Algorithmic Analysis of the Impact of Changes on Object-
Oriented Software

Li Li A. Jefferson Offutt
LCCL.L.C. | SSE Department, 4A4
2300 Clarendon Blvd., Suite 800 George Mason University
Arlington, VA 22201 Fairfax, VA 22030-4444
phone: 703-516-7394 phone: 703-993-1654
email: lili@lccinc.com email: ofut@isse.gmu.edu

GMU I SSE Technical Report | SSE-TR-96-02
abstract

As software ages and evolves, tasks of maintaining it become more complex and more expensive. With-
out change impact analysis, engineers could make critical changes in the dark that could cause major
problems or big ripple effects in the system. In this paper, we analyze the possible changes that could
happen in object-oriented software, how these changes affect other classesin the system, and describes
a set of algorithms that can find out all the possibly affected classes if these changes happened. This
technique allows software devel opersto perform“ what if” analysis on the impact of proposed process
changesin the object-oriented system, choose the proposed change that causes the minimum impact on
the system. Once the change is committed, it allows software testers to know what the areas are in the
software system that are possibly affected by the change and retest only those classes instead of whole
system and still feel confident about the software.

Key words. Change Impact Analysis, Object-Oriented Software, Software Testing.

1. Introduction

The software systems have traditionally been decomposed into subsystems top down according to their functionality.
The object-oriented approach describes the system in terms of objects that make up the problem domain. Applying
obj ect-oriented technology can lead to better system architectures, and enforces a disciplined coding style. Rumbaugh
[Rum91] states that an object-oriented approach produces a clean, well-understood design that is easier to test, main-
tain, and extend than non-object-oriented designs because the object classes provide a natural unit of modularity.
Despite the advantages of object-oriented technology, it does not by itself ensure the quality of the software, shield
against developer’s mistakes, nor prevent faults. Barbey and Strohmeier think the object-oriented paradigm can also
be a hindrance to testing, due to encapsulation, inheritance, and polymorphism[Bar94].

As time goes by, there are more demands for evolving existing software. Software evolution refers to the on-going
enhancements of existing software systems, involving both development and maintenance. As software ages and
evolves, the task of maintaining it becomes more complex and more expensive, which is especially true for systems
implemented in object-oriented approach.

When engineers consider an update to an existing system, they need to know what potential impacts this update will
bring to the entire system. Determining how apotential change might impact the system isrefereed to as changeimpact
analysis. Without impact analysis, engineers could make critical changesthat could cause major problems or haverip-
ple effectsthroughout the system. To predict impact of changesto object-oriented software, users can use the technique
described in this paper to eval uate the effects of changes before commit them to the system. During maintenance, when

Page 1

some changes have been made to the system, we need to estimate how many classes need to be retested. Retesting too
many classes in the system will increase the cost of testing, retesting too few classes in the system might adversely
effect the quality of the software. By applying this technique, testers can learn what classes are possibly affected by
the change and retest only those classes.

In this paper, we analyze a number of possible changes to object-oriented software, how these changes affect the
classes in the system, and describe a set of algorithms that determin what classes will be affected by the changes.
Section 2 presents object-oriented concepts and definitions used in the paper and describes the theoretical background
of our algorithms. Section 4 first analyzes how the encapsulation, inheritance, polymorphism will affect the change
propagation, and then describes a simple algorithm to estimate potentially affected classes. Algorithms are presented
that calculate change propagation within classes, between client and server classes, and between parent and children
classes. We al so categorize the possible changes that could happen to the system and give each type of change achange
attribute according to how these different types of changes can affect the other parts of the system, and discuss how to
optimize the original algorithms according to these different change categories. An example system a given, and the
algorithms described in this paper are applied to the example system to analyze the impact result. The complete set of
algorithms are given in the Technical Report[xxx]. Section 6 isthe conclusion, it describes the plan we are interesting
in.

2. Definition

An object-oriented system is composed of objects and classes. An object is composed of a set of properties, which
defineits state, and a set of operations, which define its behavior. The state of an object encompasses all the properties
of the object plus the current values of each of these properties. Behavior is how an object acts and reacts, in terms of
its state changes and message passing[Boo94]. The state of an object represents the cumulative results of its behavior.
The constants and variables that serves as the representation of itsinstance’ s state can be called Fields, Instance Vari-
ables or Data members depend on the language. They are used interchangeably in this paper. Messages are operations
that one object performs upon another, Methods or Member Function are operations that clients may perform upon an
object. A Class is the specification of an object; it is the “blueprint” from which an object can be created. A class
describes an object’ s interface, the structure of its state information, and the details of its methods [Mar95]. Objects
are runtime instances of a class. An Abstract Classis a class that only partially describes an object. Usually some or
all of itsinterfaces are without implementation.

A control flow graph (CFG) is afinite, connected directed graph G = (N, E, N, N;) where N is afinite set of nodes,
E < NxN isafinite set of edges, N e N isthe start node and N; e N isthe final node. A node in a CFG represents a
statement or abasic block, i.e. a sequence of statements having the property that each statement in the sequenceisexe-
cuted whenever the first statement is executed. An edge (Ni, Nj) represents a possible flow of control between two
statements or basic blocks, i.e. the statement (or block) represented by Ni is executed before the statement or basic
block that is represented by Nj.

A Data Definition is an expression or part of an expression that modifies adataitem. A Data Use is an expression or
that part of an expression that references adataitem without modifyingit. A def-use pair isadefinition that may, under
some executions, reach the use without going through another definition. A data flow graph (Def-Use) graph is a
directed graph where the nodes and some edges are described by def _use relationships.

Thereflective transitive closure of arelationship Ristherelation R" defined by cR'd,ifand only if thereisasequence
e,Re,, e;,Re;, ..., 6, _1Re,; Wherem =22, ¢c = € and d = €n-

In this paper, we use Booch Notation [Boo94] to express rel ationships among classes. Figure 1, “ Some Booch notation
for class diagram” shows Booch Notations that express some class relations used in this paper.

Page 2

LT T~ -
_+ClassName '/

,” Methods O\ — — — Implementation
- Pseudocode
patalvlgmberg
ST, ST ST T =D ST =0
e 4 7 A { A (27 A -
- A \/ \ \/ N ! N)
' e—-- -c0~ =" \/’T*‘—/ N
) . ST == ST~y
Pie I .7 (lz’ ‘ -7 -
k\ B) k\ B) - B \ \\ B (I
\‘/__\’/ \,,—\,' \,’—\" \’,“’/
. Class A uses Class B inherits associati
lation
A contains B ClassB from A

Figure 1: Some Booch notation for class diagrams

Class A contains class B if the instance of class B isheld in one of the instance variables of the A. This represents the
“whole/part” relationship. For example, we can say a car has an engine, or a car has doors. Class A usesclassB if A
sends messagesto B. For example, we say aperson usesacar. The person tellsthe car to start-up, turn, stop by sending
messages to the car through car interface like key, steering etc. A class can inherit the instance variables, interfaces,
and instance methods of another classasif they were defined within it. This expressesthe generalization/specialization
relationship. For example, a Sedan is a specialization of a general car. The class from which another class inheritsis
called parent or superclass. The class that inherits from parent is called a child, subclass or derived class. If aclass
has more than one parent, this kind of relationship is called multiple inheritance. Association is a semantically weak
relationship. It only statesthereis some relationship between the classes expressed without explicitly stating what kind
of relationship. It could be contains, use, or inheritance. Thisis usually used in the analysis and design phases when
some relationships among classes are still not clear or we just want to represent a general relationship among the
classes.

2.1 New Definitions

In structured programming, one thinksin terms of input, function and outputs. In object-oriented programming (OOP),
the approach is different -- amessage is passed to an object requesting an operation on the object. Objects have meth-
ods and data fields, the methods specify the allowable operations on the object’s private data, and the data fields
specify the state information for the object. When adatafield or methods change, it could affect other classes through
message passing. We define an affected class set (ACS) to be the set of classes that could potentially be affected,
affected method set of ¢ (AMS[c]) to bethe set of methods that could potentially be affected in class ¢, and affect field
set of ¢ (AFY[c]) asthe set of datafields that could potentially be affected in class c.

If X isadatafield or method, MREF(x) (method reference set of x) is the set of methods that reference x, in another
words, method m references x as part of its implementation. MREF(x) represents the set of methods that could be
affected by x, if x changes.

FREF(X) (data field reference set of x) isthe set of datafields that are defined by the datafield or method x. FREF(X)
set are the set of data fields that can be potentially affected by x.

FDEF (field definition set of x) is the set of datafields that define a datafield or method x.

The affected method set (AMS) of aclass Cisthe set of all methods that reference any method in AMS or any field in
AFS (affected field set) of C or any other class they use. The affect field set (AFS) of aclass C contains dl the fields
that isdefined or redefined by field in AFS or any methodsin AM S of C. Induction isused to define these two sets. The
public affected method set (PAMS) o f Cisthe AMS set that composed of public methods of C. The public affected

Page 3

field set of Cisthe AFS set that composed of public datafields of C.

Suppose we want to see what impact a change could have on a system when the date members or methods in certain
classes are proposed to be changed. First we initialize the ACS to the set of classes proposed to be changed, and ini-
tializethe AMS and AFS of each classein the ACS. For example, the class Cin ACS, its data member f, and method
m,, are proposed to change

AMS(C) = {my}

AFS(C) = {f,}

Let's assume that at n -1 step, AMS,_; (C) contains all the affected methodsin C, and AFS,_, (C) contains al the
affected fields or data membersin C

AMS, _;(C) = {m|Vm, misthe affected method in class C}

AFS, _;(C) = {f|Vf,fistheaffectedfieldsin classC}
At stepn,
AMS of C contains all the methods that reference any fieldin AFS, _; (c) plusany methods that reference any meth-
odsin AFS, _ (c) , cisany classin the system

AMS, (C) = {m|VminC,3xdc,st. me MREF (x) AXxe AFS, _;(0)}

v {m|¥m3dn,dc, st. me MREF (n) Ane AMS, _;(0)}

AFS of C contains al the fields or data members that are defined by any field in AFS, _, (c) and any field that is
defined by any methodsin AFS, _, (c) , cisany classin the system.

AFS, (C) = {f|vfinC,3x,dc,st.fe FDEF(X) Axe AFS, _,(C)}

v {f|vf inC,dmJc, st. fe FDEF (m) Ame AMS, _; (©) }

3. Algorithms

This section, we presentss the algorithms that analyze the ripple effect of the system when some component has been
changed. We assume the existing system has been thoroughly tested. The agorithm calculate the transitive closure of
ACS set of each class. It pick an unexamined class from the system, check all the classes that have direct relationship
with this class according to encapsulation, inheritance characteristics, then add all the classes that could potentially be
affected by this classin ACS set. The ACS of the entire system is the union of all the ACS sets of each classin the
system. Total Effect isthe main algorithm that picks an unexamined class C from the system and calls other algorithm
units. It calls FindEffectInClass(C) to calculate the AMS and AFS of C, FindEffectAmongClient(C) to determine the
client classes that could be affected by C, FindEffectAmongChildren(C) the determine the subclasses that coulde be
affected by C. All the affected classes are put into ACS set.

Page 4

3.1 Total Effect

The Total Effect Algorithm initializesthe ACS set and AM S, AFS sets of each classin ACS using SetInit. Setlnit also
marks each class in the system as dirty, meaning they need to be checked by the algorithms. Total Effect pick one dirty
classfrom the system, mark them clean, meaning they have been checked, then uses FindEffectinClass(C) to analyze
the effect within the class, uses FindEffectAmongChildren(C) to analyze the effect in the system according to inherit-
ance, and uses the FindEffectAmongClient(C) to analyze the effect in the system according to encapsulation. Wewill
explain FindEffectinClass(C), FindEffectAmongChildren(C) and FindEffectAmongClient(C) in detail in following
sections. During algorithm execution, if the AMS or AFS sets of any clean class have increase, this clean is marked as
dirty again for further examination. Figure 2, “Algorithm to calculate the total effect in the system” shows the high
level flow of the algorithm.

3.2 Initialization

The Initialization algorithm will initialize the data structures according to the precondition of the algorithms. The user
can specify what the methods and data fields of what classes they want to analyze. The Setlnit will set theinitial value
of ACS to the classes of interest, the specified class AMS[C;] to these affected methods of specified classes, and
AFS[C,;]totheaffected fields of specified classes. Figure 3, “ Initialization algorithm” showsthe Setlnit algorithm.

3.3 Encapsulation

In traditional programming, the basic unit is a procedure. In object-oriented programming, methods or member func-
tions are the actions that can be performed on objects. They manipulate and express the state of the object. They are

TotalEffect ()
input: the set of changed classes and their changed methods and data fields.
output: the affected classes and their methods, data fields in the system.
/* conservative algorithms to find the ripple of the system */
BEGIN
SetInit ()
FOR each class C in ACS
IF C is not clean
mark C clean.
FindEffectInClass (C)
FindEffectAmongChildren (C)
FindEffectAmongClient (C)
ENDIF
ENDFOR
END TotalEffect

Figure 2: Algorithm to calculatethe total effect in the system

SetInit ()

BEGIN
ACS = {the set of changed classes}
Mark each class in the system dirty

FOR each class in ACS C;

avs[C, 1 = {the set of methods changed in C; }
ars[C, 1 = {the set of fields changed in C; }
ENDFOR

END SetInit

Figure 3: Initialization algorithm

Page 5

the interface of a class to other classes and in many ways are not logically independent entities. Thus, we can treat
classes as the basic unit for analysis, and focus on classes and objects. Encapsulation is away to separate the imple-
mentation of a data object from its specification. An object does this by managing its own resources and limiting the
visibility of what others should know. An object publishes a public interface that defines how other objects or appli-
cations can interact with it. An object also has a private component that implements the methods. The object’s
implementation is encapsulated -- that is, hidden from the public view [OH96]. In the presence of encapsulation, the
only way to observe the state of an object is through its interface (public methods). The class hides the properties of
its instances to conceal the data structure and the details of implementation. All the features of an object are usually
hidden, such that the only way the state can be examined or modified is by invoking its interface formed by its public
properties. The interface is a basis for a protocol that objects use to communicate with each other by requesting an
object to invoke one of its operations. M ethods and datamembersin the class can see all the propertieswithin the class.
For each class C, AMS[C] contains all the methods that could be affected by specified changes. AFS[C] holds all the
datafields that could be affected by specified changes. Since the only way to observe the state of an obejct or operate
on an object is through its public methods or data fields, this object’s clients can only be directly affected by the
changes in the public methods or data fields. PAMS[C] contains all the public methods that could be affected.
PAFS[C] holds all the public fields that could be affected. obviously, PAMS[c] c AMS][c] , PAFS[c] c AFS[c] .
Operationsin objectsinteract with each other by modifying the state of their objects. The control flow analysis or data
analysis techniques are not directly applicable to the object level, since there is no sequential order in which the oper-
ation will be invoked.

Finding Effect Within a Class (FindEffectl nClass)

When amethod or datafield in class C changes, the effects within the class C can be found by FindEffectinClass(C).
Since the execution within each method is still sequential, we can apply CFG and DFG techniques to find the MREF,
and FREF sets of C. FindEffectInClass checks each method m in class C that is not in affected methods set (AMS),
and each data field f that is not in affected field set (AFS). If m references any methods in AMS (
MREF (m) n AMS(C) = Empty) or m references any datafieldsin AFS (FREF (m) n AFS(c) # Empty), m could be
affected by the changesin AMS and AFS. So it will be added to AMS and to PAMS if mis public. If datafield f ref-
erences any data field in AFS (FREF (f) nAFS(c) # Empty) or references any method in AMS (
MREF (f) n AMS(c) = Empty), addf to AFSand to PAFSif f ispublic. This sounds reasonable, but unfortunately this
algorithm has aflaw. Assume a class has methods m1, m2, m3, m4, m5. m1 and m2 arein AMS set; if m3 references
mb5 and m5 references m2, m3 references m2 indirectly, m2e AMS, so m3 should belongs to AMS. But when we
check m3, since m5 has not been checked yet, m3 could not find any referencein AMS set, so the algorithm thinksiit
iscleanand failsto putitin AMS. To fix this problem, we put the methods or data fieldsthat cannot find any reference
in AMS or AFS set in atemporary clean set. After having checked all the methods and data fields in the class, the
algorithm examines all the methods and data fields in this clean set, to check whether there are more methods or data

Page 6

fieldsthat could be affected. See Figure 4, “ Algorithmsto calculate change effectsinside class’ for detail information
FindEffectInClass (C)
/* Effect in class will find the effect within the
class, if certain data members or methods have changed */
input: the AMS and AFS sets in C before this algorithm is executed.

They could come from initialization or the execution result from previous
iteration.

output: the AMS and AFS sets in Class C after the execution of this algorithm.
They include the original members plus any newly added members
BEGIN
Analyze the CFG and DFG of each methods, construct MREF & FREF sets for each
methods and data fields.
/* initial searching of methods and data fields */
FOR each method m in C
BEGIN
IF (me AMS) and ((MREF(m) nAMS(C) # Empty) or
(FREF (m) nAFS(c) # Empty))
AMS(c) = AMS(c) U {m}
if m is public member
PAMS(c) = PAMS(c) u {m}
ELSE CleanMethod = CleanMethod U {m}
ENDIF
ENDFOR
FOR each field f in C
BEGIN
1r (f¢ AFS) and ((FREF(f) nAFS(c) # Empty) or
(MREF (f) " AMS(c) # Empty))
BEGIN
AFS(c) = AFS(c) U {f}
IF f is public attribute
PAFS(c) = PAFS(c) U {f}
END ELSE CleanField = CleanFieldu {f}
ENDIF
ENDFOR
FOR each method m in CleanMethod
BEGIN
IF (MREF(m) NAMS(C) #Empty) or (FREF(m) nAFS(c) # Empty)
BEGIN
AMS(c) = AMS(c) U {m}
IF m is public member
PAMS(c) = PAMS(c) U {m}
ENDIF
ENDFOR
FOR each field f in CleanField
BEGIN
1F (FREF (f) nAFS(c) # Empty) or (MREF (f) n AMS(c) # Empty)
BEGIN
AFS(c) = AFS(c) U {f}
IF f is public attribute
PAFS(c) = PAFS(c) U {f}
ENDIF
ENDFOR
END FindEffectInClass

Figure 4. Algorithmsto calculate change effectsinside class

Page 7

Finding Effects Among Clients (FindEffectAmongClients)

If class A sends messages to class B, A uses B. We can say class A is class B's client. Encapsulation builds a wall
between the class and its clients. Assume the current affected classis C, and we want to determine which classes that
use C, will be affected. Because of the encapsulation, the clients of C, can only access this class through its public
members, which meansits clients can only be affected by this class s PAMS and PAFS sets.
FindEffectAmongClients examines each client class of C, and puts any methods or datafields that reference methods
or datafieldsin PAMS or PAFSof C, into their own AMSor AFS set. If any of these methods or datafields are public,
they are put into PAM S and PAFS of these client classes. FindEffectAmongClients finds other methods and datafields
that might be affected by the newly added affected methods and data membersin AMS and AFS in each client class
by calling their FindEffectInClass().

We have marked each class as dirty at the initialization. Classes that are dirty need to be checked by the algorithms as
an initial class (not checked as a client or child of the class being analyzed). We define OLDAMS and OLDAFS as
the two setsthat containsthe AM S and AFS before FindEffectAmongClient start its process. At theend, thealgorithm
checks whether there are any new methods or data fields that have been added to the AMS and AFS set by compare
the AMSand AFSwiththe OLDAMSand OLDAFS. If there are new methods or datafieldsin aclient class, it means
this client class might influence more classes in the system by these newly added members. This class needs to be
checked again by the algorithms, so it is marked as dirty to be picked by the main loop in Total Effect(). See Figure 5,
“Algorithm to calculate the change effect among clients’ for details of this agorithm.

Page 8

3.4 Inheritance

Inheritance is the mechanism that allows the devel oper to create new child classes -- known as subclasses or derived
classes -- from existing parent classes. |nheritance represents a hierarchy of abstractions, in which a subclass inherits
from one or more super classes. The child class shares the structure or behavior defined in its parent class. The child
class can express differences with its parent class by modifying and adding properties.

Different languages accept different inheritance schemes (strict inheritance, subtyping, subclassing etc.). Srict inher-
itance is the simplest inheritance scheme; it keeps the exact behavior of its parent. The inherited properties cannot be
modified, the derived class can only be redefined by adding new properties. Subtyping is the most commonly used
scheme. In addition to properties of strict inheritance, subtyping allows for the redefinition of the inherited properties
when the parent's operation is not appropriate for the subclass. Subclassing is a scheme of inheritance in which the
derived classis not considered as a specialization of the base class, but as a completely new abstraction that bases part
of itsbehavior on a part of another class. This schemeis also called implementation inheritance. The derived class can

FindEffectAmongClients (CO)
input: the ACS set and AMS, AFS sets in C before this algorithm is executed.
They could come from initialization or the execution result from previous iteration.

output: The expanded ACS, and the expanded AMS, AFS, PAMS, PAFS sets of the classes
that belongs to ACS.

FOR each class C that uses CO

BEGIN
OLDAMS [C] = AMSI[C]
OLDAFS[C] = AFSI[C]
FOR each methods m in C
BEGIN
Ir (MREF(m) nPAMS(C,) #Empty) or (FREF(m) nPAFS(Cy # Empty)
BEGIN
AMS(C) = AMS(C) u {m}
IF m is public member
PAMS(C) = PAMS(C) u {m}
ENDIF
ENDFOR
FOR eachfieldfinC
begin
if (FREF (f) nPAFS(c) # Empty) or (MREF (f) n PAMS(c) # Empty)
begin
AFS(c) = AFS(¢c) u {f}
if f ispublic attribute
PAFS(c) = PAFS(c) u {f}
endif
endfor

FindEffectinClass(C)
if ((OLDAMS[C] # AMS[C]) or (OLDAFS[C] # AFS[C]))

begin
ACS = ACSu {C}
mark C dirty

endif

end FindEffectAmontClients
Figure5: Algorithm to calculate the change effects among clients

Page 9

therefore choose not to inherit all the properties of its parent. In this paper, we assume the language i s using subtyping.
For other inheritance schemes, the algorithm described in this section needs minor adjustment.

Inheritance can be thought of as an incremental modification technique that combines a parent P with amodifier M to
get aresulting classR. R = P® M. [WZ88]

The subclass designer specifies the modifier, which may contain various types of attributes that ater the parent class
to get the resulting subclass. Although modifier M transforms a parent class P into a resulting class R, M does nhot
totally constrain R. We must also consider the inheritance relation since it determines the effects of composing the
attributes of Pand M and mapping them into R. The inheritance relation determines the visibility, availability and for-
mat of P's attributes in R. Since inheritance is deterministic, rules can be constructed to identify the availability and
visibility of each attribute.

When a subclass redefine its parent’s method, it can either totally overwrite the service of its parent’s method or
expand its parent’ s service. Theimpact of the parent’ s method on this subclass will be different if the subclass expands
the parent’ smethod in different ways. If the subclasstotally reimplementsits parent’ s service without using itsparent’s
service, the changein the parent’ s method will not affect the subclass. If the subclass expandsits parent’ s service based
on the service the parent’s method provides, any changesin the parent’s method could affect this subclass. Because of
this, we extend Harrold and M cGregor’ s attributes classification even further by splitting the redefine and virtual rede-
fine into extended redefine, total redefine, virtual extended redefine, and virtual total redefine. Asaresult, methodsin
subclasses are divided into following categories to gain more control: New attribute, Inherited attribute, Extended-
redefined attribute, Total-redefined attribute, Virtual-new attribute, Virtual-inherited attribute, Virtual-extended-rede-
fined attribute, virtual total-redefine attribute. These categories are defined below.

New attribute: A isan attribute that is defined in M but not in P or A isamember function attribute in
M and P but with different signature. Inthiscase, A isbound to the locally defined attributein M. A
is accessible within R and accessible outside R if A is public; A isnot accessiblein P.

Inherited attribute: A isdefinedin Pbut notin M. Inthiscase, A is bound to the locally defined
attribute in P. A isaccessible within R and accessible outside R if A ispublic; A is accessible both
withinand outside P.

Extended redefined attribute: A isdefined in both P and M with the same signature. The A in M will
extend the functionality of A in P by using the servicesof A in P. Inthiscase, A isbound to thelocally
defined attributein M. A isaccessibleinside R and accessibleoutside Rif A ispublic; A isnot acces
siblein P.

Total redefined attribute: A isdefined in both P and M where A'ssignatureisthe samein M and P.
The A in M will replace the functionality of A in P by implementing the services without using the A
in P. Inthiscase, A isbound to the locally defined attributein M. A isaccessible within R and acces-
sibleoutside R if A ispublic; A isnot accessiblein P.

Virtual new attribute: A isspecifiedin M but its implementation may be incompletein M to alow
later definitions or A is specified in M and P and its implementation may beincomplete inP, but A's
signature differsinM and P. Inthis case, A isbound to thelocally defined attributein M. A isacces
siblewithin R and accessible outside R if A ispublic; A is not accessiblein P.

Virtual inherited attribute: A isspecified in P but itsimplementation may be incompletein Pto alow
later definition, and A isnot defined in M. In this case, A isbound to thelocally defined attributein P.
A isaccessiblewithin R and accessibleoutside Rif A ispublic; A isaccessible both inside and outside
P.

Virtual extended redefined attribute: A is specified in P but itsimplementation may be incomplete
in Pto alow for later definition and A isdefined in M with the same signatureas A inP. The A inM
will extend the functionality of A in P by using the services of A in Pin M’simplementation. In this
case, A isbound to the locally defined attribute in M. A isaccessibleinside and outside Rif A is
public; A isnot accessibleinP.

Virtual total redefined attribute: A isspecified in P but itsimplementation may be incompletein Pto
allow for later definition and A isdefinedin M with thesame signatureasin P. The A in M will replace
the functionality of A in P by implementing the services without using the A in P. Inthiscase, A is
bound to the locally defined attribute in M. A isaccessibleinside and outside R if A ispublic; A is
not accessibleinP.

Page 10

The inheritance relation determines visibility, availability and format of P's attributes in R. A language may support
more than one inheritance mapping by allowing specification of aparameter val ue to determine which mapping isused
for aparticular definition.
Polymor phism isthe possibility of areferenceto denoteinstances of various classes. It isusually constrained by inher-
itance. Polymorphism means that the same method can do different things, depending on the class that implementsiit.
It letstwo similar objects be viewed through acommon interface and all ows subclassesto override an inherited method
without affecting the ancestor’ s methods [OH96]. If the inheritance scheme is subtyping, the denoted objects all have
at least the properties of the root class of the hierarchy. Thus an object belonging to aderived class could be substituted
into any context in which an instance of the base class appears, without causing atype error in any subsequent execu-
tion of the code. Martin [Mar95] calls thistotal polymorphism. It is described by the Liskov Substitution principle: If
for each object 01 of type S, there is an abject 02 of type T such that for all programs P defined in terms of T, the
behavior of P is unchanged when ol is substituted for 02 then S is a subtype of T. Less formally, the software can
always pass a pointer or reference to a derived class to a function that expects a pointer or reference to a parent class.
Since polymorphic names can denote object of different classes, it isimpossibleto predict which classwill be executed
until run time. McGregor [MC94] callsit strict inheritance and describes it from an another point of view. Strict inher-
itance means:

Pre-conditions on a particular method in a class must be no stronger than those of the same method in a

parent class.
Post-condition on a particular method in a class must be no weaker than those on the same method in a
parent class.

Theinvariant for a class must be a superset of the invariant for a parent's class.
Now we can analyze how the changes in the ACS propagate through parent and children classes by inheritance and
polymorphism. From the attribute categories above, we know any changesin a child will not affect its parent because
its parent cannot access the methods or data fields of its children. However, changesin aparent can affect its children.
Smith and Roberson [SR90] think a change to a parent class can potentially affect all descendants. Let us analyze it
through the inheritance categories of the methods in subclasses.

» If themethod or datafield A in achild classis anew attribute, A isdefinedin M but not in P or the sig-
nature of A in M and Pisdifferent. Since A is not accessible in P, the new attribute in R will not affect
the A in P. But it will affect P's children.

» If themethod or datafield A in achild classis an inheritance attribute, A islocally bound to P. In this sit-
uation, If A in P changes, R needs to retest it, because the context of A in P is different than the context
of AinR.

« If themethod or datafield A in achild classisatotal redefined attribute, M redefines A without using P's
version of A. So A'schangein P will not affect A in R. But if A in R uses other methodsin AMS[F], it
will still be affected.

» If the method or datafield A in achild classis an extended redefined attribute, M extended the function-
ality of A in P by adding extrafunctionality to A. The A in Pisinvoked in M. So any change of A in P
will affect the A in R. A'schange in R will not affect its parent P sinceits parent either does not have A
or itsversion of A has adifferent signature. A's change in P will affect R, so Risin ACS.
Figure 6, “Algorithm to calculate the change effect among subclasses’ is the algorithm that finds the effect through
inheritance and polymorphism:

Page 11

3.5 Complexity Estimation

Assuming the number of classesin the systemism. Let

nm = max (number of methodsinClassi) i=1..m formula 1l

nf = max (number of datafieldsinClassi) i=1..m formula2

n = max(nm, nf) formula3

By analyzing Figure 2, “Algorithm to calculate the total effect in the system”, we can tell that the overall complexity

FindEffectAmongChildren(Cp)
BEGIN
FOR each class C, that inherited from Cp
FOR each method m in C_ {
case (inheritance type of m)
Extended Redefine:
IF (mye Cpm m, € AMS[Cp])
AMS(C,) = AMS(C,) U {m}
IF m is public
PAMS(C,) = PAMS(C,) U {m}
ENDIF
Total Redefine:
Virtual Extended Redefine:
IF (mye Cpm m, € AMS[Cp])
AMS(C,) = AMS(C) U {m}
IF m is public
PAMS(C,) = PAMS(C,) U {m}
ENDIF
Virtual Total Redefine:
IF (mye Cpm m, € AMS[Cp])
AMS(C,) = AMS(C) U {m}
IF m is public
PAMS(C,) = PAMS(C,) U {m}
ENDIF
Inherit, Virtual inherit:
IF (m,e Cpm m, € AMS[Cp])
AMS(C,) = AMS(C) U {m}
IF m is public
PAMS(C,) = PAMS(C,) U {m}
ENDIF
OTHERS :
/* all other cases will not be affected by the change of m in A */
ENDCASE

IF (meg AMS[C_]) and ((FREF(m) nPAFS(c) # Empty) or
(MREF (m) nPAMS(c) # Empty))

AFS(c) = AFS(c) U {m}
IF m is public attribute
PAMS(c) = PAMS(c) u {m}
ENDIF
ENDFOR /* enf of for each method */
ENDFOR /* end of for each class */
END FindEffectAmongChldren

Figure 6: Algorithm to calculate the change effects among subclasses

Page 12

of the whole agorithm is;

O (Total Effect) = max (O (Setlnit) , O(m)* O(the body of for loop in Figure2)) Formula4.
Since Setlnit hasto mark each classin the system as dirty, the worst case complexity of Setlnit is O(m). The complex-
ity of the body of for loop in Figure2 is equa to max(O(FindEffectinClass), O(FindEffectAmongChildren),
O(FindEffectAmongClients)). By analyzing the Figure 4, “ Algorithmsto cal culate change effectsinside class’, we get
the worst case complexity of FindEffectinClass(C) is O (m). By analyzing Figure 5 and Figure 6, we get the worst
case complexity of FindEffectAmongChildren is O (mn) and the worst case complexity of FindEffectAmongClients
is O manj . S0 O (for loop in Fiture) = O m’n | . From Formula4, we get O (Totol Effect) = O mn).
The overall agorithmsis actually calculate the transitive closure of all the affected classes. As we mentioned before,
some classes have been checked could be remarked asdirty, if their AMS or AFS expanded. Since the number of mem-
bersin AMS or AFS cannot be greater then n, so O (Totol Effect) = Ofmgnjpx O(n) =0 mgnzj

4. Algorithm Improvement

The algorithms section 3 offered is a conservative approach to estimate the system-wide impacts of proposed changes.
Because certain types of changes will not necessarily affect other parts of the system, some classes that are putted into
ACSbhy section 3 may not necessarily affect other classes. In follwoing section, we are going to categorize changes
that can be applied to object-oriented software, analyze the characteristics of these categories, and discuss in detail
what kinds of changes will affect other parts of the system and what kinds of changes will not affect other parts of the
system in following section.

Thereare many different kinds of changesthat can be applied to object-oriented software. We categorize these changes
by specifying the types of changes that could be applied to data members, methods, classes and objects. Each of these
different types of changesis assigned one of the following six attributes according to their influences on other classes
in the system:

» Contaminate _all: Thistype of change will affect the data members and methodsin any classes that are
related to the current changed class. These classes could be client, subclass of current changed class or be
the changed class itself.

e Contaminate_current: Thistype of change will only affect the data members and methods in the current
class that contains the change.

» Contaminate_children: Thistype of change will only affect subclasses that are derived from the changed
class.

» Contaminate_client: Thistype of change will only affect client classes that use the changed class.

» Contaminate_none: Thistype of change will not affect any data members or methods bel onging to either
client classes or subclasses of the changed class, or belonging to the changed classitself.

These attributes can be represented by an attribute byte, in which Contaminate current, Contaminate_children,
Contaminate_client each occupies onebit. If achangewill affect al related classes (Contaminate _all), itsattribute byte
isOx07 (Contaminate_current | Contaminate_children | Contaminate _client). If achange affect client and child classes,
its attribute type is 0x06 (Contaminate_children | Contaminate client = 0x04 | Ox 02 = 0x06). If a change does not
affects any other class, its attribute is 0x00.

Figure 7, “ Change Category” summaries all the changes categories and the rel ationships among them. We will explain
each of these category in detail in the following section.

4.1 The Type of Changes That Could Be Applied to Data Members

We classify the potential changes based on the syntactic element changed and the action used to make the change. The
characteristics of each type of change and how each type can influence other parts of hte systemisanalyzed. Although
we have tried to cover al cases, we have no basis on which to claim this listing is exhaustive.

Page 13

Change Prototype

Change Axiom

Public->Private

—| I%%?ng%tati on

—— Change on Method |_

Add a Method
Protected->Privat¢

Delete a Method

Change Scope
Change Type

Indirect Change

Private->Protected

Private->Public

Protected->Public

Change Value
Public->Private

L

Change Type
Public->Protected

—| Add a Data Member| Protected->Private

L[Changeon DataMember

Delete a Data Member Private->Protectefd

Change Scope Private->Public

I
L

Protected->Public

Indirect Change

Figure 7: Change Category

1. Valuechanged: If the value of the datamember ischanged, it will change the state of the object. Thiskind
of change may or may not affect other data members or methods, depending on whether this change will
change the state of the object. If the state of the object is changed, the execution of the program could lead
to some pathsthat it have never been executed. Soif the change causes the object to changeits state, it will
contaminate all of the related methods in the changed object (Contaminate_current = 0x01). Otherwise, if
it does not cause the object to change its state, it will not contaminate any of the related classes
(Contaminate_none = 0x00).

2. Typechanged: If the type of the datamember is changed, it will affect the methods or other data members
that referenceit. If this datamember ispublic, it will affect the datamembers or methods from the changed
class, itsclients, and itschildren (contaminate_all = 0x07). If it isprotected, it will affect the data members
or methods from the changed class and its children (contaminate_children | contaminate_current = 0x03).
If itisprivate, it will affect the datamembers or methods from the changed classonly (contaminate_current
= 0x01).

3. Scopechanged: Let usassumethelanguage hasthreelevels of scope: public, protected and private. Public
data members or methods constitute the interface of the class and can be seen by other classes. Protected
datamembers or methods can only be seen by data members or methods within the class or from thisclass
derived class. Private data members or methods can only be seen by the data members or methods within
the class. There are several possible scope changes:

Page 14

1) Public --> Private
I1) Public --> Protected
[11) Protected --> Private
IV) Protected --> Public
V) Private --> Public
V1) Private --> Protected
1) Changing a data member from Public to Private will affect any client classes and subclasses that ref-
erence this data member, becauseit will not be available after it disappears from public section. Since

the data members and methods in the changed class can still see this data member, they will not be
affected by this change. The attribute is 0x06 (contaminate_client | contaminate_children = 0x06).

I1) Changing adatamember from Public to Protected will affect any client classesthat referencethisdata
member, but not the data members and methods in subclasses and in the changed class. Because this
datamember will not be availablefor any datamembersand methodsin client classesbut till available
for those in subclasses and changed class, this change will only affect the client classes of the changed
class. The attribute of this change is contaminate_client (0x04).

I11) Changing adata member from Protected to Private will affect all the subclassesthat are derived from
this class. Changing the data member from protected to private section make this data member not
available for any data members and methods in its subclasses. The attribute of thisis
Contaminate_children (0x02).

1V) V) VI) will not affect any other classes except to reveal the state of the object. So its attribute is
contaminate_none (0x00).

4. Delete a data member: When a data member is deleted, it will not be available to its client anymore, so
all itsclientswill be affected. If thisdate member ispublic, it will affect the datamembers or methods from
the changed class, from its clients, and from its children (contaminate_all = 0x07). If it is protected, it will
affect the data members or methods from the changed class and from its children (contaminate_children |
contaminate_current = 0x03). If it is private, it will only affect the data members or methods from the
changed class (contaminate_current = 0x01).

5. Add a data member: When a data member is newly added, it does not have any classesto use it yet. So
we assume it is non-contaminative to its client, but , according to Liskov principle, its children have to
know the new data member if it is public. Its attribute is contaminate_children (0x02).

6. Affected by other data membersor methods: If adata member references other data members or meth-
ods that are contaminative, this data may be affected. It is very hard to predict what kind of changes the
change of the referenced data member or methods can bring to this data member. The change may be able
to fixed by programmer locally, such that this datamember will not affect other parts of the system. In that
sense, it isnot contaminative. For example, when areferenced data member has been changed from public
to private, that data member will not be available for its clients to reference anymore. The developer can
replace this datamember by acorresponding member function that retrievesthe value of this datamember.
Soitsclients can just substitute the data member with the corresponding method, and keep their interfaces
the same. Inthissituation, its clientswill not propagate this change further. But it may need more dramatic
changes that cause its clients to have to change their interfaces. So we assume that if this data member is
public, it will affect the data members or methods from the changed class, from its clients, and from its
children (contaminate_all = 0x07). If it is protected, it will affect the data members or methods from the
changed class and from its children (contaminate_children | contaminate_current = 0x03). If it is private,
it will affect the data members or methods from the changed class only (contaminate_current = 0x01).

The Type of Changes That Could Be Applied to Method

The types of changes that could happen to method are:

1. Signature changed: If the signature of amethod has changed, for example, input, output parameters have
been added or deleted, it will affect any methods or data members that relate to this method. If the method
ispublic, it will affect the data members or methods from the changed class, from its clients, and from its
children (contaminate_all). If it is protected, it will affect the data members or methods from the changed

Page 15

class and from its children (contaminate_children, contaminate_current). If itis private, it will only affect
the data members or methods from the changed class (contaminate_current).

2. Axiom changed: If the preconditions, postConditions, or axioms are changed, this will change the behav-
ior or semantics of the method. This may or may not affect the methods or data members that reference
this method. If the method is public, it will affect the data members or methods from the changed class,
from its clients, and from its children (contaminate_all). If it is protected, it will affect the data members
or methods from the changed class and from its children (contaminate_children, contaminate_current). If
itisprivate, it will affect the data members or methods from the changed class only (contaminate_current).

3. Implementation changed: Thistype of change affects the details of the implementation but not the inter-
face. The semantics and behavior may or may not be changed. If this method is public, it will affect the
datamembers or methods from the changed class, fromitsclients, and from its children (contaminate_all).
If it is protected, it will affect the data members or methods from the changed class and from its children
(contaminate_children, contaminate_current). If it isprivate, it will only affect the data members or meth-
ods from the changed class (contaminate_current).

4. Delete a method: When amethod isdeleted, itisno longer availabletoitsclients, so al of itsclientsare
affected. If the method is public, it will affect the data members or methods from the changed class, its
clients, and itschildren (contaminate_all). If it isprotected, it will affect the datamembers or methodsfrom
the changed classand fromits children (contaminate_children, contaminate_current). If itisprivate, it will
only affect the data members or methods from the changed class(contaminate_current).

5. Add a method: When amethod isnewly added, it does not have any classesthat useit yet. So we assume
it is non-contaminative to its client, but its children have to know the new method. Its attribute should be
contaminate_children.

6. Scope changed: Here are the possible scope changes relevant to a method

1) Public --> Private

I1) Public --> Protected
[11) Protected --> Private
IV) Protected --> Public
V) Private --> Public
VI) Private --> Protected

1) Changing a method from Public to Private will affect any client classes and subclasses that reference
this method, because this method will not be available for them after they disappear from public sec-
tion. The attribute is 0x06 (contaminate_client | contaminate_children = 0x06).

I1) Changing a method from Public to Protected will affect any client classes that reference this method,
but not the datamembers and methodsin subclasses and in the changed class. Because this method will
not be available for any client classes but still available for subclasses and the changed class. The
attribute of this change is Contaminate_client (0x04).

I11) Changing amethod from Protected to Private will affect all the subclassesthat derived fromthisclass.
Changing the method from protected to private section make this data member not available to its sub-
classes. The attribute of thisis Contaminate_children (0x02).

1V) V) VI) will not affect any other classes except reveal the state of the object. So its attribute is
contaminate_none (0x00).

7. Affected by other data member or methods: If amethod is affected by other data members or methods,
the state of the object will change, and this method will become contaminative. If it is affected by other
methods, the referenced method' s changed behavior can change the behavior of thismethod. If thismethod
is public, it will affect the data members or methods from the changed class, fromits clients, and from its
children (contaminate_all). If it is protected, it will affect the data members or methods from the changed
class and from its children (contaminate_children, contaminate_current). If it is private, it will only affect
the data members or methods from the changed class(contaminate_current).

Page 16

Other Changes

1. Add aclass: When aclassis hewly added, it does not yet have any classes that use it.
So we assumeits attribute is Contaminate_none.

2. Delete aclass: When aclassis deleted, al the data members and methods will not be available to any
related classes any more, so al of the classesrelated to it will be affected. The attributes of all the data
members and methods is contaminate _all.

4.2 Use Cases

This section illustrates these algorithms through an example. The classes are heavily interrelated with each other to
show how the algorithms work. Assume there are four classes in the system A, B, C, and D. The methods and data
members and pieces of implementation pseudo-code of each classes are shown on the Figure 9, “ Class Diagram of the
Sample System”. we analyze the impact to the system of changing the type of fal in A.

... 1 b->mbl1() I= _fcZ
X0
else XXxx_
e, e o e e 4
B T S

E L
N N\
- __- SR T === - - C>mb3();...

if fal _-7 B N)
X TTmmeeeeE . S Ty V=
elsexx "&\,_8 :_FIEEQ’ \\ \ﬁ-%.%&i.__“ deesno%usean R
oc -fad . \ - fd; o SR CEHGM Bltsi de
7 1(A1 T) /'mlAg o
7 - mal(); 4 -
- ma2(); -
. 0 N - \

Figure 8: Class Diagram of the Sample System
3. Settheinitialize value of different sets, put A in ACS set, mark dirty, and initialize the AMS and AFS of A
AMS[A] = {}
AFS[A] = { fal}
ACS = ACSu {A(Dirty)}
4. Pick A from ACS and mark it clean
a) Check the effect in side the class. we get:
AMSI[A] = { mal}
AFS[A] = { fal}
ACS = {A(Clean)}
b) Check the subclass of A: Al
AMS[AL] = {}
AFS[Al] = {}
ACS = {A(Clean)}
¢) Check the subclass of A: A2
AMS[A2] = { mal}
AFS[A2] = {}
ACS = {A(Clean), A2(Dirty) }

Page 17

d) Check theclient of A: B
AMS[B] = { mbl}

AFS[B] = { _fbl}
ACS = {A(Clean), A2(Dirty), B(Dirty) }

5. Pick one dirty class A2 from ACS, mark it clean
a) CheckinsideclassA2
AMS[A2] = { mal}

AFS[A2] = {}
ACS = {A(Clean), A2(Clean), B (Dirty) }

6. Pick one dirty class B from ACS, mark it clean
a) Check insideclassB
OLDAMSI[B] = { mbl}
OLDAFS[B] = { fbl}
AMS[B] = { mbl}

AFS[B] = { _fbl}
ACS = {A(Clean), A2(Clean), B(Clean) }

b) Check the client classof B: C
AMS[C] = { mcl, mc2}
AFS[C] = {}
ACS = {A(Clean), A2 (Clean), B(Clean), C(Dirty) }
¢) Check theclient of B: D
AMS[D] = {}

AFSID] = {}
ACS = {A(Clean), A2(Clean), B(Clean), C(Dirty) }

7. Pick one dirty class C from ACS, mark it clean
a) CheckinsideclassC
AMS[C] = { mcl, mc2}

AFS[C] = {}
ACS = {A(Clean), A2(Clean), B(Clean), C(Clean) }
b) Check theclient of C: A

OLDAMSIA] = {}

OLDAFS[A] = { fal}

AMSI[A] = { mal, ma2}

AFS[A] = {}

Since OLDAMS[A] '= AMSA]

ACS = {A(Dirty), A2(Clean), B(Clean), C(Clean)} // mark A dirty again
8. Pick one dirty class A from ACS, mark it clean
a) Checkinside A -- No changein A’s AMS and AFS set
b) Check the subclass of A: A1 -- No changein Al'sAMS and AFS set

¢) Check the subclass of A: A2
OLDAMS[A2] = { mal}
OLDAFS[A2] = {}
AMS[A2] = { mal, ma2}

AFS[A2] = {}

Since OLDAMS[A2] '= AMSAZ2]
ACS = {A(Clean), A2(Dirty), B(Clean), C(Clean)} /I mark A2 dirty again

Page 18

d) Check theclient classof A: B
OLDAMSI[B] = { mbl}
OLDAFS[B] = {}
AMS[B] = { mbl, mb2}
AFS[B] = {_fb1}
Since OLDAMS[B] !'= AMS[B] and OLDAFS[B] != AFS[B]
ACS = {A(Clean), A2(Dirty), B(Dirty), C(Clean) } /l mark B dirty again
9. Pick one dirty class A2. mark it clean
a) Checkinside A -- No changein A2’ sAMS and AFS set
ACS = {A(Clean), A2(Clean), B(Dirty), C(Clean) }
10. Pick one dirty class B, mark it clean
a) Check inside B -- No changein B's AMS and AFS set
b) Check client class of B: C and D -- No changein C and D’'s AMS and AFS set
ACS = {A(Clean), A2(Clean), B(Clean), C(Clean) }

11. Thereisno dirty classin ACS set, the algorithm display the affected class and the affected data members
and methods associated with them (See Figure 10, “ Result of the algorithm™)

Page 19

* The affected classesliked A, A2, B, C are shaded.
* The affected data memeber or methods of affected class are
shaded in different gray level.

Figure 9: Result of the algorithm

5. Conclusion and Future Work

In this paper, we have analyzed the characteristics of the object-oriented software to understnad how encapsulation,
inheritance, and polymorphism influence the change propagation. We categorize the different kinds of changes that
could be applied to object-oriented software, and assigh each type of change an influence attribute according to how
this type of change influences other objects in the system. A simple and conservative approach was first described,
then ways to optimize the algorithms according to the change type, the change attributes associated with it. The com-
plete set of algorithms that cal culate the change propagation within the class, between the client and server class, and
between the parent and children class are described in atechnical report [xx].

The technique described in this paper can be used by software developers to run “what if” analysis on different
“update”’ proposals for the software system, and choose the one that is most cost effective. It can also be used by soft-
ware testers to find what areas are affected by the changes,, so they can test only the affected areas and still feel
confident about the quality of the software.

The algorithms described in this paper are detailed enough to implement them in the real environment. In the future,

Page 20

we hopeto develop ametric system to measure theimpact of the proposed changes quantitatively, and develop an anal-
ysistool that implements these algorithms. Another interesting plan is to expand this technique to a distributed object
environment, and analyze how changes propagate across heterogenous networks, databases, operating systems, and
languages.

6. References

[Boo94] Grady Booch, “OBJECT-ORIENTED ANALYSISAND DESIGN WITH APPLICATIONS,”
SECOND EDITION, Benjamin/Cummings Publishing Company 1994

[Rum91]James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, New Jersey 07632, 1991.

[Bar94] Stephane Barbey, Alfred Strohmeier, “ The Problematic of testing Object-Oriented Software”,
SQM'’ 94 Second Conference on Software Quality Management, volume 2, Edinburg, Scotland, UK,
1994

[Bar+94]Stephane Barbey, Alfred Strohmeier, “ Open Issues in Testing Object-Oriented Software”,

ECSQ' 94, Basel, Switzerland, October 1994

[TR92] C.D. Turner and D.J. Robson, “The Testing of Object-Oriented Programs”, Technical Report: TR-
13/92, Computer Science Division School of Engineering and Computer Science (SECS) University
of Durham, England

[Mar95] Robert C. Martin, “ Designing Object-Oriented C++ Applications Using The Booch Method”, Pren-
tice Hall, Inc. 1995

[Ofut95] Alisalrvine and A. Jefferson Offutt, “ The Effectiveness of Category-Partition Testing of Object-
Oriented Software”, | SSE Department George Mason University, Fairfax, VA 22030.

[FieB9] S.P. Fiedler. Object-oriented unit testing. Hawlett-Packard Journal, 40:69-74, April 1989.

[Per90] D.E. Perry and G. E. Kaiser. Adequate testing and object-oriented programming. Journal of OOP,
Jan/Feb 1990.

[Wey88] E. Weyuker. The evaluation of program-based software test data adequacy criteria. Communica
tions of the ACM, June 1988.

[CM90] T. E. Cheatham and L. Mellinger. Testing object-oriented software system. In 1990 ACM Eigh-
teenth Annual Computer Science Conference, pages 161-165, February 1990.

[Wz88] P. Wegner and S. B. Zdonik, “Inheritance as an incremental modification mechanism or what like
isand isn't like,” Proceedings of ECOOPi, pp.55-77, Springer-Verlag, 1988.

[SR90] M. D. Smith and J. J. Robson. Object-Oriented programs - the problems of validation. In Proceed-
ings of the 1990 | EEE Conference on Software Maintenance pages 272-281, San Deiego, CA, Nov
1990.

[HM] Mary Jean Harrold and John D. McGregor, “Incremental Testing of Object-Oriented Class Struc-
tures’, Clemson University.

[KL90] Bogdan Korel, Janusz Laski, “Dynamic Slicing of Computer Programs’, J. Systems Software 1990.

[SB94] Stephane Barbey, Alfred Strohmeier, “ The Problematic of Testing Object-Oriented Software”,
Swiss Federal Institute of Technology, Computer Science Department, Software Engineering L ab-
oratory, EPFL-DI-LGL, 1015 Lausanne, Switzerland.

[SB94] Stephane Barbey, Mauel M. Ammann and Afred Strohmeier, “ Open Issues in Testing Object-Ori-
ented Software”, Swiss Federal Institute of Technology, Computer Science Department, Software
Engineering Laboratory, Published in ECSQ’ 94 October 1994.

[OH96] Robert Orfali, Dan Harkey, Jeri Edwards, “ The Essential Distributed Objects Survival Guide”, John
Wiley & Sons, Inc. 1996.

Page 21

7. Appendix A: Algorithmsfor finding theripple effect in

Object-Oriented System

NewTotal Effect()

TotalEffect ()
// conservertive algorithms to find the ripple of the system
{
NewSetInit () ;
For each class C in ACS
{
If C is clean
continue;
else mark C clean.
NewFindEffectInClass (C) ;
NewFindEffectAmongChildren (C) ;
NewFindEffectAmongClient (C) ;

NewlnitSys()

// define the attribute constant
#define contaminate none 0x00
#define contaminate current 0x01
#define contaminate_ children 0x02
#define contaminate_client 0x04
#define contaminate_all 0x07

InitSys ()
// Initialize the different sets ACS, AMS, AFS etc.
{
ACS = {set of classes need change};
For each class C in ACS
{
AMS[C] = { methods need change in C}
AFS[C] = {Data fields need change in C}
i
For each class C in ACS
For each m in AMS[C]
switch (type of change) {
case signature:
case axiom:
case implementation:
if m is public method
m.attribute = contaminate_client contaminate_children
| contaminate current;
else if m is protected method
m.attribute = contaminate children | contaminate current;

else if m is private method

Page 22

m.attribute = contaminate current;
break
case scope:
if (scope change is public to private)

// if will affect all of its client and children

a.attribute = contaminate_ children
else if scope is from public to protect
// it will affect all its clients
m.attribute = comtaminate_client

| contaminate client;

else if (scope is from protect to private)

// if will affect all of its children
m.attribute = contaminate_children

else if ((scope change is from private to protect)

|| (scope change is from private to public)

|| (scope change is from protect to public))

// it will not affect any of its clients
m.attribute = contaminate_none;
break;
case add method:
if m is public method
m.attribute = contaminate_client
| contaminate current;
else if m is protected method
m.attribute = contaminate_children
| contaminate current;
else if m is private method
m.attribute = contaminate current;
break;
}
case delete method:
if m is public method
m.attribute = contaminate_client
| contaminate current;
else if m is protected method
m.attribute = contaminate_children
| contaminate current;
else if m is private method
m.attribute = contaminate current;
break;
default:
}// end of switch

// initialize field.
For each f in AFS[C]
switch (change type) {
case value changed:
if f has cause a state change
if £ is public data member
f.attribute = contaminate_client
| contaminate current;
else if f is protected data member
f.attribute = contaminate_children
| contaminate current;

else if f is private data member

| contaminate_children

| contaminate_children

| contaminate_children

Page 23

f.attribute = contaminate_current;
else
f.attribute = contaminate_none;
break;
case type change:
if £ is public data member
f.attribute = contaminate_ client | contaminate_children
| contaminate current;
else if f is protected data member
f.attribute = contaminate_children
| contaminate current;
else if f is private data member
f.attribute = contaminate_current;
break
case scope change:
if (scope change is public to private)
//it will affect all of its client and children
f.attribute = contaminate_ client | contaminate_children
else if scope is from public to protect
// it will affect all its clients
f.attribute = comtaminate_client
else if (scope is from protect to private)
//if will affect all of its children
f.attribute = contaminate_children
else if ((scope change is from private to protect)
|| (scope change is from private to public)
|| (scope change is from protect to public))
// it will not affect any of its clients
f.attribute = contaminate_none;
case add date member:
if £ is public data member
f.attribute = contaminate_client | contaminate_children
| contaminate current;
else if f is protected data member
f.attribute = contaminate_children
| contaminate current;
else if f is private data member
f.attribute = contaminate_current;
break
case delete data member:
if £ is public data member
f.attribute = contaminate_client | contaminate_children
| contaminate current;
else if f is protected data member
f.attribute = contaminate_children
| contaminate current;
else if f is private data member
f.attribute = contaminate_current;
break;
default:
}// end of switch
}// end of for each C in ACS

Page 24

NewEffectlnClass(C)

// find the effect within class C
// input: the AMS and AFS in C
// output: the AMS and AFS in C
{
OLDAMS [C] = AMSI[C];
OLDAFS[C] = AFSI[C];

Analyze the CFG and DFG of each methods, construct MREF & FREF for each methods and data
fields.

// process each method in C
for each method m in class C
if (((AffectingFactors = MREF (m) n AMS(C)) # Empty) or
((AffectingFactors = FREF (m) " AFS(C)) #Empty))
1f (dfactor e AffectingFactors factor.attribute | contaminate_current =0)
// there exist a method factor in AffectingFactors set that

// will affect the data members and methods in current class.

{
m.type = indirect;
AMS(C) = AMS(C) U {m} ;
if m is public {
PAMS(C) = PAMS(C) U {m}

m.attribute = contaminate_all;

7

} else if m is protected
m.attribute = contaminate children
| contaminate current;
else if m is private

m.attribute = contamiate current;

// Process each data member in class C
For each data member f in C
if (((AffectingFactors=FREF (f) nAFS(C)) #Empty) or
((AffentingFactors = FREF (f) "AFS(C)) #Empty))
1f (dJfactor e AffectingFactors factor.attribute | contaminate_current #0)
// there exist a data member in AffectingFactors set that
// will affect the data members and methods in current class.
{
f.type = indirect;
AFS(C) = AFS(C) u {f}
if £ is public {
PAFS(C) = PAFS(C) u {f}

f.attribute = contaminate_all;

7
7

} else if f is protected
f.attribute = contaminate_children
| contaminate_current;
else if f is private

f.attribute = contamiate_ current;

if ((OLDAMS[C] #AMS[C]) or (OLDAFS[C] #AFS[C]))
{
ACS = ACSU {C} ;

Page 25

mark C dirty;

}
}

NewEffectAmongChildren()

NewFindEffectAmongChil dren(Cp)
/I find the effect of all the children, when the parent changes
{
For each class C_ which inherited from C,
For each method min C_ {
switch (inheritance type of m) {
case misNew:
case misVirtua New:
/I Since mis new, the change in parent will not affect it.
break;
case Extended Redefine:
/I till use parent’ s service
if (m,e C,nm,e AMS[C_] N m, atribute & contaminate_children 0){
AMS(C_) = AMS(C) U {m}
if m is public {
PAMS(C) = PAMS(C) u {m} ;
m.attribute = contaminate all;
} else if m is protected -
m.attribute = contaminate children
| contaminage_current;

else if m is private

m.attribute = contamiate_ current;

}
break;

case Total Redefine:

/I ' m does not use the service of A in parent. It will not be affected by the change of min A,

break;
case virtual Extended Redefine:

/I m extended the function of m in parent by using the service of min parent. So the change of min

parent
if (m,e Cynm e AMS[C] N m, attribute & contaminate_children =0) {
AMS(C) = AMS(C,) U {m}
if m is public {
PAMS(C) = PAMS(C) u {m} ;
m.attribute = contaminate_all;
} else if m is protected
m.attribute = contaminate_children
| contaminate_current;
else if m is private

m.attribute = contamiate_ current;

}
bresk;
case Virtual Total Redefine:
/I Even though m totally redefine the implementation of min parent. If them in

Page 26

/I parent’ s signature has changed, it will affect the child, according to
/I Liskov substitution rule.
if (m,€ C,nm,e AMS[C_] N m, attribute & contaminate_children # 0){
AMS(C,) = AMS(C,) U {m}
if m is public {
PAMS(C) = PAMS(C) U {m} ;
m.attribute = contaminate all;
} else if m is protected
m.attribute = contaminate_children
| contaminate current;
else if m is private

m.attribute = contamiate_ current;

}
break;
case inherit, virtua inherit
if (m,e C,nm e AMS[C_] N m, attribute & contaminate_children =0) {
AMS(C,) = AMS(C) v {m}
if m is public {
PAMS(C) = PAMS(C) U {m} ;
m.attribute = contaminate_all;
} else if m is protected
m.attribute = contaminate_children
| contaminate_current;
else if m is private
m.attribute = contamiate_current;
}
break;
default:
break;
}
/l'if misin AMS set aready, check next item
if (me AMS[C_])
continue;
/I no matter m in affected by the m in parent, if it use any other methodsin AMS
/I or any datafieldsin AFS of parent, it will be affected.
if ((_AffectingFactors = MREF (m) NAMS(C))) =Empty) or
((AffectingFactors = FREF (m) N AFS(C)) #Empty))
1f (dfactor e AffectingFactors factor.attribute | contaminate_children #0) {
AFS(c) = AFS(c) u {m}
if m is public {
PAMS(C) = PAMS(C) U {m} ;
m.attribute = contaminate_all;
} else if m is protected
m.attribute = contaminate_children
| contaminate_current;
else if m is private
m.attribute = contamiate_current;
}
end // end of for each method
end // end of for each class

Page 27

NewEffectAmongClients()

NewEffectAmongClients (C,)

// input: CO and its PAMS, PAFS.

// output: All the affected classes that use CO' and their AMS, AFS, PAMS, PAFS
For each class C that uses CO

{

OLDAMS [C] = AMS[C];
OLDAFS [C] = AFS[C];
For each methods m in C
if (((AffectingFactors=MREF (m) n AMS(C)) # Empty) or
((AffectingFactors = FREF (m) n AFS(C)) # Empty))
if (3dfactor e AffectingFactorsn factor.attribute | contaminate _client #0) {

AMS(C) = AMS(C) U {m}
if m is public {
PAMS(C) = PAMS(C) U {m} ;
m.attribute = contaminate_all;
} else if m is protected
m.attribute = contaminate children
| contaminate current;
else if m is private
m.attribute = contamiate current;
} // end of if
} // end of for each method
For each field f in C {
if (((AffectingFactors=FREF (f) nAFS(C)) #Empty) or
((AffentingFactors = FREF (f) "AFS(C)) #Empty))
1f (dfactor e AffectingFactorsn factor.attribute | contaminate_client #0)
// there exist a data member in AffectingFactors set that
// will affect the data members and methods in current class.
{
f.type = indirect;
AFS(C) = AFS(C) U {f} ;
if £ is public {
PAFS(C) = PAFS(C) u {f}

f.attribute = contaminate_all;

7

} else if f is protected
f.attribute = contaminate_children
| contaminate current;
else if f is private
f.attribute = contamiate_ current;
} //end of if
} // end of each field
EffectInClass (C)
if ((OLDAMS[C] #AMS[C]) or (OLDAFS[C] #AFS[C]))
{
ACS = ACSu {C} ;
mark C dirty;
}

} // end of each class

Page 28

Page 29

