three windows.

First the user opens a window with the subclasses frame of employee and scrolls it until
the object manager appears in the distinguished position. Next, the user opens a window
with the members frame of manager, and scrolls it until the object harry appears in the
distinguished position. Finally, the user opens the properties frame of harry and scrolls it
until the property (office,av678) appears.

The user now synchronizes the third window with the object harry in the second window,
and the second window with the object manager in the �rst window. Figure 2 illustrates
the resulting situation.

Having established these displays, the user now browses in the list of managers by scrolling
the second window. While browsing, the third window changes automatically to display
information on each manager (in particular, the o�ce of the manager).

16

manager

harry

office

employee

manager

harry

-

-

Figure 2: Three synchronized windows

When �nished, the user returns to the �rst window and scrolls the list of subclasses,
replacing manager by technical. The second window changes automatically to display
information on this class, and the third window changes automatically to display information
on a particular member of this class. The user now returns to the second window, to browse
in the list of members of the technical sta�.

Note that if there are no members of the technical sta�, the second window that is
used to drive the third window will be empty. In this case the third window (and possibly
other descendent windows) will display the window null. If technical is later replaced
by temporary in the �rst window, and there are temporary employees, the third window
will change to display the properties of a particular member of this class.

4 The User Interface

The pilot implementation of ViewFinder implements the external model described in Sec-
tion 3 in a multi-window graphical environment, and in this section we describe this speci�c
user interface in detail.7 A multi-window graphical environment provides the most natural
and e�ective interface, but other user interfaces are possible as well; for example, a simple
textual interface in which the system outputs all data and menus to a simple terminal, and
users input their choices by typing. The present implementation of ViewFinder is based on
a \kernel" system that permits easy construction of multiple user interfaces.

7This user interface is a complete implementation of the external model; yet one could conceive a more
powerful graphical implementation.

17

4.1 The Conventions of ViewFinder

ViewFinder is implemented as a SunView [36] application program. Since conceptual sim-
plicity is a fundamental requirement of ViewFinder, it employs a relatively small subset of
the rich set of communication primitives supported by SunView. For the most part, these
primitives are common to all windowing systems. The basic primitives used in ViewFinder
are listed below (the terminology is slightly di�erent from that of SunView).

� Cursor: A screen indicator, whose position is controlled by a movement of a mouse.
The action of depressing a mouse button will be referred to as pointing (at the item or
area where the cursor is located).

� Button: a small labeled box. The action as pointing at a button will be referred to
as depressing the button.

� Display window: A framed rectangular area of the screen, with a horizontal header
at its top, and a vertical scroll-bar at its left. The header shows the label of the display
window; the scroll-bar enables users to control the contents of the display window with
the aid of the mouse. For brevity, we shall often refer to display windows simply as
windows.8

� Menu: A framed list of choice items. Menus pop up when the user points at predeter-
mined areas of the screen (for example, the header of a window) and disappear when
the mouse button is released. When the user points at a menu item, it is emphasized,
and if the button is released over an emphasized item, this item is selected. A menu
item may show an arrow at its right hand side: if the user points at the arrow, then
another menu pops up (a \pull-right menu"); the user can thus \walk" through menus,
until a �nal selection is made.

� Communication box: a framed rectangular area of the screen, used for exchanging
information between the user and the system. Examples are:

{ Selection box: a box with an array of buttons. It pops up in situations when
the user must select an option. It disappears after a selection is made.

{ Message box: a box with a ViewFinder message and a button labeled \close". It
pops up to display the result of a computation or an error message. It disappears
when the button is depressed.

{ Con�rmation box: a box with two buttons labeled \con�rm" and \cancel". It
pops up when the user initiates certain actions whose e�ect is relatively substan-
tial. The buttons are used to con�rm or cancel the initiated action. After either
button is depressed the box disappears.

8Recall that window is also a user-model term, referring to a particular version of a frame in the view of
an object. This should cause no confusion, as the context would allow to infer the proper interpretation of
the term. Indeed, the interpretations can usually be identi�ed, as frame windows will always be presented
in display windows.

18

{ Input box: a box with a prompting message. It pops up when keyboard input
must be obtained from the user. It disappears when the user terminates the input
by depressing the \return" key.

{ Structured box: a box that incorporates several of the above four kinds of
communication boxes.

When the system is requested to open a view of an object (a token or a class), it selects
one of the frames of this view, and displays the initial interval of elements in a window
of standard size. The �rst position of the displayed interval is the distinguished position.
Every window is assigned a unique identi�cation number. The window has a header labeled
object name:frame name and window id(parent window id).9 A scroll bar along the left
border allows users control over the portion of the frame that is displayed in the window.

The frame which is opened by default is determined by establishing an intuitive order
among the various frames, and opening the �rst non-empty frame. For class objects the order
is: subclasses, members, properties, superclasses; for token objects: properties, classes. Recall
that Rule 1 of the internal model guaranteed that each class has at least one superclass, and
Rule 2 guaranteed that each token belongs to at least one non-type class. Thus, the default
frame is guaranteed to be non-empty. The system then �lls the window with the initial
interval of the frame. The elements are arranged vertically, with object names as buttons
and relationship names as text.

By depressing these buttons, the user requests the system to display the corresponding
objects in new windows. The window in which a button is depressed becomes the parent
of the new window.10 By pointing at the background and at the header areas of each
window, the user may bring up menus for performing additional operations. These menus
are described in the next two subsections.

4.2 Global Commands

When ViewFinder is invoked, a single window appears, covering the entire screen. This
window is displayed throughout the entire session, and it encompasses all activity. A row of
buttons at the top of this window o�ers six global commands. The result of depressing these
buttons is described below.

4.2.1 database

When database is depressed, a selection box appears, with a column of buttons labeled
with the available databases. By depressing a button, the user opens that database (the

9The de�nition of a parent window will be provided shortly.
10An alternative method, in which the user types in directly the name of the new object, is described in

the next subsection. In this case the new window does not have a parent.

19

database currently open, if any, is closed). The name of this database is also the name of
the root class of its generalization hierarchy, and its subclasses frame is opened in a window.
In this speci�c case only, the list does not show the subclasses (which are type classes, such
as string or number), but their subclasses. This default frame resembles a \directory" of
this database.

Figure 3 shows the ViewFinder screen at the beginning of a session. After issuing the
database command from the global menu, the user selected the personnel database, and
the subclasses frame of the root class personnel is displayed in a window.

4.2.2 view, restore

When view is depressed, an input box appears, and the user is prompted for the name of
an object, which is then displayed in a window. Such \open by name" is an alternative to
the usual \open by pointing", and is useful when the user wishes to view an object which is
not referenced anywhere on the screen.

The command restore causes a selection box to appear with a column of buttons labeled
with the names of the windows most recently closed. By depressing a button, the user
redisplays that window, exactly as it was when closed. This command is used together with
the close command, to be described later.11

4.2.3 refresh, help, quit

The command refresh synchronizes all windows with their parent windows. This command
is used together with the sync command, to be described later.

The command help causes a selection box to appear, with a column of buttons labeled
with the basic operations. Depressing any of these buttons causes a message box to appear,
with speci�c information on this operation.

The command quit terminates the ViewFinder session. Con�rmation is required.

4.3 Browsing Commands

When the user points to the background of a window which displays a frame in the view
of an object, the principal menu of ViewFinder appears. The nine commands in this menu
implement the functionalities described in Section 3.

11By closing and restoring windows, users can work around the limit imposed by SunView on the number
of open windows.

20

4.3.1 open, close, replace

The command open opens another window for displaying another frame (possibly the same
frame) of this object. The new window will have the same parent as the current window.
A pull-right menu lists the possible choices: superclasses, subclasses, members and
properties for a class object, and classes and properties for a token object.

The command close closes the current window. Recall that this window can be restored
later by using the global command restore.

The command replace replaces the frame currently displayed in this window with another
frame of this object. A pull-right menu lists the possible options: superclasses, subclasses,
members and properties for a class object, and classes and properties for a token object.

Assuming the situation shown in Figure 3, consider the following actions. First, the
object person is selected from the personnel window, thus opening a second window
with the subclasses frame of person. Then, the object employee is selected from the
person window, thus opening a third window with the subclasses frame of employee.
Next, the open command is issued to open a fourth window with the members frame of
employee.12 Finally, the replace command is issued, and the user is now considering the
options for the frame that will replace members (Figure 4).

4.3.2 search

The command search scrolls the contents of the window to a speci�ed item. A pull-right
menu appears with four options: forward and backward, next and previous. If either
forward or backward is selected, an input box appears, prompting the user for a string of
characters. The window is then scrolled either forward or backward, until the �rst element
(object or property) that matches this string occupies the distinguished position. If no
occurrences of this string are found, the window is not scrolled, and a message is displayed in
a box. If either next or previous is selected, the search is repeated for the previous search
string, in either forward or backward direction. Search strings may include the wildcard
character *", which matches any substring.

Assume that, while viewing the members frame of employee, the user issues the search
command and its forward option, and types the string john into the input box. The
members frame is scrolled forward until the �rst occurrence of this string is encountered.
The user issues search again, and is now considering the di�erent search options (Figure 5).

12Note that only immediate members of employee are listed; i.e., those who are not members of any of
its four subclasses.

21

4.3.3 order

The command ordermodi�es the ordering of the contents of the window. A frame-dependent
pull-right menu o�ers the available options. For frames of tokens the menu lists the options
new and re�ne; each of these options has its own pull-right menu with the options by-
property and by-name; and each of these options has its own pull-right menu with the
options ascending and descending. Thus, the user selects one of eight combinations.

The option new is for establishing a new order for the frame, while the option re�ne

is for establishing a secondary order to resolve the order between elements that have the
same position according to the prevailing order. The option by-name orders the members
according to an order that is implied by the type. The option by-property orders the
members by the values they possess for some property. In the latter case, a selection box
appears listing the closure of the properties of this class, and the user is asked to select a
property. If the user selects a multi-valued property, a second selection box appears listing
various aggregate functions (see below) that are applicable to the type of the property, and
the user is asked to select a function. The tokens will be ordered by the aggregate of the
values they possess for this property. The options ascending and descending determine
whether the items are listed from lowest to highest, or conversely. If the frame is ordered by
a property which is not mandatory, the tokens that do not possess this property are marked
and positioned at the end, and a suitable message appears.

For frames of classes or properties, the pull-right menu lists only the options ascend-
ing or descending. Classes are always ordered lexicographically; properties are ordered
lexicographically by the relationship; properties that have the same relationship are ordered
according to the target object (if the targets are classes, the order is lexicographic; if the
targets are tokens, the order is determined by the type).

Assume that, while viewing the members frame of employee, the user issues the or-
der command and the options new, ascending and by-property. When presented with
a selection box with the properties of employee, the user selects secretary which is
multi-valued, and was then presented with a selection box of possible aggregate functions
(Figure 6). Selecting count will cause the employees to be reordered by the number of their
secretaries.

4.3.4 aggregate

The aggregate command computes functions on the set of items in the current frame and
displays the results in a message box. For frames of tokens, a pull-right menu lists the
options by-name and by-property. The option by-name is for computing aggregates of
the tokens themselves, while the option by-property is for computing aggregates of some
property of the tokens. In the latter case, a selection box appears listing the properties of this
class, and the user is asked to select a property (it need not be mandatory or single valued).
For either option a selection box appears listing the available aggregate functions: count,

22

maximum and minimum for tokens or properties of all types, and, in addition, sum and
average for tokens or properties of the type number. For frames of classes or properties
only a selection box appears, listing the functions count, maximum and minimum.

Results of aggregate functions are displayed in a message box. When the function max-

imum or minimum by some property is applied to a frame of tokens, the message box
includes also the tokens that possess the minimal or maximal value.

Assume that, while viewing the members frame of employee, the user wishes to �nd the
total number of employees. The user issues the command aggregate with its option by-

name, and is then presented with a selection box of possible aggregate functions. Selecting
count, the user is presented with a message box showing the total number of employees
(Figure 7).

4.3.5 select

The command select restricts the items of a frame to a selected subset. A frame-dependent
pull-right menu o�ers up to eight options. For frames of tokens it lists the options by-
enumeration, by-existence, by-condition, select, show-all, restore, undo and quit.
For all other frames, it o�ers the same options, except by-existence and by-condition.

The options by-enumeration, by-existence and by-condition are for marking items
to be selected. When select is selected all items are initially marked.

When by-enumeration is selected, a selection box appears with these buttons: to-top,
single, to-bottom and quit, with single being the default selection. In this mode, depress-
ing any marked button in the frame unmarks that token, and depressing any unmarked token
marks it. If the mode is changed to to-top or to-bottom, depressing a marked (unmarked)
button in the token frame unmarks (marks) all tokens between the token and the �rst or
the last token. When the user has �nished marking, he presses quit, to return to the main
select menu.

Assume that, while viewing the members frame of employee, the user wishes to restrict
the list to certain employees. The user issues the command select with its option by-

enumeration. Figure 8 shows the marking process: elements with *" in their button have
already been marked.

When by-existence is selected, a selection box appears listing the non-mandatory prop-
erties, and a quit button. When a property button is depressed, all the tokens that possess
a value for this property are marked. quit returns the user to the main select menu.

When by-condition is selected, a structured box appears with four boxes. One selection
box lists all the properties. A second selection box lists numerical comparators (=; 6=; <;>;�
and �), logical connectors (and, or and not), opening and closing parenthesis, and two
buttons labeled clear-condition and quit. The other two boxes are an input box and a
message box. The user constructs the selection condition by depressing property buttons,

23

comparators, connectors and parenthesis. After depressing a comparator, the user must enter
a value in the input box. The message box displays the selection condition as it is being
constructed. The construction process may be restarted by depressing clear-condition.
quit returns the user to the main select menu.

Assume that, while viewing the members frame of employee, the user wishes to restrict
the list to employees with salary over 45,000. Figure 9 shows the process of constructing the
selection formula.

These three marking processes can be combined, providing a exible tool for selecting the
items to be retained and the items to be removed. The other options of this menu perform
the actual selection. The command select removes all the unmarked items from the window.
The command show-all reverses the e�ect of select: all unmarked items are returned to
the window. Marking and selection commands may be interleaved to provide a process of
incremental �ltering. The command undo allows users to cancel the e�ect of the most recent
selection: if performed immediately after select, it restores the situation after the next-to-
last selection; otherwise, it restores the situation after the last selection. The command
restore shows all the items of the frame and marks them, allowing users to start a new
selection process. The quit command terminates the selection session: the present window
is retained and markings disappear. Subsequent selection sessions will resume the situation
just before the quit command was entered. A window that has been subjected to selection
will have the word select appended to its header label; e.g., employee.members.select.

4.3.6 closure

The command closure augments the window with distant classes, members or properties.
A pull-right menu o�ers two options: all and immediate. Selecting all augments the frame
with all distant classes, members or properties, as appropriate. Selecting immediate cancels
the closure operation.13 A window that has been subjected to closure will have the word
all appended to its header label; e.g., employee.properties.all.

Assume that, while viewing the properties frame of employee, the user issues a closure
command and selects the option all. The frame is then augmented with all intensional
properties of employee, for example, (age,years) or (child,dependent) (Figure 10).

4.3.7 sync

The command sync synchronizes the window with its parent window. The command requires
that the window is a child of a still-open parent window (i.e., recall that a child window
is created by pointing to the object in the distinguished position of another window, the
parent window). A pull-right menu o�ers three options: auto-refresh, demand-refresh

13When closure is applied to a frame that has been subjected to select, the frame is augmented with the
closure elements of the entire frame, not only those of the selected frame.

24

and break. The �rst two options regulate the refresh policy of this window. With automatic
refresh, the window will be refreshed whenever the contents of the parent window is changed.
With demand refresh, the window will only be refreshed when the user depresses the global
refresh button. This way, the user can scroll the parent window, without a�ecting the child
window, until he has located the desired element. break breaks the synchronization between
this window and its parent window.

As discussed in Section 3.3, when a child window is refreshed during synchronization,
it should preserve the attributes of the former window; i.e., show the same frame, display
a \similar" interval within that frame, and maintain its closuring, ordering and selection
choices. Presently, only limited inheritance is maintained.

An example of synchronization is shown in Figures 11 and 12. First, the user opens
members frame of department and scrolls it until manufacturing occupies the top (dis-
tinguished) position. Then, the user opens the properties frame of manufacturing and
scrolls it until the manager property occupies the top position. Finally, the user opens
two windows on harry showing its properties and classes. Figure 11 shows the present
situation. The user now issues the sync command with its demand-refresh option in the
last three windows. The third and fourth windows are now synchronized with the second
window, which is synchronized with the �rst window. When the list of departments in the
root window is scrolled, the properties of the \next" department, and the properties and
classes of its manager will be displayed in the three descendent windows. Figure 12 shows
the situation after the root window has been scrolled up one line.

4.4 Layout Commands

When the user points to a window header, the standard SunView menu pops up with six
commands to control the layout of the current window: close,move, resize, expose, hide
and quit.

Note that close and quit both close the window, but the former encapsulates it in an
icon that may later be reopened. Recall that windows can also be closed with the close
command from the browsing menu, and can later be restored with the global command
restore. Note also that the command resize may a�ect the number of items displayed in
the window.

25

Figure 3: Starting a ViewFinder session

Figure 4: Opening new windows and replacing windows with other windows

26

Figure 5: Searching a value

Figure 6: Ordering by the total number of the occurrence of a property

27

Figure 7: Computing an aggregate

Figure 8: Selecting by enumeration

28

Figure 9: Selecting by condition

Figure 10: Augmenting a frame with distant properties

29

Figure 11: Setting up a synchronized tree of windows

Figure 12: The same tree of windows after the root had been scrolled

30

5 Interfacing ViewFinder with Di�erent Data Models

Because its internal model has low-level structures, ViewFinder can be interfaced easily to
di�erent data models, including various object-oriented models, various entity-relationship
models, and various extensions of the relational model that feature a generalization hierarchy
and nested attributes. In each model, the ViewFinder network (i.e., the triplet facts) must be
extracted from the given database. The present implementation works only with databases
that actually conform to the internal model of ViewFinder (i.e., the present system must be
given a �le of triplet facts).

Note that it should not be necessary to store the semantic networks extracted from
databases. Thus, interfacing does not require converting entire databases to ViewFinder's
internal format. As users browse in a database, the section of the network in the \neigh-
borhood" being browsed is extracted from the actual database with a relatively small set
of queries. A similar approach was taken by the relational browser BAROQUE [27], where
\real-time" response was achieved with the aid of various indices. This process provides many
opportunities for optimization; for example, how to anticipate future browsing directions,
and pre-construct sections of the network, while the user is busy observing the present data;
or how to determine which sections of the network recently constructed should be \cached",
in case they will be needed in the near future. This topic is currently being studied.

This section focuses on the interface between ViewFinder and external databases. For rea-
sons of space, the discussion must be limited to a single data model, and we have chosen the
object-oriented data model. To keep the discussion independent of speci�c object-oriented
database systems, it seems appropriate that we consider the ODMG-93 standard [8], which
is being developed by the members of the Object Database Management Group.14 Again,
for reasons of space, we shall focus only on the main concepts of the ODMG Object Model.

5.1 The ODMG Model

An ODMG database is a collection of persistent denotable objects, categorized by types.
Denotable objects are either mutable (objects) or immutable (literals). All denotable objects
have identity: the identity of a literal is typically the bit pattern that encodes its value; the
identity of an object is termed object identi�er (OID). Objects may have names; a name
must refer to a single object, but an object may have several names.

Objects of a given type must have common characteristics: a common behavior and a
common range of states. Behavior is de�ned by a set of operations that may be executed on
objects of the given type. The state of objects is de�ned by the values they carry for a set
of properties. Properties are further classi�ed into attributes and binary relationships, where
the former take literals as values, and the latter de�ne traversal paths between types.

14The ODMG voting member companies and most of the reviewer companies are committed to support
this standard, which is therefore expected to become the de facto standard for the object-oriented industry.

31

A type has one interface and one or more implementations. The interface de�nes the
external interface supported by instances of the type (i.e., properties and operations). An
implementation de�nes the actual data structures for representing the instances of the type,
and the methods that operate on these data structures.

A type is itself an object, and, as such, may have properties, including supertypes, extent
(i.e., the instances of this type), and keys. A subtype (1) inherits all the attributes, relation-
ships and operations of its supertypes, (2) may add additional properties and operations,
and (3) may re�ne inherited properties and operations. Multiple inheritance is allowed. An
instance of a subtype is also an instance of each of its supertypes.

These concepts are illustrated by this following example that shows an interface de�nition
for a type employee. The interface is de�ned in ODL, the object de�nition language of the
ODMG Object Model. The example includes a structured literal (the attribute Address)
and a collection-valued property (the relationship has secretaries).

interface employee : person //employee has supertype person

// type properties:
(extent employees

keys company id

)

// instance properties:
f attribute String company id;

attribute Integer salary;
attribute Structure Address f Integer number, String street, String cityg

address;
relationship Set <employee> has secretaries;

g

5.2 The ViewFinder Representation of an ODMG Database

ViewFinder represents an ODMG database with a set of facts that can be browsed to explore
the generalization hierarchy and to view the properties of type and instance ODMG objects.
There is no support for object behavior, since the function of a browser is to search the
contents of databases.15 The ViewFinder representation of various ODMG structures will
be denoted with the mapping �.

Object Names

A ViewFinder object must have exactly one name (indeed, objects are names), whereas an

15Nevertheless, it is possible to extend the external model with a method frame to display information
about the methods associated with objects.

32

ODMG object may be referred to by several names. A named ODMG object is represented
in ViewFinder by one of its ODMG names; an unnamed object is assigned a name.

Generalization Facts

There is a simple one-to-one correspondence between the types of an ODMG database and
the classes of its ViewFinder representation. The ODMG distinction between literal types
and nonliteral types induces a partition of the ViewFinder classes into literal classes and
nonliteral classes.

For every literal type t (either built-in or de�ned by an interval, an enumeration or a
structure), �(t), its ViewFinder counterpart, is a subclass of one of the ViewFinder type
classes; e.g., integer, string, date, boolean, and real. Speci�cally,

�(integer) � integer,
�(float) � real,
�(boolean) � boolean,
�(date) � date,
�(t) � string, for t 2 fcharacter;character string;bit string;time;timestampg,
�(t) � �(T), if t is an interval of values of type T ,
�(t) � string, if t is an enumeration or a structure.16

For every nonliteral type t, �(t) is a (nonliteral) class with the same name as t. The
supertypes of t induce generalization facts with �(t) as source. If the only supertype of t
is the root of the ODMG type hierarchy, then ViewFinder includes the generalization fact
(�(t);�; string); otherwise, if t has the supertypes T1; T2; : : : ; Tn, then ViewFinder includes
the generalization facts (�(t);�; �(Ti)); i = 1; : : : ; n.

For example, the ODMG type employee induces these generalization facts:

(�(employee);�; �(person)),
(�(Address);�; string).

Intensional Facts

The only literal classes that can appear as source of intensional facts are classes repre-
senting structures. The structure t = hslot1; slot2; : : : ; slotni, where sloti is de�ned as
hslot namei : [Collection specifier] Tii,17 is represented in ViewFinder with the inten-
sional and mandatory facts (�(t); slot namei; �(Ti)); i = 1; : : : ; n (if the slot contains a
collection speci�er, the intensional fact is multi-valued).

For example, the structure type Address induces these intensional facts:

17The collection speci�er is optional and is one of fSet, Bag, List, Arrayg, and Ti is a literal type.

33

(�(Address);number; �(integer)), mandatory and single-valued,
(�(Address); street; �(string)), mandatory and single-valued,
(�(Address);city; �(string)), mandatory and single-valued.

The interface body of a nonliteral type t determines the set of intensional facts having
�(t) as source. There is a one-to-one correspondence between the characteristics (attributes
and relationships) of an ODMG nonliteral type t and the ViewFinder properties of �(t). A
characteristic signature in the interface body of t, de�ned as

characteristic specifier [Collection specifier] target type name 18

is represented in ViewFinder with the intensional fact (�(t); name; �(target type)). The
property of �(t) is mandatory if the corresponding characteristic is a key (or belongs to
a compound key) and multi-valued if the corresponding characteristic signature contains a
collection speci�er.

The distinction between attributes and relationships is somewhat blurred, and is retained
only by the nature of the target class �(target type), which is a literal class for properties
representing attributes and a nonliteral class for properties representing relationships.

The characteristics of Employee induce these intensional facts:

(�(employee);company id; �(string)), mandatory and single-valued,
(�(employee); salary; �(integer)), single-valued,
(�(employee);address; �(Address)), single-valued,
(�(employee);has secretaries; �(employee)), multi-valued.

Membership Facts

The ViewFinder representation �(t) of a literal type t is implicitly instantiated and its
member frame cannot be browsed, with the exception of enumeration types whose instances
are explicitly declared. There is a one-to-one correspondence between the values of an
enumeration t and the members of �(t): the enumeration t = fv1; v2; : : : ; vng is represented
in ViewFinder with the membership facts (�(vi);2; �(t)); i = 1; : : : ; n.

For a nonliteral type t the membership facts with �(t) as target are determined by the
instance objects belonging to the extent of t. There is a one-to-one correspondence between
the instances of t and the members of �(t): extent(t) = fo1; o2; : : : ; ong is represented in
ViewFinder with the membership facts (�(oi);2; �(t)); i = 1; : : : ; n.

Extensional Facts

The state of any ODMG instance object consists of instances of the characteristics (attributes
and relationships) de�ned by its type. The object characteristics de�ne abstract states: they
appear within the interface de�nition of an object type rather than in the implementation.

18The characteristic speci�er is attribute or relationship.

34

An object state can be treated as a list of pairs (characteristic name; value), where the
value may be an individual object or a collection of objects, depending on whether the
characteristic is single-valued or collection-valued. The correspondence between the state of
o and the extensional facts having �(o) as source is de�ned in the following way:

� Each single-valued characteristic instance of an object o is represented in ViewFinder
with an extensional fact (�(o); characteristic name; �(value)).

� Each collection-valued characteristic instance of o is represented in ViewFinder with
the extensional facts (�(o); characteristic name; �(vi)) for vi 2 value.

6 Conclusion

ViewFinder is a graphical tool for browsing and querying databases. Its design empha-
sizes simplicity of operation, advanced functionalities, and generality (with respect to the
databases with which it can be used). ViewFinder was fully implemented as a prototype.
It is written in the C language, and it runs on a Sun Workstation in the Unix operating
system environment. The external model uses the SunView window management system.
Presently, the database is in the format of the internal model.

Work on ViewFinder is still continuing. At the user's end, we are interested in improving
the current implementation of the external model, to achieve a more attractive graphical
user interface. At the database end, we are interested in interfacing ViewFinder to ex-
ternal database systems and we are investigating implementation techniques that assure
good performance. In this section we describe two additional thrusts of research: extend-
ing ViewFinder with features for assembling browsing results, and extending ViewFinder to
allow users to modify the database.

6.1 Displaying Views of Virtual Objects

Presently, ViewFinder allows users to explore a database by repeatedly displaying views of
existing database objects, usually by pointing at their references in views presently displayed.
Work is underway on extensions to ViewFinder that will allow users to construct views that
do not correspond to existing database objects. Speci�cally, users will be provided with a
new set of commands for creating virtual objects from actual database objects, and displaying
their views.

To our knowledge, existing database browsing tools do not provide structures and opera-
tions for constructing results of browsing sessions. Consequently, users who encounter many
items of interest in a search process, may simply have to copy them onto a note pad. In
analogy with relational databases, where formal queries operate on actual database relations

35

to create relations which are answers to these queries, the new commands will operate on
database views (objects) to create views (objects) that are results of browsing sessions.

Virtual objects are always classes. When created (in the beginning of a browsing session)
virtual classes are most general and have no members. During the session they are manipu-
lated to include objects of interest, and their position on the generalization hierarchy changes
correspondingly to reect their new \contents". At the end of the session they contain the
\output" of the session. The dynamic changes in the \class" of a virtual class agrees with
the uncertainty that characterizes browsing.

As an informal example, consider a database that includes the following generalization
hierarchy: the classes male, female and employee are specializations of person, and
the classes manager and technical are specializations of employee. Assume that we
are browsing in this database to determine who should get a salary raise. Initially, we
create a new virtual class called raise. Next, we insert into raise the classes manager
and technical in their entirety. Then, we retain in raise only the members of the class
female, and we restrict raise to include only employees in the manufacturing department.
Finally, we insert tom into raise and we delete betty from raise. Altogether, the members
of the virtual class raise are the female employees in the manufacturing department that
are either managers or members of the technical sta�, but excluding Betty and including
Tom.

It is possible to represent the de�nition of a virtual class in the form of a new kind of facts,
to be called de�nition facts, which would be displayed in a new (�fth) frame of the virtual
class.19 Browsing can then be extended to allow users to browse also in de�nitions. Since
de�nitions are often used to formalize higher level concepts, such de�nitions, like inference
rules, may be regarded as a form of knowledge. Altogether, ViewFinder would be integrating
access to data (i.e., token objects), schema (i.e., class objects and their hierarchies), and
knowledge (i.e., de�nitions of virtual classes).

6.2 Extending ViewFinder to Handle Database Modi�cations

While presently ViewFinder is a tool for database retrieval (e.g., browsing, querying), it may
be extended to allow also database modi�cation. Modi�cations may include the creation of
new objects (either classes or tokens), the deletion of existing objects, and the alteration of
existing objects.

Modi�cations will be de�ned at the level of the external model. That is, users will
alter the information displayed in views, or will use menu commands to create and destroy
objects. These changes will be checked for consistency with the rules governing the internal
model, and will then be translated into modi�cations of the underlying semantic network
(i.e., insertion, deletion or alteration of triplet facts).

19Actual classes would have empty de�nition frames.

36

When ViewFinder is interfaced with other data models, it would be necessary to prop-
agate the modi�cations to the actual database. Issues of update propagation are currently
being studied.

Acknowledgement The implementation of ViewFinder was done by Fabrizio Pros-
peri Porta (preliminary version) and Walter Tross (current version). The authors wish to
thank them for their valuable suggestions and comments.

References

[1] S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Transactions
on Database Systems, 12(4):525{565, December 1987.

[2] R. Agrawal, N. H. Gehani, and J. Srinivasan. OdeView: The graphical interface to
Ode. In Proceedings of ACM-SIGMOD International Conference on Management of
Data (Atlantic City, New Jersey, May 23{25), pages 34{43, 1990.

[3] Ashton-Tate, Culver City, California. DBASE-III Reference Manual, 1984.

[4] J.L. Bell. Reuse and browsing: Survey of program developers. In D. Tsichritzis, editor,
Object Frameworks, pages 197{220. Centre Universitaire d'Informatique, Universit�e de
Gen�eve, 1992.

[5] D. Bryce and R. Hull. SNAP: A graphics-based schema manager. In Proceedings of
the IEEE Computer Society Second International Conference on Data Engineering (Los
Angeles, California, February 5{7), pages 151{164, 1986.

[6] R. G. G. Cattell. An entity-based database interface. In Proceedings of ACM-SIGMOD
International Conference on Management of Data (Santa Monica, California, May 14{
16), pages 144{150, 1980.

[7] R. G. G. Cattell. Design and implementation of a relationship-entity-datum data model.
Technical Report CSL-83-4, Xerox Corporation, Palo Alto Research Center, Palo Alto,
California, May 1983.

[8] R. G. G. Cattell, editor. The Object Database Standard: ODMG-93 (Release 1.1).
Morgan Kaufmann, San Francisco, California, 1994.

[9] P. P. Chen. The entity-relationship model: Toward a uni�ed view of data. ACM
Transactions on Database Systems, 1(1):9{36, January 1976.

[10] A. D'Atri and L. Tarantino. From browsing to querying. Data Engineering, 12(2):46{53,
June 1989.

[11] A. D'Atri and L. Tarantino. A browsing theory and its application to database nav-
igation. In J. Paradaens and L. Tenembaum, editors, Advances in Database Systems,
Implementations and Applications, CISM Courses and Lectures No. 347, pages 161{180.
Springer-Verlag, 1994.

37

[12] A. Dix and A. Patrick. Query by browsing. In Pete Sawyer, editor, Interfaces to
Databases Systems, Lancaster 1994, Workshops in Computing, pages 236{248. Springer-
Verlag, 1994.

[13] D. Fogg. Lessons from a 'living in a database' graphical query interface. In Proceedings
of ACM-SIGMOD International Conference on Management of Data (Boston, Mas-
sachusetts, June 18{21), pages 100{106, 1984.

[14] A. Goldberg and D. Robson. A metaphor for user interface design. In Proceedings of the
13th Hawaii International Conference on System Science (Honolulu, Hawaii, January
3{4), pages 148{157, 1980.

[15] K. J. Goldman, S. A. Goldman, P. C. Kanellakis, and S. B. Zdonik. Isis: Interface for a
semantic information system. In Proceedings of the ACM-SIGMOD Conference on the
Management of Data, pages 328{342, 1985.

[16] I. Goldstein and D. Bobrow. Browsing in a programming environment. In Proceedings
of the 14th Hawaii International Conference on System Science (Honolulu, Hawaii,
January 8{9), 1981.

[17] M. Hammer and D. McLeod. Database description with SDM: A semantic database
model. ACM Transactions on Database Systems, 6(3):351{386, September 1981.

[18] R. Helm and Y. Maarek. Integrating information retrieval and domain speci�c ap-
proaches for browsing and retrieval in object-oriented class libraries. In Proceedings of
OOPSLA '91, Phoenix, pages 47{61, 1991.

[19] C. Herot. Spatial management of data. ACM Transactions on Database Systems,
5(4):493{513, December 1980.

[20] R. Johnson, M. Goldner, M. Lee, K. McKay R. Schectman, and J. Woodru�. USD | a
database management system for scienti�c research. In Proceedings of ACM-SIGMOD
International Conference on Management of Data (San Diego, California, June 2{5),
1992.

[21] R. King and D. McLeod. An approach to database design and evolution. In M. Brodie,
J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modeling, pages 313{327, 1984.

[22] R. King and S. Melville. SKI: a semantic knowledgeable interface. In Proceedings of the
10th International Conference on Very Large Data Bases (Singapore, August 27{31),
pages 30{33, 1984.

[23] T. Learmont and R. G. G. Cattell. An object-oriented interface to a relational database.
Technical report, Information Management Group, Sun Microsystems, 1987.

[24] G. A. Miller. Dictionaries of the mind. In Proceedings of 23rd Annual Meeting of the
Association for Computational Linguistics (Chicago, Illinois, July 8{12), pages 305{314,
1985.

38

[25] A. Motro. Browsing in a loosely structured database. In Proceedings of ACM-SIGMOD
International Conference on Management of Data (Boston, Massachusetts, June 18{21),
pages 197{207, 1984.

[26] A. Motro. Assuring retrievability from unstructured databases through contexts. In
Proceedings of the IEEE Computer Society Second International Conference on Data
Engineering (Los Angeles, California, February 5{7), pages 426{433, 1986.

[27] A. Motro. BAROQUE: A browser for relational databases. ACM Transactions on O�ce
Information Systems, 4(2):164{181, April 1986.

[28] A. Motro, A. D'Atri, and L. Tarantino. The design of KIVIEW: An object-oriented
browser. In Proceedings of the Second International Conference on Expert Database
Systems (Tysons Corner, Virginia, April 25{27), pages 17{31, 1988.

[29] E. Neuhold and M. Stonebraker (editors). Future directions in dbms research. Technical
Report TR-88-001, International Computer Science Institute, May 1988.

[30] J. Nielsen. The art of navigating through hypertext. Communication of the ACM,
33(3):296{310, 1990.

[31] X. Pintado and D. Tsichritzis. An a�nity browser. In D. Tsichritzis, editor, Active
Object Environments, pages 51{60. Centre Universitaire d'Informatique, Universit�e de
Gen�eve, 1988.

[32] T. R. Rogers and R. G. G. Cattell. Object-oriented database user interfaces. Technical
report, Information Management Group, Sun Microsystems, 1987.

[33] A. Silberschatz, M. Stonebraker, and J. Ullman (Editors). Database systems: Achieve-
ments and opportunities. Communications of the ACM, 34(10):110{120, October 1991.

[34] M. Stonebraker and J. Kalash. TIMBER: A sophisticated database browser. In Proceed-
ings of the Eighth International Conference on Very Large Data Bases (Mexico City,
Mexico, September 8{10), pages 1{10, 1982.

[35] P.D. Stotts and R. Furuta. Petri-net-based hypertext: Document structure with brows-
ing semantics. ACM Transactions on Information Systems, 7(1):3{29, 1989.

[36] Sun Microsystems, Mountain View, California. SunView Programmer's Guide, Revision
A (Part Number 800-1345-10), 1986.

[37] S. A.Weyer and A. H. Borning. A prototype electronic encyclopedia. ACM Transactions
on O�ce Information Systems, 3(1):63{88, January 1985.

[38] H. K. T. Wong and I. Kuo. GUIDE: A graphical user interface for database exploration.
In Proceedings of the Eighth International Conference on Very Large Data Bases (Mex-
ico City, Mexico, September 8{10), pages 22{32, 1982.

39

