
A General Framework for Time Granularity and Its Application to

Temporal Reasoning�

Technical Report: ISSE-TR-96-10

Claudio Bettiniy X. Sean Wangz Sushil Jajodiaz

Abstract

This paper presents a general framework to de�ne time granularity systems. We identify the

main dimensions along which di�erent systems can be characterized, and investigate the formal

relationships among granularities in these systems. The paper also introduces the notion of a network

of temporal constraints with (multiple) granularities emphasizing the semantic and computational

di�erences from constraint networks with a single granularity. Consistency of networks with multiple

granularities is shown to be NP-hard in general and approximate solutions for this problem and for

the minimal network problem are proposed.

1 Introduction

Human activities heavily relate to calendar units and clock units (e.g., weeks, months, hours and

seconds). System support and reasoning involving these units, also called granularities, has been re-

cognized to be an important issue [Hob85, CR87, TSQL2]. However, many di�erent de�nitions of

granularities exist in the literature and, moreover, these de�nitions are often quite restrictive. The
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purpose of this paper is to introduce and study a general, unifying model for time granularities, and to

propose and investigate temporal constraints with granularities.

Our approach is to de�ne time granularities (called temporal types) in a very general way. On

top of the general de�nition, we identify four dimensions of choices. A set of particular choices along

the dimensions de�nes a temporal type system. The time granularity de�nitions we are aware of in the

literature are all particular type systems in this framework. We also de�ne and study relationships

among temporal types. An investigation of these relationships is important because they are often

used as part of the de�nition of the type systems in the literature. Data conversions among di�erent

granularities are also considered.

A second contribution of this paper is the extension of the well-known problem of temporal con-

straint satisfaction to the case in which constraints are speci�ed in terms of multiple granularities within

a temporal type system. We introduce constraint networks with granularities speci�ed as a set of vari-

ables representing instants with conditions of the form [m;n]� associated with pairs of variables, where

m and n are integers and � is a temporal type. The meaning of [m;n]� associated with (X; Y ) is that

the two time instants assigned to X and Y must be temporally apart by at least m ticks and at most

n ticks in terms of �. For example, [0; 0] day means that the two time instants must lie within the

same day (i.e., at most and at least 0 days apart). We assume that a number of distinct temporal

types appear in the network. We then consider the two main questions that are usually asked about

constraint networks: (i) Does the given network have a solution? (ii) Which network has the tightest

constraints among the networks with the same solutions as the given one? These problems are known

as the consistency problem and the minimal network problem.

It is interesting to note that the research in the literature mainly studied constraint networks with a

single granularity, with the underlying assumption that the constraints with multiple granularities can

be equivalently translated into a set of constraints with a single granularity (see related work section).

We argue that the constraint network should allow multiple granularities because a constraint in one

granularity may not always be equivalent to one in another granularity. As an example, consider a

constraint which says that an event must happen during the next day after a certain event happens.

This constraint cannot be translated into one in terms of hours. Indeed, it is incorrect to say that the

second event must happen within 24 hours after the �rst event happens.

At the �rst glance, a solution could be provided by considering not just single constraints, but

the whole constraint network. More speci�cally, one might consider adding new nodes into a given

network to facilitate a translation from the given constraint network with multiple granularities into
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an equivalent one with all constraints expressed in a single basic granularity. In the above example,

we could add two nodes representing the events of beginning and end of days (the boundaries of the

granularity) and then add the constraints specifying the distance in hours of the nodes representing the

original events from the boundaries (the new nodes). In general, this solution has two problems: (i) It

is not clear what type of constraint should be used to identify granularity boundaries and how to deal

with these new constraints during the reasoning process, and (ii) when granularities with time ticks of

di�erent length (e.g., months) and/or with gaps among ticks (e.g., business days) are considered, this

approach cannot give a translation into an equivalent network.

In view of these considerations, we directly study the constraint networks with multiple granularities.

We show that the consistency checking of such networks is NP-hard, even though we do not allow explicit

disjunctive conditions. Any sound and complete propagation algorithm is thus unlikely to be e�cient.

We therefore propose an approximate algorithm based on constraint propagation. The basic idea of

the algorithm is to repeat the following two steps: (1) apply the path consistency algorithm [DMP91]

to each subnetwork having constraints in terms of the same granularity, and (2) translate the derived

constraints into the other granularities appearing in the network. We give two methods to perform step

(2). The �rst method assumes that the system has the information on the relationships between all

pairs of temporal types, while the second assumes that the system knows only the relationship between

each temporal type and a basic one. We show, in each case, that the propagation algorithm is correct,

although the �rst method generally yields better solutions.

In various parts of the paper, we also brie
y mention applications of the temporal type systems and

constraint networks. These applications are essentially from our previous papers [WJS95, WBBJ97,

BWBJ95, BWJ96].

The rest of the paper is organized as follows. In Section 2, de�nitions of temporal types and

temporal type systems are given, and some properties of types and type systems are discussed. In

Section 3, constraint networks with multiple granularities are introduced, and the problem of their

consistency is shown to be NP-hard. In Section 4 approximate constraint propagation algorithms for

these networks are studied. Section 5 discusses related work, and Section 6 concludes the paper. The

appendix contains the proofs of the theorems in the paper.

2 The granularity model

We start with the concept of a temporal type to formalize the notion of time granularities.
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De�nition Let (I;�I) (index) be a discrete linear order isomorphic to a subset of the integers with

the usual order relation, and let (A;�A) (absolute time) be a linear order. Then a temporal type on

(I;A) is a mapping � from I to 2A such that

� �(i) 6= ; and �(j) 6= ; , where i <I j, imply that each element in �(i) is less than (with respect

to <A) all the elements in �(j),

� for all i <I j, if �(i) 6= ; and �(j) 6= ;, then 8k i <I k <I j implies �(k) 6= ;.

Property (1) states that the mapping must be monotonic. Property (2) disallows an empty set to

be the value of a mapping for a certain index value if a lower index and a higher index are mapped to

non-empty sets. The set �(i) is said to be the i-th tick of �, or tick i of �, or simply a tick of �.

Intuitive temporal types, e.g., day, month, week and year, satisfy the above de�nition. For example,

we can take the set of positive integers as the index set and de�ne a special temporal type year starting

from year 1800 as follows: year(1) is the set of absolute time corresponding to the year 1800, year(2) is

the set of absolute time corresponding to the year 1801, and so on. Note that the sets in the type year

are consecutive intervals; however, this does not have to be the case for all types. Leap years, which are

not consecutive intervals, also constitute a temporal type. If we take 1892 as the �rst leap year, then

leap-year(2) corresponds to 1896, leap-year(3) corresponds to 1904,1 leap-year(4) corresponds to

1908, and so on. We can also represent a �nite collection of \ticks" as a temporal type as well. For

example, to specify the year 1993, we can use the temporal type T such that T (1) is the set of absolute

time corresponding to the year 1993, and T (i) = ; for each i > 1.

Note that this de�nition allows temporal types in which ticks are mapped to more than one interval.

For example, it is possible to have a temporal type b-month (business months), where a business month

is a union of all business days (b-day) in a month (i.e., excluding all Saturdays, Sundays, and general

holidays). Figure 1 illustrates some of the aforementioned temporal types considering the span of time

from February 26th till April 2nd, 1996.

b-month

day

b-day

b-week

Figure 1: Three temporal types with day as the absolute time.

1Note 1900 is not a leap year.
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It is also possible that several temporal types are di�erent (have di�erent mappings) but include

the same sets of absolute time. For example, let the index set be Z (the integers), and let � and �

be two types denoting years. Suppose � denotes years of the Gregorian calendar, starting from �(1)

mapped to the �rst year, up to �(2000) mapped to year 2000, and every other index mapped to the

empty set. Consider � such that �(�999) is mapped to the �rst year of the Gregorian calendar, �(0)

is year 1000, up to �(1000) mapped to year 2000, and every other index mapped to the empty set.

These two types cover the same period of absolute time dividing it into the same ticks; however they

use di�erent indexes to refer to a certain tick. While it can be sometime useful to distinguish among

these types, it is easy to see that they can be considered equivalent by \shifting" the indices.

The proposed de�nition is a generalization of most previous de�nitions of time granularities. When

considering a particular application or formal context, we can specialize this very general model along

the following dimensions:

� choice of the index set I

� choice of the absolute time set A

� restrictions on the structure of ticks (explained below)

� restrictions on the temporal types by using relationships

We call the resulting formalization a temporal type system.

Consider some possibilities for each of the above four dimensions. Convenient choices for the index

set are natural numbers, integers, and any �nite subset of them. The choice for absolute time is typically

between dense and discrete. In general, if the application imposes a �xed basic granularity (such as

second), then a discrete absolute time in terms of the basic granularity is probably the appropriate

choice. However, if one is interested in being able to represent arbitrary �ner temporal types, a dense

absolute time is required. In both cases, speci�c applications could impose left/right boundedness on

the absolute time set. The structure of ticks could be restricted in several ways:

(1) disallow types with gaps in a tick (b-month is an example, since each tick has gaps corresponding

to weekends),

(2) disallow types with non-contiguous ticks (b-day is an example, since a tick corresponding to a

Friday is not contiguous with respect to the next tick, representing a Monday),
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(3) disallow types whose ticks do not cover all the absolute time (if our absolute time is between

Gregorian year 0 and 2000, we disallow, for example, a type covering only years from 1000 to

2000), or

(4) disallow types with non-uniform ticks (only types with ticks having the same size are allowed.

Hence, for example, second, day, week are allowed, while month is not).

Temporal types can also be restricted based on their relationships. While we formally de�ne these

relationships in the next subsection, intuitive examples are:

(a) disallow multiple types that are equivalent with respect to shifting of their indices,

(b) enforce that each pair of types is comparable (for example week and month are incomparable since

for a certain week we cannot always �nd a month fully including it, and vice versa).

In restricting to a temporal type system, there is a tradeo� between its expressiveness and the simplicity

and e�ciency of the algorithms needed to manage the temporal types. Here, we give the de�nition of

a very expressive temporal type system [WBBJ97] that we have found to be particularly useful.

De�nition A temporal type in T T S1 is a mapping � from the set of the positive integers to 2R (i.e.,

all subsets of reals) such that for all positive integers i and j with i < j, the following two conditions

are satis�ed:

� �(i) 6= ; and �(j) 6= ; imply that each real number in �(i) is less than all real numbers in �(j),

and

� �(i) = ; implies �(j) = ;.

The T T S1 system is de�ned with the following choices for the aforementioned four dimensions:

The positive integers are used as the index set, while the real numbers are used as the absolute time set.

There is no structural restriction on ticks, but no two types in the system are equivalent with respect

to shifting of their indices. Restriction (a) is indeed enforced by the condition that the �rst non-empty

tick (if any) must start with index 1 (second condition in the de�nition of T T S1).

An example of a more restrictive granularity system is given in [WJS95, BWBJ95] where a discrete

absolute time and index sets (both positive integers) are used, and restrictions (1), (2), (3), and (a)

apply. In this paper we refer to this temporal type system as T T S2. It can be easily seen that each

type in T T S2 corresponds to a partition of the positive integers such that each subset in the partition
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is a �nite or in�nite interval. The index can be viewed as a label to the intervals with 1 assigned to the

�rst interval.

2.1 Relationships and formal properties

We de�ne a number of interesting relationships among temporal types.

De�nition Let � and � be temporal types on (I;A).

� Finer-than: � is said to be �ner than �, denoted � � �, if for each i 2 I, there exists j 2 I such

that �(i) � �(j).

� Groups-into: If � and � are temporal types, then � is said to group into �, denoted ���, if for each

non-empty tick �(j), there exists a (possibly in�nite) subset S of I such that �(j) =
S
i2S �(i).

� Subtype: � is said to be a subtype of �, denoted � v �, if for each i 2 I, there exists j 2 I such

that �(i) = �(j).

� Shifting: � and � are said to be shifting equivalent, denoted �
$
= �, if � v � and � v �.

When a temporal type �1 is �ner than a temporal type �2, we also say that �2 is coarser than �1.

Consider now the intuitive meaning and properties of these relationships. The �ner-than relation-

ship formalizes the notion of �ner \partitions" of the absolute time. For example, hour is �ner than day

which in turn is �ner than month. By de�nition, this relation is re
exive, i.e., � � � for each temporal

type �. Furthermore, the �ner-than relation is obviously transitive. However, if no restrictions are

given, it is not antisymmetric, and hence it is not a partial order. Indeed, � � � and � � � does not

imply � = �, but only �
$
= �. Considering the groups-into relation, � � � ensures that for each tick of

� there exists a set of ticks of � covering exactly the same span of time. For example, hour groups into

b-day. The relation is useful, for example, in applications where attribute values are associated with

time ticks; sometimes it is possible to obtain the value associated with a tick of granularity � from the

values associated with the ticks of � whose union covers the same time. Note that � � � does not imply

� � �; it's converse does not hold either. The groups-into relation has the same two properties of the

�ner-than relation. The subtype relation intuitively identi�es a type corresponding to subsets of ticks

of another type. As an example, b-day is a subtype of day. Note that � v � implies � � �. Similar to

the two previous relations, subtype is re
exive and transitive. Finally, shifting is clearly an equivalence

relation.
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We can prove other interesting formal properties for a large class of temporal type systems, namely

those imposing, by the above restriction (a), that no pair of di�erent types can be shifting equivalent.

For this class of systems, the three relationships �, v, and � are antisymmetric and, hence, each

relationship is a partial order. They may not be total orders since, for example, week and month are

incomparable with respect to �, �, and v (i.e., week is not �ner than, does not group into, nor is a

subtype of month, and vice versa).

We are particularly interested in the �ner-than relationship. For systems enforcing restriction (a),

there exists a unique least upper bound of the set of all temporal types, denoted by �>, and a unique

greatest lower bound, denoted by �?. These top and bottom elements are de�ned as follows: �>(i) = A

for some i 2 I and �>(j) = ; for each j 6= i, and �?(i) = ; for each i in I. Moreover, for each pair

of temporal types �1; �2, there exist a unique least upper bound lub(�1; �2) and a unique greatest

lower bound glb(�1; �2) of the two types, with respect to �. We formalize this result referring to

speci�c temporal type systems obtained by the choices and restrictions illustrated earlier in this section

(page 5).

Theorem 1 Any temporal type system having an in�nite index, and (a) as the only restriction, is a

lattice with respect to the �ner-than relationship.

The proof of the above theorem shows that unique glb and lub types can be constructed for each pair

of types in the system. We now show that many granularity systems, which can be obtained by applying

additional restrictions among those that we have considered, are closed with respect to these glb and

lub, i.e., for each pair (�; �) of their types, glb(�; �) and lub(�; �) in the general lattice of Theorem 1 are

within the system. A closed granularity system obviously form a lattice with respect to the �ner-than

relationship. Note that a system without restriction (a) cannot be a lattice since the presence of shifting

equivalent types leads to the non-uniqueness of glb and lub. The in�niteness requirement on the index

simply ensures that a su�cient number of values will be available to index ticks of glb() and lub().

Theorem 2 A granularity system satisfying the conditions in Theorem 1 and an additional combination

of restrictions (1)-(4) and (b) is closed if:

� (2) is not in the combination unless (3) or (b) is in, and

� (4) is not in the combination unless (b) is in.

It is easily seen that if the given temporal types �1 and �2 satisfy restriction (2) or (4), then it is

not always true that lub(�1; �2) and glb(�1; �2) given in the general lattice of Theorem 1 satisfy the
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same restriction. Hence, a system with only restriction (2) or (4) is not closed. It follows from the

above theorem that, among the granularity systems that are de�nable using the given choices (1)-(4)

and (b), non-closed systems can only be found among those enforcing restriction (2) but not restriction

(3) or (b), as well as among those enforcing restriction (4) but not restriction (b). This shows that

many of the systems obtained by the given choices and restrictions are closed systems, hence lattices.

Note, however, that if additional restrictions to the ones considered in this paper are enforced, a system

can be closed without satisfying the conditions in Theorem 2. Furthermore, a non-closed granularity

system could still form a lattice, but a particular construction for its glbs and lubs must be provided.

T T S1 and T T S2 are examples of closed granularity systems. The usefulness of the lattice structure

has been shown, for example, in the logical design of temporal databases with multiple granularities

[WBBJ97], and will be shown in Section 3 for temporal constraint satisfaction.

2.2 Data conversion

When dealing with temporal types, we often need to determine the tick (if any) of a temporal type �

that covers a given tick z of another temporal type �. For example, we may wish to �nd the month

(an interval of the absolute time) that includes a given week (another interval of the absolute time).

Formally, for each index value z and temporal types � and �, dze�� is unde�ned if �(z) 6� �(z0) for all

z0; otherwise, dze�� = z0, where z0 is the unique index value such that �(z) � �(z0). The uniqueness of

z0 is guaranteed by the monotonicity of temporal types. As an example, dzemonthsecond gives the month that

includes the second z. Note that while dzemonthsecond is always de�ned, dze
month
week is unde�ned if week z falls

between two months. Similarly, dzeb-dayday is unde�ned if day z is not a business day. Note that if � � �,

then the function dze�� is de�ned for each index value z. For example, since day � week, dzeweekday is

always de�ned, i.e., for each day we can �nd the week that contains it. The notation dze� is used when

the source type can be left implicit (e.g., when we are dealing with a �xed set of granularities having a

distinguished basic type).

Another direction of the above transformation is as follows: Let � and � be temporal types, and z

an integer. De�ne bzc�� = (z0; k), where the resulting pair identi�es the k consecutive ticks of � whose

union yields �(z), i.e., �(z) = �(z0 + 0)[ � � � [ �(z0 + k � 1). This function is useful for �nding, e.g., all

the days in a month. If � � �, then bzc�� is always de�ned. It is worth mentioning that in [TSQL2], it

is assumed that a calendar subsystem provides a similar function that gives the conversion factor for a

certain target type for each tick of a source type. For example, the function returns \29 days" for the

month February, 1996.
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The above transformation only concerns the temporal types. The second kind of data conversion

involves information attached to time ticks. For example, we register in a database the rainfall amounts

for each day, record income for each year, and so on. It is sometimes desirable to obtain the rainfall

amount of a month. Here, the information about rainfall is viewed as \converted" into that in terms

of month and the conversion function used is summation. In [BWBJ95], we proposed a framework for

specifying such information conversion and studied related query evaluation problems.

3 Temporal constraints with granularities

In the temporal reasoning area a lot of work has been done on formalisms to express networks of

constraints and on algorithms to solve the related problems of consistency and minimal network. In

this section, we propose an extension of the quantitative temporal constraints to incorporate temporal

types. We start with the de�nition of a temporal constraint with granularity. For simplicity, we assume

that second is the implicit primitive type for the de functions, i.e., dze� means dze�second, and we work

with only temporal types � in T T S1 such that second� �.

De�nition Let m � n be integers and � a temporal type. Then [m;n]�, called a temporal constraint

with granularity (or TCG), is the binary relation on positive integers de�ned as follows: For positive

integers t1 and t2, (t1; t2) 2 [m;n]� is true (or (t1; t2) satis�es [m;n]�) i� (1) dt1e� and dt2e� are both

de�ned, and (2) m � (dt2e� � dt1e�) � n.

In the paper, given a TCG [m;n]� we refer to the integer set fx j m � x � ng as the range of the

TCG.

Intuitively, for instants t1 and t2 (in terms of seconds), (t1; t2) satis�es [m;n]� if the di�erence of

the integers t01 and t
0
2 is between m and n (inclusive), where �(t01) and �(t02) are the ticks of � (if exist)

that cover the t1-th and t2-th seconds, respectively. The instants t1 and t2 are �rst translated in terms

of �, and then the di�erence is taken. If the di�erence is at least m and at most n, then the pair of

instants is said to satisfy the constraint. For example, the pair (t1; t2) satis�es TCG [0; 0] day if t1 and

t2 are within the same day. Similarly, (t1; t2) satis�es TCG [�1; 1] hour if t1 and t2 are at most one

hour apart (and the order of them is immaterial). Finally, (t1; t2) satis�es [1; 1] month if t2 is in the next

month with respect to t1.

It is important to note that it is not always possible to convert a TCG [m;n]�, with � 6= second,

into a TCG in seconds (i.e., as [m0; n0] second for any m0 and n0). Indeed, consider [0; 0] day. Two

10



instants satisfy the constraint if they fall within the same day. In terms of second, they could di�er

from 0 seconds to 24 � 60 � 60 � 1 = 86399 seconds. However, [0; 86399]second does not re
ect the

original constraint. For example, if instant t1 corresponds to 11pm of one day and instant t2 to 4am in

the next day, then t1 and t2 do not satisfy [0; 0] day; however, they do satisfy [0; 86399]second.

Networks of constraints with granularities are de�ned as follows:

De�nition A constraint network (with granularities) is a directed graph (W;A;�), where W is a �nite

set of variables, A � W �W and � is a mapping from A to the �nite sets of TCGs.

Intuitively, a constraint network speci�es a complex temporal relationship where each variable in W

represents a speci�c instant (for example the occurrence time of an event). The set of TCGs assigned

to an edge is taken as conjunction. That is, for each TCG in the set assigned to the edge (X; Y ), the

instants assigned to X and Y must satisfy the TCG.

Example 1 Figure 2 shows an example of a constraint network with granularities.

X 3X 0

X 2

X 1
[2,2]b-week[-1,1]b-day

[0,5]b-day [0,8]hours

Figure 2: A constraint network with granularities.

The network involves three di�erent granularities: business days (b-day), business weeks (b-week),

and hours (hour). This network could be used, for example, to specify a pattern of events E0; E1; E2; E3

such that when their occurrence times are assigned to the variables X0; X1; X2; X3 respectively, we have

i)E0 andE1 occur in the same, or in successive business days (the order of their occurrences is irrelevant),

ii) E2 occurs within 5 business days from the occurrence of E0, iii) E3 occurs within 8 hours from E2

and in the second business week after E1. 2

For a given constraint network CN , it is of practical interest to check if the network is consistent.

De�nition A constraint network CN = (W;A;�) is consistent if there exists an assignment from the

set of positive integers to the variables in W such that for each arc (X; Y ) 2 A the pair (tX ; tY ) of

values assigned to X and Y , respectively, satis�es each TCG in �(X; Y ).
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Determining the consistency of constraint networks with granularities turns out to be a di�cult

problem:

Theorem 3 It is NP-hard to decide if an arbitrary constraint network with granularities is consistent.

The proof consists of a reduction from the \subset sum" problem [GJ79]. The result holds for

our general de�nition of temporal type as well as for T T S1 and T T S2. The basic di�culty of the

consistency checking is due to the fact that the presence of di�erent granularities in the constraints

allows us to express a form of disjunction. Consider the graph in Figure 3.

X X

X X

0

[0,12]month

1

2 3
[11,11]month   [0,0]year

[11,11]month  [0,0]year

Figure 3: A constraint network with an implied disjunctive constraint.

Relationship between X1 and X0 dictates that the event assigned to X0 must happen during the

�rst month of a year (each year has 12 months). Likewise, the event assigned to X2 must happen during

the �rst month of a year (maybe in a di�erent year from the event assigned to X0). Since the original

relationship between X0 and X2 is that their distance is between 0 to 12 months, it follows that the

distance between X0 and X2 must be either 0 or 12 months.

4 Approximate solutions for the consistency and minimal network

problems

We consider here an approximate algorithm for consistency checking. The approach consists of using

constraint propagation techniques coupled with conversion of constraints in di�erent granularities. Con-

straints in each granularity are incrementally re�ned using the information from the original network.

If the re�nement of a constraint leads to an empty set for admissible values, the whole network is

inconsistent. The algorithm also gives an approximation of what is usually called a minimal network.

Intuitively, a minimal network is a network having the same solutions as the original one, but such that

no constraint can be further re�ned. We also require that constraints in the minimal network are only

in terms of the granularities appearing in the original network. Minimal networks are useful in several

tasks such as deriving a solution for the given network or comparing two networks. In the following we

start illustrating methods to convert constraints in terms of di�erent granularities. The conversion of
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constraints is an essential step of the approximate algorithm.

4.1 Conversion of constraints in di�erent granularities

Consider the problem of converting a given TCG1 in terms of �1 into a logically implied TCG2 in terms

of �2. (TCG1 logically implies TCG2 if any pair of time instants satisfying TCG1 also satisfy TCG2.)

If we only have a total order of granularities with uniform ticks, like e.g., minute, hour, and day, then

the conversion method is trivial since �xed conversion factors can be used. However, if incomparable

types like week and month, or types with \gaps" like b-day are considered, the conversion becomes

more complex.

Moreover, given an arbitrary TCG1, and a granularity �, it is not always possible to �nd a logically

implied TCG2 in terms of �. For example, [0; 0] day does not logically imply [m;n] b-day no matter

what m and n are. The reason is that [0; 0]day is satis�ed by any two events that happen during the

same day, whether the day is a business day or a weekend day.

In our framework, we allow the conversion of a TCG in a constraint network CN into another TCG

if the resulting constraint is implied by the set of all the TCGs in CN . More speci�cally, a TCG [m;n]�

on arc (X; Y ) in a network CN is allowed to be converted into [m0; n0] � as long as [m0; n0] � is implied by

CN , i.e., for any pair of values tX and tY assigned to X and Y respectively, if (tX ; tY ) satis�es [m;n]�

and tX and tY belong to a solution of CN , then (tX ; tY ) also satis�es [m0; n0] �.

Example 2 Consider a network with three variables X , Y and Z as shown in Figure 4.

X Y

Z

[0,0]b-day

[0,0]b-day[0,0]day

Figure 4: A network to illustrate conversion conditions.

It is clear that we may convert [0; 0] day on (X;Z) to [0; 0] b-day since for any events x and z

assigned to X and Z respectively, if they belong to a solution of the whole structure, these two events

must occur within the same business day. 2

To guarantee that only allowed conversions are performed, given a constraint network, we assign to

each variable X a temporal type �X obtained as the greatest lower bound (with respect to the �ner-than
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relation)2 of all the temporal types appearing in TCGs involving X . Then, a TCG on variables X and

Y can be converted in terms of a target temporal type � only if � covers a span of time equal or larger

than the span of time covered by �X and by �Y . (The span of time covered by a temporal type � is

de�ned as the set
S
i2I �(i).) It is clear that any conversion performed under this condition is an allowed

conversion.

Example 3 Consider the constraint network in Figure 4. Both �X and �Z are b-day. Hence, the

constraint [0; 0] day can be converted in terms of b-day since the temporal type day covers a span of

time that includes that of b-day. Similarly, consider the network in Figure 2. The TCG in terms of

hour cannot be converted in terms of b-day or b-week without considering the other constraints in the

network. However, both �X2
and �X3

evaluate to the temporal type obtained from hour by dropping all

ticks not included in a business day. Since both b-day and b-week cover the same span of time as this

type, the constraint [0; 8] hour can be converted in terms of b-day and b-week, obtaining [0; 1] b-day

and [0; 0] b-week, respectively. 2

From a practical point of view a speci�c representation of types should be chosen so that glbs can

be e�ectively computed, and covered spans of time can be e�ectively compared.

In Figure 5 we propose a conversion method that is su�ciently general to apply to all temporal

types, provided that the aforementioned condition is satis�ed. This method is based on the two functions

mindist() and maxdist(). Intuitively, mindist(�1; m; �2) denotes the minimal distance (in terms of

the number of ticks of �2) between all pairs of instants in a tick of �1 and in the mth tick after it,

respectively. For example, mindist(b-week; 1; day) = 3, i.e., the minimum distance in terms of days

between two events that occur in two di�erent business weeks is 3 (one instant on Friday and the other

on Monday). The de�nition restricts the considered pairs of instants to those in which the �rst instant is

included in �X and the second in �Y . Indeed, only these pairs are candidate solutions for the constraint

on the arc (X; Y ), and this restriction improves the precision of the conversion as well as it detects

some inconsistencies. For simplicity, in our examples, we assume that �X and �Y cover the same span

of time as �1, so that the restriction does not in
uence the result. The value maxdist(�1; n; �2) is the

corresponding maximum distance. For example, maxdist(b-week; 1; day) = 11, and maxdist(b-day,

1,day)= 3.

The values of these functions cannot be automatically obtained for general (in�nite) temporal types,

2We proved that TTS1 forms a lattice with respect to the �ner-than relation. Note also that for types �1 and �2 in

TTS1 with second� �1 and second� �2, we have second� glb(�1; �2) and second� lub(�1; �2). It follows that second

groups-into the glb of any �nite set of the considered temporal types.
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INPUT: a network CN with a TCG [m;n]�1, with n � 0, associated with an arc

(X;Y ), a target type �2, s.t. 8i; t (t 2 �X (i) [ �Y (i) ) 9j t 2 �2(j)).

OUTPUT: a logically implied TCG [m;n]�2 for (X;Y ) or unde�ned.

METHOD:

Step 1 if m < 0 then m = �maxdist(�1; jmj; �2)

else m = mindist(�1;m; �2)

Step 2 n = maxdist(�1; n; �2)

Step 3 if either m or n is unde�ned, then return unde�ned

else return [m;n]�2.

where

mindist(�1;m; �2) = min(S) if S 6= ;, unde�ned otherwise, where

S = fdt2e�2 � dt1e�2 j dt1e�X and dt2e�Y are both de�ned, and dt2e�1 �

dt1e�1 � mg;

maxdist(�1; n; �2) = max(R) if R 6= ;, unde�ned otherwise, where

R = fdt2e�2 � dt1e�2 j dt1e�X and dt2e�Y are both de�ned, and dt2e�1 �

dt1e
�1 � ng;

�Z = glb(�1; : : : ; �k) if �1; : : : ; �k are the types in the TCGs of CN involving node Z.

Figure 5: A general method for the conversion of constraints
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however they can be computed e�ciently when the involved temporal types are periodic, as in most

practical cases. The computation of mindist() and maxdist() is more involved when we want to check

the condition, appearing in their speci�cation, on dt1e�X and dt2e�Y being both de�ned. Note that

omitting this check leads to a still sound but less precise conversion. The other condition involving

�X and �Y appears in the input description. This cannot be ignored since it guarantees an allowed

conversion. As we have observed earlier, this condition can be automatically checked for certain type

speci�cations, as for example those using periodic descriptions.

Example 4 By exploiting the periodicity of b-day, we can compute mindist(b-day,k,day) and

maxdist(b-day,k,day), assuming that �X and �Y cover the same span of time as b-day, as follows:

mindist(b-day,k,day)= k + 2 � (k DIV 5)

maxdist(b-day,k,day)=

(
0 if k = 0

k + 2 � (1 + ((k � 1) DIV 5)) otherwise
2

The method imposes n � 0 for the input constraint. This is not a limitation since any constraint

[�n;�m]� on (X; Y ) with m;n > 0 can be expressed as [m;n]� on (Y;X). When only the lower bound

is negative, it is su�cient to consider its absolute value and treat it exactly as the upper bound except

for reversing the sign of the result. For example, for [�1; 1] week we derive the upper bound 13 for day

according to the method. Since the absolute value for �1 is 1 we derive [�13; 13] day as the implied

constraint.

Theorem 4 The general conversion method is correct: Any constraint obtained as output is implied by

the original network.

In application contexts where many temporal types are used and the information about the rela-

tionship between all pairs of types is unavailable or impractical to obtain, we propose an alternative

conversion method. This method, however, involves a loss of precision compared with the one given

above.

In most cases, we know the relationship between each temporal type and a reference (primitive)

type � that groups into all the other types of the network, as e.g., second. In Figure 6 we give an

alternative conversion method that exploits only this information.

The conversion method uses the new functions minsize(), maxsize(), and mindist-prim(). Intu-

itively, minsize(�2; k) and maxsize(�2; k) denote respectively the minimum and maximum length of k

consequent ticks of �2, expressed in ticks of the primitive type. For example, minsize(month; 1) = 28,

and maxsize(month; 1) = 31 if day is the primitive type. mindist-prim(�1; m) denotes the minimal
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INPUT: a network CN , a TCG [m;n]�1, with n � 0, associated with an arc (X;Y ),

a primitive type �, a target type �2, s.t. 8i; t (t 2 �X(i) [ �Y (i)) 9j t 2 �2(j)).

OUTPUT: a logically implied TCG [m;n]�2 for (X;Y ) or unde�ned.

METHOD:

if 9i; i0; i00;m0 s.t. m � m0 � n, �1(i)\�X (i0) 6= ;, and �1(i+m0)\�Y (i00) 6= ; then

Step 1 if m < 0 then m = �min(R), where

R = fr j minsize(�2 ; r+ 1) � maxsize(�1; jmj+ 1)g

else m = min(R) � 1, where

R = fr j maxsize(�2; r) > mindist-prim(�1;m)g

Step 2 n = min(S), where

S = fs j minsize(�2; s + 1) � maxsize(�1; n+ 1)g

Step 3 return [m;n]�2.

else return unde�ned

where

minsize(�; r) = min(Q) and maxsize(�; r) = max(Q), with

Q = fk j 9j; i; k = minfk0 j (�(j)[� � �[�(j+ r�1)) � (�(i)[� � �[�(i+k0�1))gg

mindist-prim(�1;m)=minfd j 9i; j �(j) \ �1(i) 6= ; and �(j + d) \ �1(i+m) 6= ;g

Figure 6: Conversion of constraints through a primitive type
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distance in terms of ticks of the primitive type between all pairs of instants in a tick of �1 and in the

mth tick after it, respectively. The conversion method returns unde�ned when it is not possible to

evaluate this distance for any pair of instants that are a candidate solution respectively for variables X

and Y .

Steps 1 and 2 compute respectively the new minimum and maximum in terms of the target type.

When bothm and n are non-negative, the maximum and minimum distances identi�ed by the constraint

in terms of the primitive type aremaxsize(�1; n+1) andmindist-prim(�1; m), respectively. We have to

�nd these distances in terms of the target type. For the maximum we use the minimal length (minsize())

of a group of ticks in the target type, since we want to maximize the number of ticks needed to cover

the given distance. Analogously, we use the maximal length (maxsize()) in the computation of the

minimum value. Similar to the general method, when the lower bound is negative, we consider its

absolute value and we treat it exactly as the upper bound except for reversing the sign of the result.

Theorem 5 The conversion method in Figure 6 is correct: Any constraint obtained as output is implied

by the original network.

We assume that the procedure implementing this method can access a table containing the values

of minsize(�; k), maxsize(�; k), mindist-prim(�; k) for each considered type � and positive integer k

limited by some constant. In general these values are available and, for most granularities, they can

be automatically derived. When the values are not available for a certain k they can be approximated

with a linear combination of the known values (this is not shown in Figure 6). If the implementation of

the condition in the main if statement turns out to be di�cult for a particular type speci�cation, the

condition can be ignored, resulting in a still sound but less precise conversion.

The use of an intermediate granularity (the primitive type) in the conversion introduces an approx-

imation, since the information about the structure of the source granularity is lost once the spans of

time corresponding to the least and upper bounds of the original constraint are computed in terms of

the primitive type.

Example 5 Consider the conversion of the TCG [1; 1] month into a TCG in terms of hour using second

as the primitive type. The minimum span of time to cover two instants being 1 month apart is 2

seconds (the last second of a month and the next second). Hence, mindist-prim(month,1)=1, since these

2 seconds are contiguous. Once we have obtained this value we lose the structure of month, and, hence,

the fact that the 2 seconds were overlapping 2 months. Then, the conversion method looks for the

minimum number of ticks of the target type (hour) covering 2 seconds, and the answer is obviously 1
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(whose corresponding distance between ticks is 0). Hence, the method in Figure 6 returns the TCG

[0; 24 � 62� 1] hour, which is indeed implied by the original TCG as indicated by Theorem 5. However,

it is not the tightest constraint that a conversion could give. The direct conversion method given in

Figure 5 does not su�er from this problem since it does not use an intermediate temporal type; it will

return [1; 24 � 62� 1] hour. 2

4.2 The constraint propagation algorithm

In Figure 7 we provide a constraint propagation algorithm that we use to obtain approximate solutions

of the consistency and minimal network problems.

INPUT: a network CN = (W;A;�) with M the set of temporal types appearing in �.

OUTPUT: inconsistent or a network CN 0 with the same solutions as CN , but s.t. for

each TCG [m;n]� on (X;Y ) in CN , a tighter TCG [m;n]� (i.e., m � m and n � n)

is in CN 0 for the same arc.

METHOD:

Initialization: For each � 2 M , let C� = (W;A�;��), where A� = f(X;Y ) j �(X;Y )

contains a TCG in terms of �g and ��(X;Y ) = [m;n]� if [m;n]� is in �(X;Y ).

Step 1 Apply path consistency to each C� discarding any resulting TCG with �1 or

+1 in its range.

Step 2 For each �; � 2 M and each TCG [m;n]� in C�, perform the conversion in

terms of � if it is allowed, applying one of the conversion methods illustrated

above, and discarding any resulting TCG with �1 or +1 in its range. If an

allowed conversion returns unde�ned, then ��(X;Y ) =fFalseg. Otherwise,

insert the resulting TCG in ��(X;Y ) taking the intersection of the range of

values if another TCG is present in ��(X;Y ). When the intersection is empty,

��(X;Y )=fFalseg.

Step 3 if False appears in any ��(X;Y ) with � 2M then return inconsistent. if

new TCGs have been derived then goto Step 1, else return CN 0 = (W;A0;�0)

where A0 =
S
�2M A� and for each (X;Y ) 2 A0 �0(X;Y ) =

S
�2M ��(X;Y )

Figure 7: The constraint propagation algorithm

The algorithm consists of an initialization followed by a two-step main loop. Step 3 establishes the

termination condition. The initialization partitions the TCGs in CN into groups, each group having
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TCGs in terms of the same temporal type. Then, the propagation of the constraints in C� is a problem

known as the Simple Temporal Problem [DMP91]. The �rst step of the main loop is the application

of a path consistency algorithm within each C�. Path consistency is a simple technique that eliminates

any inconsistency in each subnetwork involving 3 variables. Intuitively, if X1; X2; X3 are variables in

the constraint network the constraints on arcs (X1; X2) and (X2; X3) are composed and the result is

intersected with the constraint on the direct arc (X1; X3). Empty intersections denote an inconsistency.

The algorithm applies an appropriate strategy to consider all subnetworks of size 3. Path consistency

for general networks only detects local inconsistencies, but it has been proved complete for consistency

in the Simple Temporal Problem. Hence, if one of our C� networks is inconsistent the path consistency

step will detect it.

Since constraints expressed in a granularity could imply constraints in other granularities, Step 2

tries to convert the TCGs and add the derived constraints to the corresponding groups. Hence, for each

pair of temporal types � and � in M such that a conversion is allowed, each TCG in C� is converted

into one in terms of �, which is added into C� . If another TCG on the same arc is present in C� , a single

TCG having as range of values the intersection of the ranges allowed by the two TCGs is kept in C� .

Steps 1 (path consistency) and 2 (conversion) are repeated until no new TCGs appear in any group.

An inconsistency can be detected in two ways: First, if an allowed conversion returns unde�ned, this

means that the TCG given as input cannot be satis�ed, and, hence, the whole network is inconsistent.

Second, when the intersection between a derived TCG and an original or previously derived TCG on

the same variables is empty, no assignment can satisfy the constraints for the corresponding arc and

the network is inconsistent.

Example 6 Consider the application of the algorithm to the constraint network in Figure 2. At the

�rst iteration, Step 1 only derives the constraint X2 � X1 2 [�1; 6] in terms of b-day. Then, this

and the other 2 constraints in b-day are converted in terms of b-week and hour, generating 6 new

constraints. The remaining 2 original constraints (X3 � X2 2 [0; 8] hour and X3 � X1 2 [2; 2] b-week)

are also converted in terms of the other 2 granularities. The result of Step 1 at the second iteration is

shown in Figure 8 (We omit the constraints in terms of hour).

Note that, at this point, all constraints have been converted in terms of other granularities and

constraint propagation has been applied to each \single-granularity" network until no further re�nement

was possible. Considering the global set of constraints, however, some re�nement can still be obtained.

Indeed, the conversion of X1 �X0 2 [�1;�1] b-week into X1 �X0 2 [�9;�1] b-day, performed by the

algorithm in Step 2 at the second iteration, allows to re�ne the constraint on X0 and X1. The third
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X 3X 0

X 2

X 1

X 3X 0

X 2

X 1

[2,2]b-week

[1,1]b-week

[2,2]b-week

[-1,-1]b-week

[1,1]b-week [0,0]b-week[4,5]b-day

[6,7]b-day

[0,1]b-day

[5,6]b-day

[5,6]b-day

[-1,0]b-day

Figure 8: An intermediate step of the propagation algorithm.

iteration does not modify any constraint and the algorithm terminates. Figure 9 shows the �nal result

in terms of constraints in b-day. The constraints in b-week are the same as in Figure 8, and we omit

the constraints in hour.

X 3X 0

X 2

X 1

[4,5]b-day

[6,7]b-day

[0,1]b-day

[5,6]b-day

[5,6]b-day

[-1,-1]b-day

Figure 9: The constraints in b-day as returned by the algorithm.

2

We say that the algorithm is sound if any assignment satisfying the given constraint network CN =

(W;A;�) also satis�es CN 0 = (W;A0;�0) as returned by the algorithm. Hence, when the algorithm

returns inconsistent there must be no assignment satisfying CN .

Theorem 6 The approximate propagation algorithm is sound and terminates. Let c be the time taken

to convert a constraint, n be the number of variables in the network, jM j be the number of temporal

types appearing in the explicit constraints, and w be the maximum cardinality of the ranges in the TCGs

(original and derived by conversion). Then, the algorithm requires in the worst case time O(c � n5 �

jM j2 � w).

It is important to interpret this upper bound on the complexity of the algorithm isolating the

components due to the di�erent steps of the algorithm. Step 1 (path consistency) takes time O(n3�jM j),

while Step 2 (conversion) takes time O(c�n2 �jM j). Note that, in practice, the time c can be considered

a constant factor. Hence, the overall complexity can be expressed as O((n3+ cn2) � jM j � I) where I is
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the number of iterations. When jM j = 1, i.e., the constraints are all expressed in the same granularity,

the problem becomes an STP; hence, a single iteration is su�cient, and the algorithm takes time O(n3).

When jM j � 2 we give, as an upper bound for the number of iterations, n2 � jMj � w where w is

the maximum cardinality of the ranges in the TCGs (original and derived by conversion). This bound

assumes that in the worst case at each iteration only one constraint is tightened and by only one unit.

In this bound, we cannot consider only the original constraints, since new constraints are derived by

conversion and they participate in successive iterations. For example, even if the number of restrictions

for [0; 0] month is 0, if the granularity day appears in the same network, a constraint [0; 30] day is

generated, whose number of potential restrictions is 30. However, we believe that this bound can be

substantially improved.

The aforementioned algorithm is an approximate propagation for two main reasons. First, some

types cannot be converted in other types (e.g. b-day into week-end) and, in general, conversions

involve some loss of precision. Second, the set of temporal types we use are only those that appear in

the constraint network. The algorithm may derive tighter constraints (in the sense of logical implication)

if additional temporal types are used.

We note that the NP-hardness of the consistency checking implies that a complete, sound algorithm

for constraint propagation on constraint networks is unlikely to be polynomial. A complete algorithm

here is one that always derives the minimal network. Indeed, if such a polynomial algorithm existed,

consistency checking would be polynomial since the tightest constraint between each pair of variables

in an inconsistent constraint network is ffalseg (i.e., not satis�able).

5 Related work

A �rst formalization of a time granularity system is probably that of [CR87]. However, the system

proposed in [CR87], as well as most of the time granularity systems proposed in the literature (e.g.,

[Dea89, MMCR92]), is quite restrictive. For example, these systems often impose a total order on

granularities. The restrictions are usually motivated by useful formal and computational properties

that can be achieved with them. In [Dea89] a time granularity system is introduced and the author

shows how it can be exploited to expedite operations on large temporal databases. In particular, the

emphasis is on temporal reasoning tasks on large repositories of event descriptions temporally related

to each other. The granularity system, called hierarchical partitioning scheme, is quite restrictive and

can be easily characterized in terms of our general model: absolute time and index set are respectively
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reals and integers, restrictions (1), (2), and (3) on the structure of ticks apply to this system in addition

to both restrictions (a) and (b) on the relationships among types (see page 5). The result is a set of

temporal types totally ordered by the �ner-than relation, and each one covering the whole time line.

The speci�cation of timestamps and distances among events allows the use of di�erent granularities;

however, before applying temporal reasoning algorithms each value is translated in terms of a basic

granularity. In this paper we propose what we consider a more natural semantics for constraints with

granularities, which must be supported by di�erent algorithms.

A recent proposal for the temporal extension of SQL (TSQL2) includes a substantial part dealing

with time granularity [TSQL2]. Even if there is no formal description of the intended granularity system,

it is clear that it is a very general system allowing, for example, non-contiguous ticks and incomparable

types. In terms of our formal model it could be characterized by using a �nite subset of integers for

both absolute time and index set with only restriction (1) on the structure of ticks.

Relevant work on time granularities has been done also in other areas like logic programming

[MMCR92], and real time system speci�cation [CCMP93]. In these papers the emphasis is on embedding

these notions into a logical formalism. The granularity system proposed in [MMCR92] can be described

in our framework exactly as the one discussed above for [Dea89] with the extra restriction (4) of equal

size granules in each granularity. In [CCMP93] a slightly generalized version of that system is used,

eliminating restriction (4) on ticks and restriction (b) on type relationships, while additional restrictions

on type relationships are speci�ed through logic axioms.

With respect to constraint propagation, a related work is that of [Euz95]. While we address the

problem of reasoning with quantitative temporal constraints on multiple granularities, that paper con-

siders both temporal and spatial aspects of granularity, but limited to qualitative constraints.

Finally, several papers address the problem of the representation and implementation of calendars

and granularities [LMF86, NS92, TSQL2, CSS94]. The set of granularities expressible in these proposals

are often characterized only by a representation language. We see this work as complementary to ours.

Indeed, a real system can only treat a subset of the temporal types that we have de�ned, namely those

that have �nite representations. These languages could be used in the application domain to specify

the temporal types and implement operations on them.
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6 Conclusion

We illustrated a general framework for de�ning time granularities that extends most of the proposed

granularity systems. Furthermore, we introduced the notion of a constraint network with time granu-

larities and showed that such a constraint network has semantical and computational di�erences with

respect to similar constraint networks without time granularities (or with a single granularity).

We do not discuss in this paper another type of constraints that are related to granularities, namely,

temporal functional dependencies with granularities [WBBJ97]. Intuitively, a temporal functional de-

pendency speci�es that certain attributes do not change values during a tick of a certain temporal

type. For example, the teaching assistant of a course does not change during a semester. [WBBJ97]

concentrated on the elimination of redundancies introduced by such constraints in a temporal relational

model.

We have applied the proposed framework for time granularities in several areas: federated temporal

databases [WJS95], logical design of temporal databases with multiple granularities [WBBJ97], querying

temporal databases with semantic assumptions [BWBJ95], and mining large event sequences for complex

temporal relationships [BWJ96]. In particular, constraint propagation in a network with multiple

granularities is used in [BWJ96] to signi�cantly prune the search space during a data mining process.

Working prototypes have been developed for the last two applications that we just mentioned. We refer

the interested reader to the cited papers.

Regarding temporal constraints with granularities, the constraint propagation algorithm can also

be applied in several arti�cial intelligence application areas where temporal constraint satisfaction al-

gorithms are already employed, as, for example, in scheduling and planning. There are also some pro-

posals on enhancing the deductive power of temporal databases exploiting known constraint propagation

techniques [BCTP95]. Even if we did not investigate this research direction, we believe that the methods

proposed in this paper would be an intuitive extension to support multiple granularities.

With respect to temporal logics, an interesting topic would be the study of metric temporal logics

along the work of [MON96], but extending these formalisms to deal with general models of granularity.
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Proofs

Proof of Theorem 1

We prove that for each pair of temporal types �1 and �2, there exist a unique least upper bound,

lub(�1; �2), and a unique greatest lower bound, glb(�1; �2). Before doing that, we introduce the following

notation: Given two non-empty sets S1 and S2 of elements in A, S1 � S2 holds if each number in S1

is strictly less than each number in S2. (Formally, S1 � S2 if 8x 2 S1 8y 2 S2(x <A y).) Moreover, we

say that a set S of non-empty sets of elements in A is monotonic if for each pair of sets S1 and S2 in S

either S1 � S2 or S2 � S1. It is easily seen that a temporal type � can be viewed as a monotonic set

of non-empty sets of elements in A, namely f�(i)j�(i) 6= ;g. On the other hand, a monotonic set S of

non-empty sets of elements in A, such that each element can be indexed by a di�erent i 2 I preserving

the order imposed by the monotonicity (we call this property indexability), can be viewed as a temporal

type �, where for each i 2 I, �(i) is the set in S indexed by i, or �(i) = ; if i is not used in the above

indexing. Let �1 and �2 be two temporal types and S1 and S2 the sets corresponding to �1 and �2,

respectively, as discussed above.

Let Sglb = fS1 \ S2 j S1 2 S1; S2 2 S2 and S1 \ S2 6= ;g. Since S1 and S2 are both monotonic and

indexable by I, Sglb is also monotonic and indexable by I. It is easily seen that the type � corresponding

to Sglb is the unique glb(�1; �2).

Consider now lub(�1; �2). Let Sb = fS � A j; 6= �k(j) � S for some k 2 f1; 2g and jg and Sub =

fS 2 Sb j for each k 2 f1; 2g and each i 2 I; �k(i) � S or S � �k(i) or �k(i) � Sg.

Intuitively, Sb consists of all the sets that contain at least one tick of �1 or �2, and Sub consists of
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the sets S such that S is in Sb and each tick of �1 and �2 it is either entirely in or entirely out of S.

Finally, let Slub = fS j S 2 Sub and 6 9S0 2 Sub with S0 � Sg: Clearly, Slub � Sub � Sb.

The following three steps su�ce to show that �1 and �2 have a unique least upper bound: (a) We

�rst prove that the set Slub is monotonic and indexable by I. By (a), there exists � that corresponds

to Slub. We then establish that (b) �1 � � and �2 � � and (c) for all �0, if �1 � �0 and �2 � �0, then

� � �0.

For (a), we �rst prove that the sets in Slub are disjoint. That is, given sets S and S 0 in Slub, we

prove that x 2 S and x 2 S 0, for some x, implies S = S0. By the fact that S is in Slub, x 2 S implies

x 2 �k(j) for some j and k 2 f1; 2g. Since x 2 �k(j) and x 2 S, we know �k(j) 6� S and S 6� �k(j).

It follows from the condition de�ning Sub that �k(j) � S. Analogously, �k(j) � S0. We now consider a

particular relation �: For each k0 2 f1; 2g, i 2 I and non-empty set S1 of elements in A, let �k0(i)�S1 be

true i� �k0(i) 6� S1 ^ S1 6� �k(i). We denote with C(�k(j)) the set obtained by recursively applying

the following step Cn(�k(j)) = Cn�1(�k(j))[ Sn where C0(�k(j)) = �k(j) and Sn is the union of all

ticks �k0(i) such that �k0(i)�C
n�1(�k(j)). We show S = S0 by proving that (i) C(�k(j)) 2 Sub and

(ii) C(�k(j)) � S and C(�k(j)) � S0. Indeed, (i) and (ii) imply C(�k(j)) = S and C(�k(j)) = S0 since

otherwise (i) and (ii) contradict the fact that S and S0 are both in Slub.

Consider (i). C(�k(j)) is in Sb since �k(j) � C(�k(j)). Moreover, given an arbitrary tick �k0(i),

if �k0(i) is not a subset of C(�k(j)), then �k0(i)�C
n(�k(j)) is not true for any n � 0. It follows

that �k0(i) � C(�k(j)) or C(�k(j)) � �k0(i). Hence, C(�k(j)) is in Sub. Consider (ii). We know

that C0(�k(j)) = �k(j) � S. Consider C1(�k(j)). Assume C1(�k(j)) 6� S. Thus there exists �k0(i)

such that �k0(i) � C1(�k(j)) but �k0(i) 6� S. Hence, �k0(i)�C
0(�k(j)), i.e., �k0(i) 6� C0(�k(j)) and

C0(�k(j)) 6� �k0(i). Since C
0(�k(j)) � S, it follows that �k0(i) 6� S and S 6� �k0(i). Since, in addition,

�k0(i) 6� S, this means that S is not in Sub, which contradicts the fact that S is in Slub. Continuing by

induction with the same reasoning, we have that C(�k(j)) � S. By symmetry, we have C(�k(j)) � S0.

To conclude step (a), assume Slub is not monotonic. Let S 6= S0 be in Slub such that S 6� S0 and

S0 6� S. Then (1) there exists x 2 S0 such that fxg 6� S and S 6� fxg, or (2) there exists x 2 S

such that fxg 6� S0 and S0 6� fxg. For case (1), since x is in S0, as we have shown before, there must

exist k and j such that x 2 �k(j) and �k(j) � S 0. By de�nition of Sub, either �k(j) � S or �k(j)� S

or S � �k(j). Since S and S0 are disjoint, �k(j) 6� S. Therefore, �k(j) � S or S � �k(j). This

contradicts the fact that fxg 6� S and S 6� fxg. Case (2) leads to a contradiction by symmetry. This

concludes the proof for (a) since the indexability of Slub by I is trivial.

For (b), by construction, for each tick in �1 and �2, Sub contains at least one set S equal or including

27



that tick. The minimization in Slub takes the smallest of these sets. Hence, the type � corresponding

to Slub is coarser than �1 and �2.

For (c), suppose that �0 is a type coarser than �1 and �2. We show that � � �0. Consider any i 2 I

such that �(i) 6= ;. Since �(i) 2 Slub and hence �(i) 2 Sb, it follows that �(i) contains a tick �k(j) for

some k 2 f1; 2g and j � 1. Since �k(j) � �(i) and �(i) 2 Slub, �(i) = C(�k(j)) as in the proof for

(a). Since �k � �0, there exists r such that �k(j) � �0(r). We now show that �(i) = C(�k(j)) � �0(r).

Suppose otherwise, i.e., C(�k(j)) 6� �0(r). By the de�nition of C(�k(j)) and since C0(�k(j)) = �k(j) �

�0(r), there exists integer n > 0 such that Cn�1(�k(j)) � �0(r) but Cn(�k(j)) 6� �0(r). Hence, there

exists �k1 (l) in Cn(�k(j))� Cn�1(�k(j)) such that �k1(l) 6� �0(r). By de�nition, �k1 (l)�C
n�1(�k(j),

i.e., �k1(l) 6� Cn�1(�k(j) and Cn�1(�k(j) 6� �k1(l). Since C
n�1(�k(j)) � �0(r) we have �k1(l) 6� �0(r)

and �0(r) 6� �k1(l). Since �k1 � �0 there exists r0 6= r such that �k1(l) � �0(r0). Therefore, we

derive �0(r0) 6� �0(r) and �0(r) 6� �0(r0), a contradiction since each temporal type is monotonic. Thus,

�(i) = C(�k(j)) � �0(r) and hence � � �0.

Proof of Theorem 2

First note that if a temporal type system has restriction (b), then it is closed. Indeed, since types are

restricted to be comparable, glb and lub are always among the given types. That is, if �1 � �2, then

glb(�1; �2) = �1 and lub(�1; �2) = �2.

For restrictions (1) and (3), we �rst independently show that if both temporal types �1 and �2

satisfy the restriction, then the glb and lub constructed in the proof of Theorem 1 also satisfy the

restriction.

Consider restriction (1) which says that ticks are not allowed to have gaps within them. From the

construction of glb, each tick of glb is obtained as intersection of a tick of � and a tick of �. Since these

ticks have no gaps, i.e., they consists of a sequence of consecutive instants, their intersection is also a

sequence of consecutive instants. Hence, glb satis�es this restriction. Consider now lub. According to

the construction of lub, it is easy to see that each tick of lub it is the union of sets S1; : : : ; Sk (where k

can also be in�nite) corresponding to ticks of �1 and �2 and such that Si\ Si+1 6= ; for each 1 � i < k.

Since each tick of �1 and �2 has no gap, each Si contains consecutive instants and the same holds for

the union of these sets.

Consider restriction (3), which states that ticks must cover all the absolute time. Since the set of

ticks of both �1 and �2 cover all the absolute time, the set of ticks of glb that is obtained as intersection

of the corresponding sets obviously covers all the absolute time. Moreover, by de�nition of lub, each
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tick of �1 is contained in a tick of lub, and, since �1 covers all the absolute time, so does lub.

We can now conclude that any system having one or more restrictions among (b), (1), and (3)

is closed if no additional restrictions (i.e., neither (2) nor (4)) are applied. Consider a system with

restrictions (2) and (3). Note that restriction (2) is superseded by (3), since any type that covers all

the absolute time must have contiguous ticks; hence, that system is closed. Finally, note that, as shown

earlier, any system with restriction (b) is closed; hence, the system with restrictions (2) and (b) is

closed, as well as the one with (4) and (b).

Proof of Theorem 3

Given a set of constraints, is there an assignment to the variables that satis�es the constraints? We

show that answering this question is at least as hard as solving the SUBSET SUM problem (a knapsack

variant). Consider a set of positive integers n1; : : : ; nk and s. The SUBSET SUM problem consists

in �nding a subset such that the sum of its numbers is s. For each instance of this problem we can

construct an instance of our problem as follows: LetW = X1; : : : ; Xk+1; V1; : : : ; Vk; U1; : : : ; Uk. Consider

the granularities n-month for n = n1; : : : ; nk de�ned by grouping each consecutive n ticks of month into

a single tick. For each i = 1; : : : ; k, create the following two constraints:

(Xi; Xi+1) 2 [0; ni] month.

(X1; Xk+1) 2 [s; s] month.

We now add another set of constraints with the only purpose to rule out all values between 1 and ni�1

in the �rst of the above two constraints. For each i = 1; : : : ; k we add:

(Vi; Xi) 2 [0; 0] ni-month,

(Vi; Xi) 2 [ni � 1; ni � 1] month,

(Ui; Xi+1) 2 [0; 0] ni-month.

(Ui; Xi+1) 2 [ni � 1; ni � 1] month.

This set of constraints implies the disjunctions:

(Xi; Xi+1) 2 [0; 0] month _ [ni; ni] month for each i = 1; : : : ; k. (This is similar to Figure 3.) If an

assignment is found to satisfy the whole set of constraints speci�ed above, the distance between the

value of Xi+1 and Xi will be 0 or ni for each i = 1; : : : ; k. The set of indices i for which that value is

di�erent from 0 determines the subset of fn1; : : : ; nkg being a solution of the SUBSET SUM problem. It

is also easy to show that if an assignment is not found such a subset does not exist. Since the SUBSET

SUM problem is NP-hard, and the transformation in the consistency problem can be done in polynomial

time, determining consistency is also NP-hard.
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Proof of Theorem 4

Assume that the conversion method of Figure 5 gives as output the TCG [m;n]�2 for the given input

TCG [m;n]�1 associated with the arc (X; Y ) in the network CN and the target type �2 satisfying

the conditions speci�ed in the method. Suppose, for proof by contradiction, [m;n]�2 on (X; Y ) is not

implied by the network CN . It follows that there exist two values x and y that assigned respectively to

X and Y belong to a solution of the given network, satisfying the constraint [m;n]�1 between X and Y ,

but not satisfying the constraint [m;n]�2 between the same variables. By de�nition, if the constraint is

not satis�ed, one of the following must hold: (a) dxe�2 or dye�2 are not de�ned, (b) dye�2 � dxe�2 > n,

(c) dye�2 � dxe�2 < m.

Suppose (a) holds and, in particular, dxe�2 is not de�ned. From the de�nition of de, this means that

there does not exist j such that x 2 �2(j). However, since x is part of a solution of the given network,

x 2 �X (k) for some positive integer k. Then, the condition 8i; t (t 2 �X (i) [ �Y (i) ) 9j t 2 �2(j))

imposed by the method on its input, guarantees 9j x 2 �2(j), leading to a contradiction. The same

arguments apply to dye�2 .

Suppose (b) holds. Let n0 = dye�2�dxe�2 . Hence, n0 > n. From the computation of n by the method

we have n = max(Q), where Q = fr j 9t1; t2; dt1e
�X and dt2e

�Y are both de�ned, dt2e
�1 � dt1e

�1 �

n and r = minfr0 j dt2e�2 � dt1e�2 � r0gg. Let t1 = x and t2 = y. Clearly, dxe�X and dye�Y are

both de�ned since x and y are part of a solution. dye�1 � dxe�1 � n since (x; y) satis�es the TCG

[m;n]�1, and minfr0 j dye�2 � dxe�2 � r0g = n0. Then, n0 2 Q and, hence, n0 � n = max(Q). This is a

contradiction since we assumed n0 > n.

Finally, suppose (c) holds. Let m0 = dye�2 � dxe�2 . Hence, m0 < m. We �rst consider the

case when m � 0. From the computation of m by the method, we have m0 < min(Q), where Q =

fs j 9t1; t2; dt1e
�X and dt2e

�Y are both de�ned, dt2e
�1 �dt1e

�1 � m and s = maxfs0 j dt2e
�2 �dt1e

�2 �

s0gg. Let t1 = x and t2 = y. Clearly, dxe�X and dye�Y are both de�ned since x and y are part of a

solution. dye�1 �dxe�1 � m since (x; y) satis�es the TCG [m;n]�1, and maxfs0 j dye�2 �dxe�2 � s0g =

m0. Then, m0 2 Q and, hence, m0 � m = min(Q). This is a contradiction since we assumed m0 < m.

When m < 0, the fact that m0 < m can be interpreted as the distance between x and y in terms of

ticks of �2 being greater (in absolute value) than the bound given by the method. The violation of the

bound and the corresponding proof are, in this case, equivalent to point (b) above, since the values of

x and y can be exchanged reversing the sign of the bounds. The conversion method, indeed, treats the

negative lower bound as a positive upper bound reversing the sign of the result.
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Proof of Theorem 5

Assume that the conversion method of Figure 6 gives as output the TCG [m;n]�2 for the given input

TCG [m;n]�1 associated with the arc (X; Y ) in the network CN and the target type �2 satisfying

the conditions speci�ed in the method. Suppose, for proof by contradiction, [m;n]�2 on (X; Y ) is not

implied by the network CN . It follows that there exist two values x and y that assigned respectively to

X and Y belong to a solution of the given network, satisfying the constraint [m;n]�1, but not satisfying

the constraint [m;n]�2. By de�nition, if the constraint is not satis�ed, one of the following facts must

hold: (a) dxe�2 or dye�2 are not de�ned, (b) dye�2 � dxe�2 > n, (c) dye�2 � dxe�2 < m.

Suppose (a) holds and, in particular, dxe�2 is not de�ned. From the de�nition of de, this means that

there does not exist j such that x 2 �2(j). However, since x is part of a solution of the given network,

x 2 �X (k) for some positive integer k. Then, the condition 8i; t (t 2 �X (i) [ �Y (i) ) 9j t 2 �2(j))

imposed by the conversion method on its input, guarantees 9j x 2 �2(j), leading to a contradiction.

The same arguments apply to dye�2 .

Suppose (b) holds. Let n0 = dye�2 � dxe�2 . Hence, n0 > n. From the computation of n by the

conversion method we have minsize(�2; n+1) � maxsize(�1; n+ 1). From the de�nition of minsize()

and maxsize() this means that any n + 1 ticks of �2 are su�cient to cover the maximal span of time

covered by n+1 ticks of �1. Since the constraint [m;n]�1 is satis�ed by (x; y), we have dye�1�dxe�1 � n,

i.e., x and y are contained in no more than n + 1 ticks of �1 (the maximal distance being n). Since

minsize(�2; n+ 1) � maxsize(�1; n+ 1), we conclude that x and y are covered by no more than n+ 1

ticks of �2, and therefore the distance between the ticks of �2 containing x and y cannot be greater

than n. This contradicts dye�2 � dxe�2 = n0 > n.

Finally, suppose (c) holds. Let m0 = dye�2 � dxe�2 . Hence, m0 < m. We �rst consider the case

when m � 0. From the computation of m by the method we have m0 < min(R)� 1, where R = fr j

maxsize(�2; r) > mindist(�1; m)g, and hence m0 + 1 < min(R). It follows that maxsize(�2; m0+ 1) �

mindist(�1; m) since, otherwise,m0+1 is in Q. Since the constraint [m;n]�1 is satis�ed by (x; y), we have

dye�1�dxe�1 � m. Then, mindist(�1; m) � mindist(�1; dye
�1�dxe�1), and hence maxsize(�2; dye

�2�

dxe�2 + 1) � mindist(�1; dye�1 � dxe�1). By the de�nition of maxsize() and mindist() it is easy to

show that mindist(�1; dt2e
�1 � dt1e

�1) � t2 � t1 � maxsize(�2; dt2e
�2 � dt1e

�2) for any values t1; t2

and temporal types � and � (provided that the necessary de functions are de�ned for those values).

Applying these inequalities to our data we easily derive y� x+1 � maxsize(�2; dye
�2 �dxe�2 +1) and

y � x � mindist(�1; dye�1 � dxe�1). This results in y � x+ 1 � y � x which is a contradiction. When

m < 0 the fact that m0 < m can be interpreted as the distance between x and y in terms of ticks of �2
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being greater (in absolute value) than the bound given by the conversion method. The violation of the

bound and the corresponding proof are, in this case, equivalent to point (b) above, since the values of

x and y can be exchanged reversing the sign of the bounds. The conversion method, indeed, treats the

negative lower bound as a positive upper bound reversing the sign of the result.

Proof of Theorem 6

Soundness. The algorithm is sound if any assignment satisfying the input network CN = (W;A;�),

also satis�es CN 0 = (W;A0;�0) as returned by the algorithm. Hence, when the algorithm returns

inconsistent, there must be no assignment satisfying CN . Consider the case in which the algorithm

returns a network CN 0: Soundness in this case is trivial, since (1) path consistency is known to be

sound, (2) we proved that any output of conversion methods is implied by CN , and (3) intersecting a

TCG obtained from conversion with an original or previously derived TCG in the same granularity and

for the same arc is a sound step. Consider now the case when the algorithm returns inconsistent. This

implies ��(X; Y )=fFalseg for some arc (X; Y ) and � 2M . This can be due to (1) the intersection of the

ranges of two TCGs in the same granularity and for the same arc is empty, or (2) unde�ned is returned

by an allowed conversion. The �rst case trivially implies that the input network is inconsistent since it

implies that there is no assignment to variables X and Y in W satisfying two TCGs on (X; Y ) which are

either originally given or logically implied by CN . For case (2) we need to consider a speci�c conversion

method. Consider �rst the general method illustrated in Figure 5. unde�ned is returned by the method

when either of the functions mindist() ormaxdist() is unde�ned. mindist(�1; m; �2) is unde�ned when

S = ; where S = fdt2e�2 � dt1e�2 j dt1e�X and dt2e�Y are both de�ned, and dt2e�1 � dt1e�1 � mg.

Note that, since the conversion is allowed, the condition on the target type guarantees that if dt1e�X

and dt2e
�Y are both de�ned then also dt1e

�2 and dt2e
�2 are de�ned. Then, S = ; if and only if there is

no pair of instants t1; t2 such that (1)dt1e�X and dt2e�Y are both de�ned, and (2) dt2e�1 � dt1e�1 � m.

This means that any pair (t1; t2) satisfying the input TCG [m;n]�1 on arc (X; Y ) is such that either

dt1e�X or dt2e�Y is not de�ned. However, since �X and �Y are the glbs of the temporal types of

TCGs involving respectively X and Y in CN , any solution of CN must assign to X and Y instants

covered respectively by �X and by �Y . Since the input TCG is either an original constraint or a

logically implied one we conclude that if S = ; then CN is inconsistent. A similar argument applies for

maxdist(). Finally, consider the alternative conversion method of Figure 6. According to this method,

unde�ned is returned if and only if for all positive integers i; i0; and i00 and each m0 with m � m0 � n

either �1(i) \ �X(i
0) = ; or �1(i + m0) \ �Y (i

00) = ;. For any pair (t1; t2) satisfying the input TCG

[m;n]�1 on arc (X; Y ) there exists i = dt1e�1 and i +m0 = dt2e�1 . However, if the above condition
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holds, either there is no i0 such that t1 2 �X(i
0) or there is no i00 such that t2 2 �Y (i

00). Since �X and �Y

are the glbs of the temporal types of TCGs involving respectively X and Y in CN , any solution of CN

must assign to X and Y instants covered respectively by �X and by �Y . We conclude that, since the

input TCG is either an original constraint or a logically implied one, if the method returns unde�ned

(i.e., the above condition holds) then CN is inconsistent.

Termination.

Step 1 (path consistency of an STP) is known to terminate. Step 2 trivially terminates. Step 3 is the

critical part: we have to show that we cannot in�nitely iterate between steps 1 and 2. Since we do not

allow +1 nor�1 in the explicit TCGs and we discard any derived TCG containing +=�1, any explicit

or implicit constraint between two variables will have only integer values. Consider S =
Pk

i=1(t
i
e � tib)

where k is the number of TCGs after the �rst iteration, and tie and tib are respectively the ending and

beginning values in the range of TCGi. It is easily seen that S is monotonically decreasing at each

iteration, and, since it cannot be negative, this means that the algorithm terminates in a �nite number

of iterations.

Complexity.

Step (1) in the worst case takes time O(n3 � jM j), where n is the number of variables (nodes in the

graph) and jM j is the number of temporal types appearing in the explicit constraints. Step (2) in the

worst case takes time O(c �n2 � jM j), where c is the constant time required to translate a constraint from

a granularity to an other one. Hence, their combination takes time O(n3 � jM j). It is easily seen that

both steps can only reduce the range of values in the constraints. In the worst case, at each iteration

(steps 1 + 2), only one constraint range is reduced. If each constraint is reduced by only one unit in

terms of its granularity the upper bound on the number of restrictions is the the maximum cardinality

of the ranges in the TCGs (original and derived by conversion). Thus, the upper bound on the number

of iterations is n2 � jMj � w, where w is the above upper bound on the number of restrictions for each

constraint. We can conclude that the overall worst case complexity is O(n5 � jM j2 � w).
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