
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

So You Want to Write a Patch Editor

Sean Luke
sean@cs.gmu.edu

Technical Report GMU-CS-TR-2023-1

Abstract

A patch editor is a software tool which assists in the
programming of electronic music synthesizers. Syn-
thesizers have a long history remote programmability
via a communication protocol called MIDI, but there
are many complexities involved in building a general-
purpose patch editor tool for a large number of machines
from a wide variety of manufacturers. This document
introduces the reader to how synthesizers are remotely
programmed, provides a tutorial with three example
synthesizers, and discusses a variety of issues and chal-
lenges involved in building patch editors.

1 Introduction

This paper discusses the issues involved in developing
patch editors and librarians, software tools designed to
work with electronic music synthesizers to make them
easier to program and manipulate. These tools work
with synthesizers using a standardized communication
protocol called MIDI, which unfortunately relies on a
non-standardized sub-protocol called System Exclusive to
do much of its heavy lifting.

This paper is organized as follows. Section 2 intro-
duces the notion of patch editors. Section 3 is a tutorial
on MIDI and System Exclusive. Section 4 introduces a
music synthesizer’s memory model, and Section 5 dis-
cusses common interactions with a synthesizer needed
to build a patch editor for it. Sections 6, 7, and 8 offer
case studies for three classic synthesizers, the Yamaha
DX7, the Dave Smith Instruments Prophet ’08, and the
Waldorf Blofeld, which illustrate how MIDI is used, how
their internal models differ, and the challenges of writing
software to work with each of them. Section 9 details the
very wide range of absurd decisions made by manufac-
turers which unnecessarily complicate the development
of patch editors for their products and which you will
almost certainly encounter. Finally Section 10 laments
recent trends in synthesizers which portend the end of
tools to assist them for the benefit of the community.

Figure 1: Moog modular synthesizer being played by
Keith Emerson. Note the vertical modules with knobs
and patch cables.
Image by “Surka”, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8345595

2 What is a Patch Editor?

A patch editor is a software tool that simplifies the pro-
gramming of electronic music synthesizers and related
equipment.

A patch is the setting of parameters which collectively
program a music synthesizer to make a certain sound.
The term patch dates from the 1960s, when early synthe-
sizers consisted of multiple modules screwed into a rack
and connected to one another via patch cables1 (typically
1.5 inch tip-sleeve cables such as one might use with an
electric guitar), such as in Figure 1. The various settings
of knobs and buttons on the modules, plus the arrange-
ment of patch cables connecting them, were known as a
patch and collectively defined the programming of the
synthesizer to create a certain sound. Even now, sans
cables and sometimes sans knobs and buttons, a music
synthesizer’s program is still known as a “patch”.

1Patch cables were originally used by early telephone operators to
patch one phone to another to establish a phone call.

1

Figure 2: Dave Smith Instruments Prophet ’08.
Image by Bernd Sieker, CC-BY-2.0, https://www.flickr.com/photos/pink dispatcher/13804312464

Figure 3: Yamaha FS1R rackmount synthesizer.

Figure 4: Oberheim Matrix 1000 rackmount synthesizer.

Some synthesizers are festooned with knobs and
switches to make it easy and fun to program their
patches. These synthesizers usually have relatively few
patch parameters, and have a nearly one-to-one rela-
tionship between parameters and knobs/buttons, as in
Figure 2. But other synthesizers have a great many more
parameters and cannot be programmed this way. These
synthesizers usually replace replace the knobs with a few
buttons, a big jog dial or cursor keys, and a small screen,
and rely heavily on menu diving to access their myriad
of options. See Figure 3 for an example. These synths
are very difficult to program from their front panels.2

An alternative to programming from the front panel
is to connect a computer to the synthesizer and use a
patch editor to program them remotely. A patch editor
typically has a graphical user interface presenting virtual
knobs for all of the synthesizer’s parameters, plus many
tools to make programming easier. Because synthesizers
often hold many patches in their memory, patch editors
also often sport librarians, which are large spreadsheets
of patches designed to help a musician collect, organize,
and update all the patches on a synthesizer.

The way a patch editor talks to a synthesizer is via
MIDI, a standardized communication protocol for syn-
thesizers to talk to one another and to computers. Syn-
thesizers can be programmed remotely via MIDI: indeed
some can only be programmed via MIDI, as in the syn-
thesizer in Figure 4.

2Figure 3 is a rackmount synthesizer. These can be difficult to pro-
gram, but are far from the only kinds of synths with this problem.

Figure 5: Edisyn patch editor pane for the ASM Hy-
drasynth showing the first tab pane (“Osc”: oscillators,
voice and controller parameters, and the mixer). More
parameters are found on additional tab panes.

Edisyn I am the author of several synthesizers and sup-
port tools. I maintain a free open source patch editor and
librarian called Edisyn3 which supports a large number
of synthesizers and which serves as a good example of a
patch editor and librarian tool. Edisyn is written in Java
and runs on MacOS, Windows, and Linux.

Edisyn provides a patch editor for a given synthesizer
in a single window with multiple tabbed panes. You can
see a screenshot of an Edisyn patch editor in Figure 5.
The window has a large number of widgets in it: dials
to set numerical parameters, checkboxes for boolean pa-
rameters, comboboxes (drop-down menus) for categorical
parameters, as well as a variety of displays to graphically
explain the effects of certain parameter combinations.
The widgets are organized into labelled rows called cat-
egories. The user interacts with Edisyn by asking it to
request patches from the synthesizer, editing them and
auditioning them on the machine, making parameter
changes to the synthesizer in real-time via the editor,
saving patches to disk, and uploading patches to the
synthesizer. Edisyn has a librarian: you can download
and rearrange large groups of patches as you see fit.

All this is not atypical of a patch editor. But because
it must support a large number of synthesizers, Edisyn
tries hard to be very general purpose and not custom for
any synthesizer unless it absolutely must. This gener-
ality also enables one of Edisyn’s super powers: it has
a very extensive collection of randomized patch explo-
ration tools, such as real-time morphing between dif-
ferent patches, blending many patches to form a new
one, patch randomization and mutation, and so on. One
particular tool, evolutionary optimization (Edisyn’s “Hill-
Climber”) iteratively produces a random collection of
patches, auditions them, gathers feedback from the user
as to which he prefers, and then uses this information
to produce the next collection of patches biased towards
his preferences. I have published a paper on Edisyn’s

3https://github.com/eclab/edisyn

2

Hill-Climber [1]. In some cases the Hill-Climber also
employs a variational auto-encoder (a form of neural
network) to improve the space in which the hill-climber
searches for good candidates to audition.

3 About MIDI

Prior to the rise of CPUs and RAM, synthesizers were
manually programmed and used proprietary methods to
communicate with one another, usually for the purposes
of synchronizing beats such as in drum machines. Then
in 1981 at AES, Dave Smith and Chet Wood introduced
what they called the Universal Synthesizer Interface [2].
This was later refined at the NAMM Show in January
1982, and introduced as the Musical Instrument Digital
Interface or MIDI. The first MIDI-enabled synthesizer
was Dave Smith’s Sequential Prophet-600.

MIDI has since established itself as one of the longest-
running, most stable, and most successful data transfer
protocols in history. This was because it was well de-
signed from the start, because it was easy to implement
on devices with little memory and CPU power, and most
critically, because it was an open standard. MIDI is the
method by which most synthesizers and related devices
communicate with one another, with keyboards and
other controllers, and with computers. Patch editors
send commands to synthesizers using MIDI. MIDI is
specified and maintained by the MIDI Association, a
nonprofit industry group.4

MIDI’s wide adoption imposed a uniformity on how
synthesizers would communicate with one another and
with computers. This has made possible patch editor li-
braries, since large numbers of synthesizers would more
or less present similar interfaces to the patch editor, with
similar capabilities and similar protocols. Unfortunately
MIDI did not go far enough in this respect, and synthesiz-
ers still vary significantly in their methods, capabilities,
and documentation with respect to communicating with
a patch editor. I have been asked many times why one
couldn’t just write a patch editor which interpreted a
set of rules for each synthesizer. The answer has always
been: if only it were that easy. We’ll get back to that.

Design MIDI is little more than a one-direction se-
rial port running at an unusual bitrate (31,250 bits per
second). This rate was chosen because 31, 250 × 32 =
1, 000, 000, making MIDI easy to clock on 1MHz CPUs.

MIDI classically runs over a 5-pin DIN serial connec-
tor, and such MIDI devices usually have three serial
ports: MIDI IN, MIDI OUT, and MIDI THRU. In most
cases MIDI is used by one device to instruct another
device with no feedback, so all that is needed is a sin-
gle cable from the upstream device to the downstream
device. This cable would stretch from the upstream

4https://midi.org

device’s MIDI OUT port to the downstream device’s
MIDI IN port. When two devices need to communicate
back-and-forth with one another, such as a synthesizer
communicating with a patch editor on a computer, this
typically requires two cables, each going from the MIDI
IN of one device to the MIDI OUT of the other.

MIDI-enabled devices can also be daisy chained so
multiple downstream devices hear the same messages
from a single upstream device. This is the function of
the MIDI THRU port: any information fed into the MIDI
IN port is automatically routed to the MIDI THRU port
so it can be sent to second (or third, etc.) device. MIDI
can also be put through a MIDI router, which has a single
MIDI IN port and routes received data to many parallel
MIDI THRU ports to go to downstream devices.

In lieu of a 5-pin DIN connector, some modern devices
use a slimmer 3.5mm tip-sleeve jack. MIDI can also be
run over Ethernet, bluetooth, and most importantly USB:
all three of these protocols are bidirectional, so there’s
no need for two cables. MIDI can also be set up between
two software programs in the same computer (such as a
patch editor and a software synthesizer).

Data Format MIDI is a stream of bytes divided into a
series of packets called messages. Each message starts
with a status byte followed by zero or more data bytes.
The status byte has its high bit set to 1, and the data
bytes have their high bits set to 0, thus making it clear
which are which and when the next message is arriving.
This also means that the available data per byte is only 7
bits. As a result, 7-bit data is so prevalent in MIDI that a
great many synthesizers only have parameters which go
from 0 to 127 at most, and in the MIDI world a 7-bit data
string, not an 8-bit one, is commonly known as a “byte”.

There are several different categories of messages:

• One-byte messages consist only of the status byte.
These are largely timing messages such as an-
nouncements that the timing clock has started or
has pulsed, or heartbeat messages, and so on. One-
byte messages are considered high priority, so much
so that they are permitted to appear right in the mid-
dle of the byte strings of other messages (in a kind
of “I’m gonna let you finish, but first I need to let
everyone know....”).

• Two and three-byte messages are the meat and pota-
toes of MIDI. They signify events such as request-
ing that a note be played or ended, or that vari-
ous general-purpose parameters be modified on
the downstream synthesizer. Many of these mes-
sages are voiced, which means they are tagged with
a four-bit (0–15) channel5 to specify the recipient
synthesizer for which they are intended.

Synthesizers can be set up to listen only for mes-
sages only with a given channel, ignoring other

5Perhaps nowadays this would be best thought of as an address.

3

channels: this allows multiple daisy-chained syn-
thesizers to be controlled independently by having
each one listen in on a different channel. Some syn-
thesizers, called multitimbral synthesizers, can be set
up to play different sounds in response to messages
on different channels; and other synthesizers can be
set up to listen to messages arriving on any channel.

• There is a single kind of arbitrary-length message
called a System Exclusive message, or Sysex message.
The purpose of a sysex message is to provide syn-
thesizer manufacturers with an escape hatch to send
data outside the bounds defined by standard MIDI
messages. Most synthesizer manufacturers employ
sysex to request, upload, and download patches,
and so sysex messages are very important to the
development of a patch editor.

There are many different MIDI messages, but when
building a patch editor, five kinds of messages are par-
ticularly important, and the rest can largely be ignored.
These five are Note messages, Program Change or PC mes-
sages, Control Change (or CC) messages, Reserved and
Non-Reserved Parameter Numbers (or RPN and NRPN),
and of course System Exclusive (or Sysex) messages. We’ll
discuss each of them next.

Note Messages A patch editor will likely need to send
test notes to a synthesizer. Note messages take the form
of Note On and Note Off. A Note On message asks the
synthesizer to start playing a given note. To send a Note
On message on channel X, you send a status byte of the
form 0x9X, followed by a data byte (0–127) indicating
the note number (middle C is 0x60), followed by a sec-
ond data byte (0–127) indicating the note velocity, which
is how fast the key was struck and so correlates with
volume. If you have no velocity information, send 0x40.

If you are sending a stream of Note On messages in
a row, you can omit the status byte of all but the first
message: this compression scheme, called running status,
is helpful because MIDI is not particularly fast.

A Note Off message asks the synthesizer to stop play-
ing a given note, and is paired with a prior Note On
message. To send a Note Off message on channel X, you
send a status byte of the form 0x8X, followed by a data
byte (0–127) indicating the note number, followed by a
second data byte (0–127) indicating the release velocity,
which is how fast the key was released. If you have no
release velocity information, send 0x40. A series of Note
Off messages can also take advantage of running status.

If you don’t care about release velocity, then instead
of sending a Note Off message, you can send a Note On
message with a note velocity of 0x00. This is interpreted
as Note Off with release velocity 0x40, and makes it pos-
sible for you to only send a stream of Note On messages,
which better takes advantage of running status.

PC Messages A Program Change or PC message in-
structs the synthesizer to load a new patch. To send
this instruction on channel X, first send the status byte
0xCX, followed by a data byte (0–127) indicating the
patch number to load.

This scheme was devised at a time when it was rare
for a synthesizer to have more than 128 patches stored
in RAM, but this is no longer the case. It is now conven-
tional for a synthesizer to divide its patches into some
N banks of up to 128 patches each. In a modern synthe-
sizer, to load a patch you’d first send a Bank Select request
(see CC Messages below) to specify the bank, followed by
a Program Change to select the patch in the bank.

CC Messages Synthesizers are historically covered
with knobs and switches which control their parameters.
To change these parameters remotely — a very impor-
tant task for a patch editor-̇– MIDI provides so-called
Control Change or CC messages. A CC message on chan-
nel X consists of a status byte of the form 0xBX, followed
by a data byte (0–127) indicating the parameter number,
followed by a second data byte (0–127) indicating the
parameter value. CC messages are a weakness in MIDI
because there are only 128 CC parameters, and because
each parameter can have only 128 different values. Many
synthesizers have far more than 128 parameters, and
many such parameters (famously filter cutoff or filter
resonance) require much, much higher resolution than
128 to avoid stepping and generally sounding awful.

An early attempt to fix this problem was so-called 14-
bit CC. The idea was to send two CC messages in series.
CC parameters 32 through 63 could be paired with their
corresponding parameters 0 through 31 to form 14-bit
values. CC number n (< 32) defined the Most Significant
Byte or MSB of the parameter, and CC number n + 32
defined the Least Significant Byte or LSB. The parameter
value was then interpreted as MSB × 128 + LSB.

For example, a synthesizer might require a 14 bit
number to describe its volume, and so to set it to, say,
3006, you’d send CC parameter 7 with the value 23,
and CC parameter 32 + 7 = 39 with the value 62, since
23 × 128 + 62 = 3006. The LSB and MSB messages can
be in any order and either can be missing. If an LSB is
received, the last-sent MSB value is used (or a default
if the MSB had never been sent yet); and likewise if an
MSB is received, the last-sent LSB value is used. Be-
cause this might temporarily produce the wrong value,
it is recommended that after receiving an MSB, a device
should wait for just a bit to see if a new accompanying
LSB arrives. 14-bit CC is not particularly common but
does show up in some synthesizers.

A synthesizer can interpret CC messages in any way it
wishes, but there are many conventions. For discussion
here, the most important one is sending a Bank Select
message, which by convention is either CC parameter 0
or, in some cases 32. As discussed in PC Messages above,
a bank select message sets the bank from which a PC

4

changes the patch number. The bank in question is the
CC message value. There exist a few synthesizers which
require more than 128 banks; in this case you’d use 14-
bit CC to perform the bank select: first you’d send the
MSB of the bank in parameter 0, and then the LSB in
parameter 32.

RPN and NRPN Plain old CC messages are problem-
atic because (1) there are only 128 of them — and modern
synthesizers have many more than 128 parameters —
and (2) each message can only have 128 values, which is
too low a resolution for many parameters. The 14-bit CC
convention fixes the second problem, but it makes the
first problem even worse because it repurposes up to 32
CC parameters to be the LSB pair of the MSB of 32 other
parameters. As a result, 14-bit CC is rarely used. We
need a scheme which allows for many high-resolution
parameters. Enter RPN and NRPN, which stand for Re-
served and Non-Reserved Parameter Numbers respectively.

RPN and NRPN are groups of CC messages which to-
gether define a high-resolution parameter and its high
resolution value. RPN and NRPN are exactly the same
except that they define two different spaces of parame-
ters. The RPN space is reserved for the MIDI Association
to use for official functions, while the NRPN space is set
aside for synthesizer manufacturers to do with as they
wish. We will focus on NRPN.

In NRPN, you first tell the synthesizer the NRPN pa-
rameter number you wish to change, and then you tell
the synthesizer what value to change it to. The parame-
ter number is 14-bit, meaning that it can be any number
0–16383. You will send this as two CC messages. You
will send the MSB of the parameter as the value of a CC
99 message: and you will send the LSB of the parameter
as the value of a CC 98 message. Together the parameter
number n = MSB × 128 + LSB.

Once you have set the parameter number by sending
these two messages, you can then send a stream of CC
messages repeatedly changing the value of the parameter.
This value is also 14 bits (0–16383), and so has two CC
messages: CC 6 specifies the MSB of the value, and CC
38 specifies the LSB of the value. As usual, the value
v = MSB × 128 + LSB. As was the case for the 14-bit CC
convention, the MSB and LSB can be sent in either order
and either can be missing. If an LSB is received, the
last-sent MSB value is used (or a default if the MSB had
never been sent yet); and likewise if an MSB is received,
the last-sent LSB value is used. Because this might tem-
porarily produce the wrong value, it is recommended
that after receiving an MSB, a device should wait for just
a bit to see if a new accompanying LSB arrives.

There are two interpretations of NRPN MSB and LSB.
First, they are often interpreted together as the inte-
ger MSB × 128 + LSB. But the spec suggests that the
MSB might be interpreted as an integer value and the
LSB be interpreted as a “fine tune” value, suggesting
MSB + LSB/128.0. This distinction matters because

some devices use NRPN for parameters whose range
is < 128. In the first interpretation, sometimes called
the “fine” interpretation, the parameter value would
be sent solely with a single LSB (the MSB would be as-
sumed to be 0). The second interpretation, sometimes
called the “coarse” interpretation, is exactly the opposite.
Unfortunately, the standard does not specify which in-
terpretation should be used: I strongly prefer the “fine”
interpretation, but different manufacturers do things
differently.

Another way to set NRPN values is to use the Incre-
ment and Decrement messages. The Increment message
is sent with a CC 96 and the Decrement message is sent
with CC 97: and their value is the amount to increment
or decrement by. These messages are not used very of-
ten, and if they are, the value is often ignored and the
synthesizer just increments or decrements by 1.

RPN works just like NRPN except the parameter LSB
and MSB CCs are 100 and 101 respectively. NRPN and
RPN are just a convention: synthesizers are free to ignore
them and repurpose the CCs 6, 38, 96, 97, 98, 99, 100,
and 101 for their own purposes (and often do). RPN and
NRPN are more expressive than simple CCs, but they
are significantly slower as they involve sending several
CC messages to express a single parameter change. It is
very common for synthesizers to use both ordinary CC
messages and RPN/NRPN.

Sysex Messages CC and NRPN are useful for sending
individual parameters, and PC for changing patches, but
often synthesizers need to do much more than this, and
often it involves much larger chunks of data. A synthe-
sizer might wish to efficiently dump to a computer or
another synthesizer the entire contents of a patch, or all
the patches in a bank, or all the patches stored in mem-
ory. A synthesizer might need to respond to a request to
dump a patch, or to change a mode in some special way,
or to load a sound sample, or to customize the tuning of
all its keys. Early MIDI synthesizers also needed a way
to change parameters better than CC afforded in the age
before RPN and NRPN. MIDI was silent on how to do
any of this: all it provided was an “escape hatch” to let
manufacturers design their own proprietary protocols
on top of MIDI. This escape hatch is System Exclusive (or
Sysex) messages.

A Sysex message is arbitrarily long. It starts with the
status byte 0xF0, followed by one or three data bytes
which define the manufacturer’s MIDI Manufacturer ID.
Manufacturers receive an ID after registering with the
MIDI Association: the ID 0x7D can also be used for per-
sonal use, and 0x7E and 0x7F are reserved by the MIDI
Association for standardized protocols.

After sending the ID, the manufacturer is free to send
as many data bytes as he wishes and in whatever for-
mat he likes. Different manufacturers concoct different
protocols which are unfortunately not very consistent
with one another (or even internally consistent). A Sysex

5

message technically doesn’t have to be terminated, but
it almost always is, using another status byte, 0xF7.

For more information about MIDI, see my text Compu-
tational Music Synthesis [3], Chapter 11.

4 A Synthesizer’s Patch Model

Almost all synthesizers on the market use exactly the
same model for their patches: a patch is a fixed-length
array of integers with varying ranges per-parameter. For
example, an Oberheim Matrix 6 or 1000 patch consists
of the following 134 numerical parameters:

name0
name1
name2
name3
name4
name5
name6
name7
keyboardmode
dco1frequency
dco1shape
dco1pulsewidth
dco1fixedmods1
dco1waveenable
dco2frequency
dco2shape
dco2pulsewidth
dco2fixedmods1
dco2waveenable
dco2detune
mix
dco1fixedmods2
dco1click
dco2fixedmods2
dco2click
dco1sync
vcffrequency
vcfresonance
vcffixedmods1
vcffixedmods2
vcffm
vca1
portamento
portamentomode

portamentolegato
lfo1speed
lfo1trigger
lfo1lag
lfo1shape
lfo1retrigger
lfo1source
lfo1amplitude
lfo2speed
lfo2trigger
lfo2lag
lfo2shape
lfo2retrigger
lfo2source
lfo2amplitude
env1triggermode
env1delay
env1attack
env1decay
env1sustain
env1release
env1amplitude
env1release
env1amplitude
env1lfotriggermode
env1mode
env2triggermode
env2delay
env2attack
env2decay
env2sustain
env2release
env2amplitude
env2lfotriggermode

env2mode
env3triggermode
env3delay
env3attack
env3decay
env3sustain
env3release
env3amplitude
env3lfotriggermode
env3mode
trackingsource
trackingpoint1
trackingpoint2
trackingpoint3
trackingpoint4
trackingpoint5
ramp1rate
ramp1mode
ramp2rate
ramp2mode
dco1frequencymod
dco1pulsewidthmod
dco2frequencymod
dco2pulsewidthmod
vcffrequencyenv1mod
vcffrequencypressuremod
vca1velmod
vca2env2mod
env1amplitudemod
env2amplitudemod
env3amplitudemod
lfo1amplitudemod
lfo2amplitudemod
portamentomod

vcffmenv3mod
vcffmpressuremod
lfo1speedmod
lfo2speedmod
mod1source
mod1amount
mod1destination
mod2source
mod2amount
mod2destination
mod3source
mod3amount
mod3destination
mod4source
mod4amount
mod4destination
mod5source
mod5amount
mod5destination
mod6source
mod6amount
mod6destination
mod7source
mod7amount
mod7destination
mod8source
mod8amount
mod8destination
mod9source
mod9amount
mod9destination
mod10source
mod10amount
mod10destination

(These are the names Edisyn gives to these param-
eters.) Some of these parameters, like name0, are
integers representing ASCII characters. Others, like
dco1pulsewidth, are integers in some range such as 0–127.
Some parameters, like dco1sync, are integers represent-
ing a set of categorical values (in this case, the values 0,
1, 2, 3, representing Off, Soft, Medium, and Hard), while
others, like dco2click, represent booleans with 0 and 1.

The number and ranges of the parameters vary from
synthesizer to synthesizer, but usually the array length
is fixed. Even in the rare cases where the number of
parameters varies, the structure is still just an array.

This is convenient because it allows for a consistent
interface. In Edisyn’s case, the interface largely con-
sists of knobs for numerical parameters, drop-down
menus (comboboxes) for categorical parameters, and
checkboxes for boolean parameters. Edisyn tends to
gather name parameters into a single String parameter
called name, and it adds two more parameters as appro-
priate: patch and bank. The synth’s parameter values,
plus the values for name, patch, and bank, are stored in
a hash table keyed by parameter name. Because of this
consistency among synthesizers, with some care Edisyn
can treat a patch as a point in a multidimensional space
and so employ various techniques to wander about the
space in search of new or better patches.

Some synthesizers have linkages among parameters
which complicate matters. For example, setting one pa-
rameter to a certain value might change the available
options or range of one or more other parameters. This
particularly happens in synthesizers with built-in effects,
where setting an effect type might change the options
for several effects parameters.

Multitimbral Patches A monophonic synthesizer can
only play a note at a time: we call the sound produced in
response to a request to play a note a voice. Modern poly-
phonic synthesizers can play many voices (hence many
notes) at once, enabling chords or polyphony.

But synthesizers with a very high voice count can of-
ten do more than this: they can essentially divide them-
selves up into several synthesizers, each playing its own
different patch, and divvy their voices up among these
“synthesizers”. Perhaps we might split the synth’s key-
board range among two “synthesizers”; or perhaps up
to 16 of these “synthesizers” would each respond to dif-
ferent MIDI channels. This would allow a synthesizer to
play a bass, a lead, a pad, and a drum pattern, all inside
the same box in response to instructions from a remote
computer. We call these multitimbral synthesizers.

Synthesizers handle multitimbrality by having sev-
eral different types of patches. Typically the synthesizer
would store, say, 128 standard patches in its memory,
now called single-mode patches, and would also have, say,
64 patches of a different type called multimode patches.
A multimode patch might contain N parts, each a slot
holding a reference to a different single-mode patch, plus
information on how that patch is to be used, such as its
MIDI channel, whether it responds to a region on the
keyboard, how loud it is relative to the others, how it is
panned, how many voices are allocated to it, and so on.

Synthesizers might have additional kinds of patches
as well. For example, many ROM sample-based syn-
thesizers from the 1990s sported a drum kit patch, with
one drum sound per key on the keyboard. This drum kit
could respond to MIDI (usually channel 10) and could be
played along with multitimbral collections of patches. A
few synthesizers, such as the Kawai K4, also had effects
patches which defined collections of effects that could
be referenced by single-mode patches. Waldorf synthe-
sizers had wavetable patches and wave patches. The Korg
Wavestation had wave sequence patches. The Yamaha
FS1R had Fseq patches. All of these might be referenced
by single-mode patches. In short: it’s common for syn-
thesizers to have patches which refer to other patches
stored in RAM, thus producing a kind of patch hierarchy.

As a result, a synthesizer cannot be thought as having
a single kind of patch, but multiple types of patches,
each requiring its own patch editor. Some patch editors
try to gloss over this with a unified patch editor interface,
but this does a disservice to the musician, who surely
knows that his synthesizer has two or more kinds of
patches inside.

6

Synthesizers themselves also try to gloss over the is-
sue with their own strange interfaces. Most multitimbral
synthesizers either allow a user to play a single patch (as
if the synthesizer was merely polyphonic) or to put the
synthesizer into a multimode arrangement, or to play a
drum patch etc. But some of them try to present a hier-
archical arrangement: you can only have the synthesizer
in “multimode”, and to play a single patch you must
turn off all multimode patch parts but one. This is both
deceitful and very inconvenient and confusing, but there
you have it. These synths still usually present separate
patches via their MIDI and Sysex interfaces thankfully.

Permanent Storage and Current Working Memory
Synthesizers typically store collections of patches in
battery-backed RAM or on Flash RAM: but only cer-
tain patches are used at any given time. Let’s say a
synthesizer is playing in single-patch mode. When the
musician requests a patch (either from the front panel or
via a bank select / program change over MIDI) the syn-
thesizer will load a copy of the patch from patch RAM to
current working memory. There the patch can be played,
modified, and if so desired, saved back to patch RAM,
overwriting the original version. If the synthesizer is in
multimode, the current working memory likely would
hold both one multimode patch and several single-mode
patches to which the multimode patch is referring.

It’s also common for some collections of patches to be
stored in permanent ROM, so these can be loaded into
current working memory but not saved from it. Patches
may also be stored on removable cartridges or SIMM
cards, either as RAM or ROM. Cartridges or SIMM cards
can hold other elements as well: for example, they might
hold basic sound samples from which a patch can be
constructed, and so a patch might have to refer to an
underlying sound in its parameters not only by its sound
number but also by the particular card on which it is
found.

5 Common Actions

In order to control a synthesizer, an editor must be able
to send it a variety of demands. Here is a list of the
demands Edisyn may need to make:

• Play a note

• Stop playing a note

• Stop playing all notes. This is often achieved with
CC 120 or 123.6

6CC 120 with value 0 is customarily the All Sounds Off message.
This instructs the synthesizer to cut all sound immediately and reset
all of its voices. CC 123 with value 0 is customarily the All Notes Off
message. This tells the synthesizer to stop playing all notes: as a result
some notes may continue to make sound as they fade away. Some
early synthesizers support one but not the other message. And at least
one synthesizer (the ASM Hydrasynth) not only ignores CC 120, but
has actually reallocated 120 for another purpose.

• Change mode, such as from multimode to single-
mode (typically a Sysex message).

• Switch to a different patch stored on the synthesizer
(typically done with one or more Bank Select CCs
followed by a PC, but sometimes requiring Sysex).

• Update a single parameter to a new value in current
working memory (often via CC, NRPN, or Sysex).

• Update all parameters to new values in current
working memory. This can be done by updating
each parameter in turn, but this is inefficient, so it is
common to have a special Sysex command, called
a patch dump, to send the data. Edisyn calls this
sending a patch.

• Load a patch from current working memory. The
request to do this would be a sysex message called
a dump request, and the synthesizer would respond
with a patch dump sysex message to provide the
data.

• Load a patch from RAM. Again, this would be an-
other kind of dump request sysex message, and
the synthesizer would again respond with a patch
dump sysex message to provide the data.

• Store a patch directly in RAM. This would be a
patch dump sysex message providing the synthe-
sizer with the data. Edisyn calls this writing a patch.

• Load an entire bank from RAM, or all banks from
RAM. This would be yet another kind of dump
request sysex message, and the synthesizer might
respond by emitting each patch separately or via a
special large bank- or multi-bank-dump sysex mes-
sage.

• Store an entire bank to RAM, or to all banks in RAM.
This would be a similar large bank- or multi-bank-
dump sysex message. Usually Edisyn tries to write
individual patches rather than implement this mes-
sage.

A patch editor should also be able to respond to data
offered spontaneously by a synthesizer, such as:

• A manual update to a parameter in current working
memory (typically sent as CC, NRPN, or Sysex).
Some synthesizers provide this feature; others do
not, particularly synthesizers with poor interfaces.

• A patch dump from RAM or from current working
memory.

• A dump of an entire bank or multiple banks as a
special sysex message.

7

Finally a patch editor should also be able to pass along
to the synthesizer MIDI data from a controller such as
a MIDI keyboard being played by the musician. This
would allow the musician to play the synthesizer to test
a patch he had created. Data might include:

• Play a note

• Stop playing a note

• Update a single parameter to a new value in current
working memory (usually via CC or NRPN, not
Sysex).

Synthesizers can and do sport or require additional
unusual sysex messages and commands to manipulate
them; but the above are the most common. Note that
many synthesizers only support a subset of these actions.
Table 1 shows the broad and unfortunate diversity of ca-
pabilities of synthesizers with respect to certain common
commands. In some cases we can work around it: for
example in lieu of updating all parameters, we might
update each parameter individually. But in other cases
there is no way around it and the patch editor simply
cannot provide that capability. For example, many E-Mu
synthesizers inexplicably cannot respond to requests to
dump a patch from current working memory. The famed
Yamaha DX7 has no ability to load a patch into RAM: it
can only load entire banks of patches into RAM. And so
on. Synthesizers vary greatly here, with some synthe-
sizers capable of a great many actions, while others are
hobbled with terribly limited MIDI capabilities.

6 Case Study: Yamaha DX7

The Yamaha DX7 is one of the most successful synthesiz-
ers in history, and certainly it is the synthesizer which
changed the industry the most. Introduced at a time
when the market was entirely analog synthesizers, the
DX7’s digital Frequency Modulation (FM) synthesis ap-
proach was so successful it caused the analog market
to entirely collapse. If you’ve heard any music from
the 1980s or early 1990s, you’ve heard the DX7: it’s the
sound of the 80s. The DX7 spawned a large number
of FM synthesizers and its approach is still very pop-
ular, living on in open source replicas such as Dexed.7

The DX7 came in keyboard, desktop, and rackmount
variations. Figure 6 shows a DX7 keyboard.

The DX7 has a single bank of 32 patches, plus an op-
tional cartridge which provides up to two more banks
of 32 patches each. The current bank being used is spec-
ified by pressing buttons on the unit itself. You cannot
upload or download a patch to a bank: you must send
or receive all of them in bulk. However you can upload
a single patch to current working memory. You can also
update individual parameters.

7https://asb2m10.github.io/dexed/

Se
nd

Pa
ra

m
et

er
R

ec
ei

ve
Pa

ra
m

et
er

R
eq

ue
st

Sp
ec

ifi
c

Pa
tc

h
R

eq
ue

st
C

ur
re

nt
Pa

tc
h

Se
nd

to
C

ur
re

nt
Pa

tc
h

W
ri

te
to

Sp
ec

ifi
c

Pa
tc

h
C

ha
ng

e
M

od
e

R
ec

ei
ve

Er
ro

r
or

A
ck

St
an

da
rd

Sy
se

x
Fi

le

Alesis D4/DM5 X* X X X X
Audiothingies Micromonsta X X X* X

Casio CZ Family X X X X X*
DSI Prophet ’08/Mopho/Tetra X X X X X X X
E-Mu Morpheus/UltraProteus X X X X

E-Mu Proteus Family X X X X
E-Mu Proteus 2000 Family X X X X X X X X

E-Mu Planet Phatt/Orbit/Carnaval/Vintage Keys X X X X
JL Cooper MSB Plus/Plus Rev2 X X X X

Kawai K1/K1r/K1m X* X X X X
Kawai K4/K4r X* X X X X X

Kawai K5/K5m X X X X X X
Korg Microsampler X*X*

Korg SG Rack X X X X X X
Korg Volca Series X*

Korg Wavestation SR X X X*X*X X* X
M-Audio Venom X X*X X*X*X*X X*

Novation Drumstation/D Station X*X* X
Novation SL Family X X X*
Oberheim Matrix 6 X*X X X X X

Oberheim Matrix 1000 X X X X X X X
PreenFM2 X X X X X

Red Sound DarkStar/DarkStar XP2 X X X
Roland D-110 X X*X*X*X* X

Roland JV-80/880 X X X X X X*
Roland U-110 X X X X X*

Roland U-20/220 X X X X X X*
Sequential Prophet Rev2 X X X X X X X

Waldorf Microwave II/XT/XTk X X X X*X X X X
Waldorf Blofeld X*X*X X*X X X

Waldorf Kyra X X X*X*X*X* X*
Waldorf Pulse 2 X X X X X X X
Waldorf Rocket X X X*X*

Yamaha DX7 Family X X X*X X
Yamaha 4-Op Family X* X X X X*

Yamaha FB-01 X* X X X X* X X*
Yamaha FS1R X X X X X X

Yamaha TG33/SY22/SY35 X* X X X X

* With significant caveats or restrictions

Table 1: Transfer Capabilities of Some Synthesizers
(Edisyn patch editors as of January 2023)

Below I discuss the general capabilities of the DX7
with regard to working with a patch editor (and some of
its failures).

Updating Individual Parameters in Working Memory
This is done with the sysex string

0xF0 0x43 substatus(0x70)+channel MSB LSB value
0xF7

Let’s go through of these bytes in turn. All sysex
messages start with 0xF0 and are terminated with the
start of some other message, but usually 0xF7. Following
0xF0 is 0x43, which is the manufacturer ID for Yamaha.
Manufacturer IDs are one byte for early manufacturers
and certain special cases, and three bytes for later ones.8

8See https://github.com/eclab/edisyn/blob/master/edisyn/
Manufacturers.txt for a list of manufacturer IDs.

8

Figure 6: Yamaha DX7.
Steve Sims, Public Domain, https://commons.wikimedia.org/w/index.php?curid=12379187

Thus the string 0xF0 0x43 defines a namespace that only
Yamaha synthesizers will respond to.

Yamaha made a design error at this point: it didn’t add
a byte differentiating the DX7 from other synthesizers.
Thus Yamaha synthesizers can’t tell if this message is
meant for a DX7 or for some other Yamaha synth (such
as themselves). Most manufacturers tack on a byte here
to indicate which model this message is meant for.

Next comes Yamaha’s so-called “substatus” and chan-
nel. The “substatus” is Yamaha’s weird term for the type
of the command, such as sending a patch, requesting a
patch, or sending a single parameter. The substatus here
is set to 112 (0x70), otherwise known as binary 01110000.
This sets the top three bits to 1 and indicates a parameter
change. The channel (0...15) is the lower three bits. Thus
the byte is 112 plus the channel.

Yamaha chose to embed the current MIDI channel of
the synthesizer in the sysex message, a common strategy
for early synthesizers. The idea was that you might have
multiple DX7 synthesizers on the same MIDI daisy-chain
and putting the channel here made it clear to which
synthesizer you were sending commands. Most later
manufacturers have instead opted for an ID of some sort,
to be set on the synthesizer itself.

Next come the MSB and LSB of the parameter number.
Yamaha has 155 parameters, as shown in Table 2. The
parameter number is equal to MSB × 128 + LSB.

Finally comes the parameter value. Different parame-
ters have different value ranges, though one oddity of
the DX7 is that its larger range parameters don’t go from
0...127, but rather are restricted to 0...99.

The DX7 does not use CC to change parameters; CC is
reserved for a small number of tasks such as indicating
that the sustain pedal has been depressed. The reason
is simple: CC can handle at most 128 parameters (and
realistically at most 119 or so), but the DX7 has 155 pa-
rameters. When the DX7 came out, NRPN had not yet
been invented. Thus the DX7 resorts to sysex for all

0 operator6rate1
1 operator6rate2
2 operator6rate3
3 operator6rate4
4 operator6level1
5 operator6level2
6 operator6level3
7 operator6level4
8 operator6keyboardlevelscalingbreakpoint
9 operator6keyboardlevelscalingleftdepth

10 operator6keyboardlevelscalingrightdepth
11 operator6keyboardlevelscalingleftcurve
12 operator6keyboardlevelscalingrightcurve
13 operator6keyboardratescaling
14 operator6amplitudemodulationsensitivity
15 operator6keyvelocitysensitivity
16 operator6operatoroutputlevel
17 operator6oscillatormode
18 operator6frequencycoarse
19 operator6frequencyfine
20 operator6frequencydetune
21 operator5rate1
22 operator5rate2
23 operator5rate3
24 operator5rate4
25 operator5level1
26 operator5level2
27 operator5level3
28 operator5level4
29 operator5keyboardlevelscalingbreakpoint
30 operator5keyboardlevelscalingleftdepth
31 operator5keyboardlevelscalingrightdepth
32 operator5keyboardlevelscalingleftcurve
33 operator5keyboardlevelscalingrightcurve
34 operator5keyboardratescaling
35 operator5amplitudemodulationsensitivity
36 operator5keyvelocitysensitivity
37 operator5operatoroutputlevel
38 operator5oscillatormode
39 operator5frequencycoarse
40 operator5frequencyfine
41 operator5frequencydetune
42 operator4rate1
43 operator4rate2
44 operator4rate3
45 operator4rate4
46 operator4level1
47 operator4level2
48 operator4level3
49 operator4level4
50 operator4keyboardlevelscalingbreakpoint
51 operator4keyboardlevelscalingleftdepth
52 operator4keyboardlevelscalingrightdepth
53 operator4keyboardlevelscalingleftcurve
54 operator4keyboardlevelscalingrightcurve
55 operator4keyboardratescaling
56 operator4amplitudemodulationsensitivity
57 operator4keyvelocitysensitivity
58 operator4operatoroutputlevel
59 operator4oscillatormode
60 operator4frequencycoarse
61 operator4frequencyfine
62 operator4frequencydetune
63 operator3rate1
64 operator3rate2
65 operator3rate3
66 operator3rate4
67 operator3level1
68 operator3level2
69 operator3level3
70 operator3level4
71 operator3keyboardlevelscalingbreakpoint
72 operator3keyboardlevelscalingleftdepth
73 operator3keyboardlevelscalingrightdepth
74 operator3keyboardlevelscalingleftcurve
75 operator3keyboardlevelscalingrightcurve
76 operator3keyboardratescaling

77 operator3amplitudemodulationsensitivity
78 operator3keyvelocitysensitivity
79 operator3operatoroutputlevel
80 operator3oscillatormode
81 operator3frequencycoarse
82 operator3frequencyfine
83 operator3frequencydetune
84 operator2rate1
85 operator2rate2
86 operator2rate3
87 operator2rate4
88 operator2level1
89 operator2level2
90 operator2level3
91 operator2level4
92 operator2keyboardlevelscalingbreakpoint
93 operator2keyboardlevelscalingleftdepth
94 operator2keyboardlevelscalingrightdepth
95 operator2keyboardlevelscalingleftcurve
96 operator2keyboardlevelscalingrightcurve
97 operator2keyboardratescaling
98 operator2amplitudemodulationsensitivity
99 operator2keyvelocitysensitivity

100 operator2operatoroutputlevel
101 operator2oscillatormode
102 operator2frequencycoarse
103 operator2frequencyfine
104 operator2frequencydetune
105 operator1rate1
106 operator1rate2
107 operator1rate3
108 operator1rate4
109 operator1level1
110 operator1level2
111 operator1level3
112 operator1level4
113 operator1keyboardlevelscalingbreakpoint
114 operator1keyboardlevelscalingleftdepth
115 operator1keyboardlevelscalingrightdepth
116 operator1keyboardlevelscalingleftcurve
117 operator1keyboardlevelscalingrightcurve
118 operator1keyboardratescaling
119 operator1amplitudemodulationsensitivity
120 operator1keyvelocitysensitivity
121 operator1operatoroutputlevel
122 operator1oscillatormode
123 operator1frequencycoarse
124 operator1frequencyfine
125 operator1frequencydetune
126 pitchegrate1
127 pitchegrate2
128 pitchegrate3
129 pitchegrate4
130 pitcheglevel1
131 pitcheglevel2
132 pitcheglevel3
133 pitcheglevel4
134 algorithm
135 feedback
136 oscillatorkeysync
137 lfospeed
138 lfodelay
139 lfopitchmodulationdepth
140 lfoamplitudemodulationdepth
141 lfokeysync
142 lfowave
143 lfopitchmodulationsensitivity
144 transpose
145 name1
146 name2
147 name3
148 name4
149 name5
150 name6
151 name7
152 name8
153 name9
154 name10

Table 2: Yamaha DX7 Parameters (using Edisyn names).
Note that many parameters oddly are in reverse order
from what one would expect.

of its parameter changes. This is very common among
synthesizers of the period, especially Japanese ones.

Changing Patches This is straightforward on the DX7:
you just send a Program Change (PC) message with a
value from 0...31 for the internal bank, and 32...63 for the
first bank in the cartridge.

Requesting the Current Working Patch The sysex
message is:

0xF0 0x43 substatus(0x20)+channel 0x00 0xF7

9

Here the substatus is 32 (0x20), and the following byte
is 0x00, indicating a patch request.

Sending/Receiving the Current Working Patch The
DX7 will send you the current patch with this message,
and you can also update the current patch by sending it
the same:

0xF0 0x43 substatus(0x0)+channel 0x00 0x01 0x1B

data... checksum 0xF7

Here the substatus is 0, indicating a patch dump. Next
comes 0x00, indicating a single patch is being sent (and
to current memory). Next comes the byte count in MSB
and LSB: all DX7 patches are 155 bytes long, so the MSB
is 1 and the LSB is 27 (0x1B).

Following this are all 155 parameters from Table 2, in
order, one byte each. This is very simple and elegant:
many other early synthesizers try to pack the parameters
into fewer bytes, which makes things very difficult.

Finally we come to the checksum. Early MIDI transmis-
sion was unreliable, and so many synthesizers computed
a checksum at the end of a long sysex string to verify
that it had been sent correctly. In the case of the Yamaha
DX7, the checksum is computed as follows. First, add
up all the bytes in the data (as unsigned integers). Then
Mod this with 128 (this just gets the lower 7 bits). Finally
subtract the result from 128.

After updating the patch, you must wait for 50ms to let
the synthesizer complete its task, or you will overwhelm
the MIDI buffer.

Requesting a Patch from RAM This cannot be done
on the DX7 at all. What you can do instead is change the
patch to the given patch via a PC, thus loading it into
current working memory, and then request the current
working patch.

Writing a Patch to RAM This cannot be done on the
DX7 at all. You can only write an entire bank of patches
at a time (see below).

Requesting a Bank Patch This cannot be done via
MIDI on the DX7 but it can be done on later incarna-
tions, such as the Yamaha TX216/816. The message is

0xF0 0x43 substatus(0x20)+channel 0x09 0xF7

Here the substatus is 32 (0x20), and the following byte
is 0x09, indicating a bank request.

If you’re on a DX7 where this isn’t possible, you can
still manually send the patch editor a patch from the
DX’s front panel.

Writing/Receiving a Bank Patch The DX7 will send
you the current patch with this message, and you can
also update the current patch by sending it the same:

0xF0 0x43 substatus(0x0)+channel 0x09 0x20 0x00

data... checksum 0xF7

Here, the substatus is 0, and the following byte is 0x09,
indicating a bank dump. The bank data is 4096 bytes
in length (hence the MSB and LSB are 0x20 and 0x00).
Unlike a patch dump, the bank dump is tightly packed
into bytes to save space, which is frustrating. Google
for “DX7 VMEM” to read the format. The checksum is
computed on the data in the same way as before.

Most modern synthesizers have abandoned the strat-
egy of custom packed messages for an entire bank of
patches, if only because banks have grown in size. In-
stead modern synthesizers would respond to some kind
of bank request by sending each patch separately. This
means that if you’re going to build a librarian, you’ll
need to be able to handle both bank-dump messages and
streams of individual-patch messages, depending on the
synthesizer in question.

Other Features Later versions of the DX7 (such as the
DX7-II) added additional features. However the origi-
nal DX7 format didn’t provide space for these features,
so Yamaha included them as separate messages. This
meant that if you wanted the full set of parameters for a
given patch, you’d need to do send multiple messages.
In later Yamaha FM synthesizers, such its 4-Operator se-
ries,Yamaha followed this strategy extensively, sending
up to four messages for a single patch.

This is very frustrating to deal with in a patch editor
designed to handle all synthesizers in a family, because
some synthesizers would only send a single message, oth-
ers would send two messages, others three, and others
four: and some machines would send one set of four
messages, while others sent a different set. Thankfully
Yamaha would always send the “classic” message last
so we would know when a collection of messages had
ended for a given patch.

7 Case Study: the Dave Smith
Instruments Prophet ’08

Dave Smith founded a company called Sequential Cir-
cuits in 1974, and released the first synthesizer which
used a CPU and RAM, the Prophet 5, in 1978. He then
went on to invent MIDI in order to better take advantage
of CPUs on synthesizers. Sequential Circuits failed in
1987 and the trademark was acquired by Yamaha, while
Smith and others on his team went on to develop synthe-
sizers for Korg. In 2002 Smith decided to start another
company, this time called Dave Smith Instruments. In
2008 the company released the Prophet ’08 synthesizer.

10

The Prophet ’08 came in keyboard and desktop versions.
Figure 2 (page 2) shows a desktop version.

In 2015, the heads of Roland and Yamaha jointly ar-
ranged for Yamaha to return the Sequential Circuits
trademark to Smith as a gesture of goodwill. Dave Smith
Instruments was then promptly renamed to Sequential.
As of the writing of this document (January 2023), Dave
Smith has recently passed away.

The Prophet ’08 is a modern synthesizer, part of the
analog renaissance. It is an analog synthesizer with eight
voices and two banks of 128 patches each. The Prophet
’08’s interface with patch editors is elegant, clean, and
straightforward, as is befitting a machine designed by
the inventor of MIDI.

Updating Individual Parameters in Working Memory
This is done very simply with the NRPN. Simply send
an NRPN message with the given parameter number
as shown in Table 3. Most Prophet ’08 parameters have
ranges within 0–128, but a few are larger. As a rule, the
Prophet ’08 uses the “fine” NRPN scheme: the parameter
value is just MSB × 128 + LSB.

Changing Patches This is done in the obvious way:
by first setting the bank (via a Bank Change using CC
32), and then doing a Program Change (PC). There is
a bug on the Prophet ’08: you cannot change the patch
immediately after writing a patch or the patch will be
corrupted.

Requesting the Current Working Patch The sysex
message is:

0xF0 0x01 0x23 0x06 0xF7

Being both founded by Dave Smith, Sequential and
Dave Smith Instruments both use a manufacturer’s ID
of 0x01. 0x23 represents the Prophet ’08 synthesizer to
distinguish it from commands for other DSI/Sequential
synths. 0x06 is the command to request the current
working patch. Unlike the DX7, the Prophet ’08 sysex
has no way to distinguish between multiple Prophet ’08s:
it just assumes there’s only one.

Sending/Receiving the Current Working Patch This
is pretty straightforward, with some caveats:

0xF0 0x01 0x23 0x03 data... 0xF7

As usual, 0x01 is Sequential / Dave Smith Instruments
and 0x23 represents the Prophet ’08. 0x03 indicates a
dump of a patch to/from current working memory.

The data... represents 384 parameters (all but the last
16, which are empty anyway, see Figure 3). Some of
these parameters have ranges 0...256 and so cannot fit
one to a sysex “byte”. They have to be encoded into
7-bit bytes somehow. To do this, the Prophet ’08 treats

0 layer1dco1frequency
1 layer1dco1finetune
2 layer1dco1shape
3 layer1dco1glide
4 layer1dco1key
5 layer1dco2frequency
6 layer1dco2finetune
7 layer1dco2shape
8 layer1dco2glide
9 layer1dco2key

10 layer1sync
11 layer1glidemode
12 layer1slop
13 layer1mix
14 layer1noise
15 layer1vcffrequency
16 layer1vcfresonance
17 layer1vcfkeyboardamount
18 layer1vcfaudiomodulation
19 layer1vcfpoles
20 layer1env1amount
21 layer1env1velocityamount
22 layer1env1delay
23 layer1env1attack
24 layer1env1decay
25 layer1env1sustain
26 layer1env1release
27 layer1vcainitiallevel
28 layer1vcaoutputspread
29 layer1vcavoicevolume
30 layer1env2amount
31 layer1env2velocityamount
32 layer1env2delay
33 layer1env2attack
34 layer1env2decay
35 layer1env2sustain
36 layer1env2release
37 layer1lfo1frequency
38 layer1lfo1shape
39 layer1lfo1amount
40 layer1lfo1moddestination
41 layer1lfo1keysync
42 layer1lfo2frequency
43 layer1lfo2shape
44 layer1lfo2amount
45 layer1lfo2moddestination
46 layer1lfo2keysync
47 layer1lfo3frequency
48 layer1lfo3shape
49 layer1lfo3amount
50 layer1lfo3moddestination
51 layer1lfo3keysync
52 layer1lfo4frequency
53 layer1lfo4shape
54 layer1lfo4amount
55 layer1lfo4moddestination
56 layer1lfo4keysync
57 layer1env3moddestination
58 layer1env3amount
59 layer1env3velocityamount
60 layer1env3delay
61 layer1env3attack
62 layer1env3decay
63 layer1env3sustain
64 layer1env3release
65 layer1mod1source
66 layer1mod1amount

67 layer1mod1destination
68 layer1mod2source
69 layer1mod2amount
70 layer1mod2destination
71 layer1mod3source
72 layer1mod3amount
73 layer1mod3destination
74 layer1mod4source
75 layer1mod4amount
76 layer1mod4destination
77 layer1track1destination
78 layer1track2destination
79 layer1track3destination
80 layer1track4destination
81 layer1wheelamount
82 layer1wheeldestination
83 layer1pressureamount
84 layer1pressuredestination
85 layer1breathamount
86 layer1breathdestination
87 layer1velocityamount
88 layer1velocitydestination
89 layer1footamount
90 layer1footdestination
91 layer1tempo
92 layer1clockdivide
93 layer1pitchbendrange
94 layer1sequencertrigger
95 layer1unisonmode
96 layer1unisonkeymode
97 layer1arpeggiatormode
98 layer1env3repeat
99 layer1unison

100 layer1arpeggiator
101 layer1sequencer
102 [empty]
103 [empty]
104 [empty]
105 layer1tetraassignableparameter1
106 layer1tetraassignableparameter2
107 layer1tetraassignableparameter3
108 layer1tetraassignableparameter4
109 [empty]
110 layer1tetrafeedbackgain
111 layer1tetrapushitnote
112 layer1tetrapushitvelocity
113 layer1tetrapushitmode
114 layer1tetrasuboscillator1level
115 layer1tetrasuboscillator2level
116 layer1tetrafeedbackvolume
117 layer1tetraeditorbyte
118 splitpoint
119 keyboardmode
120 layer1track1note1
121 layer1track1note2
122 layer1track1note3
123 layer1track1note4
124 layer1track1note5
125 layer1track1note6
126 layer1track1note7
127 layer1track1note8
128 layer1track1note9
129 layer1track1note10
130 layer1track1note11
131 layer1track1note12
132 layer1track1note13
133 layer1track1note14

134 layer1track1note15
135 layer1track1note16
136 layer1track2note1
137 layer1track2note2
138 layer1track2note3
139 layer1track2note4
140 layer1track2note5
141 layer1track2note6
142 layer1track2note7
143 layer1track2note8
144 layer1track2note9
145 layer1track2note10
146 layer1track2note11
147 layer1track2note12
148 layer1track2note13
149 layer1track2note14
150 layer1track2note15
151 layer1track2note16
152 layer1track3note1
153 layer1track3note2
154 layer1track3note3
155 layer1track3note4
156 layer1track3note5
157 layer1track3note6
158 layer1track3note7
159 layer1track3note8
160 layer1track3note9
161 layer1track3note10
162 layer1track3note11
163 layer1track3note12
164 layer1track3note13
165 layer1track3note14
166 layer1track3note15
167 layer1track3note16
168 layer1track4note1
169 layer1track4note2
170 layer1track4note3
171 layer1track4note4
172 layer1track4note5
173 layer1track4note6
174 layer1track4note7
175 layer1track4note8
176 layer1track4note9
177 layer1track4note10
178 layer1track4note11
179 layer1track4note12
180 layer1track4note13
181 layer1track4note14
182 layer1track4note15
183 layer1track4note16
184 [empty]
185 [empty]
186 [empty]
187 [empty]
188 [empty]
189 [empty]
190 [empty]
191 [empty]
192 [empty]
193 [empty]
194 [empty]
195 [empty]
196 [empty]
197 [empty]
198 [empty]
199 [empty]

Table 3: DSI Prophet ’08 Parameters, Layer 1 only (using
Edisyn names). Layer 2 parameters are identical and are
numbers 200–399.

each parameter as an 8-bit byte. It goes through the
parameters seven at a time, packing them into eight 7-bit
sysex bytes as follows. For each of the seven bytes in
the 8-bit group (or fewer if that’s all that’s left), it forms
seven 7-bit sysex bytes by removing the high bit from the
original bytes. It then prepends an additional 7-bit sysex
byte consisting of the high bits that had been removed,
forming eight sysex bytes in all. This is then added to
the data..., and this is done a total of 55 times until all
the parameters have been consumed. All told the data...
holds 439 bytes.

Korg (another manufacturer) uses a similar scheme, as
does Yamaha for some machines. Other manufacturers,
such as Oberheim, use a different approach: nybblization.
Here each 8-bit byte is broken into two 4-bit nybbles,
and each of them is sent as its own sysex byte.

There is no checksum.

11

Requesting a Patch from RAM This is simply:

0xF0 0x01 0x23 0x05 bank number 0xF7

0x05 indicates a request for a patch from RAM, with
the provided bank and number. That’s it.

Writing/Receiving a Patch to/from RAM Unlike the
DX7, this can be easily done:

0xF0 0x01 0x23 0x02 bank number data... 0xF7

Here 0x02 indicates dumping a patch to RAM, with
the given bank and number. The data... is encoded in
the same way as in sending the current working patch
above. Again, there is no checksum.

Requesting a Bank Unlike the DX7, the Prophet ’08
does not have separate whole-bank sysex messages.
Banks are requested simply by requesting each individ-
ual patch in turn.

Writing/Receiving a Bank Patch Unlike the DX7, the
Prophet ’08 does not have separate whole-bank sysex
messages: to write a bank, you write each patch individ-
ually.

Other Features Like many synthesizers, the Prophet
’08 can also update and dump global parameters in a
manner similar to per-patch dumps.

Other DSI Synthesizers There are several other syn-
thesizers which are derived from the Prophet ’08 and
which more or less share the same parameters and sy-
sex. These are the Mopho (0x25), Tetra (0x26), Mopho
Keyboard and Mopho SE (0x27), and Mopho X4 (0x29).
Whereas the Prophet ’08 has eight voices, the Tetra has
only four, and the Mopho devices have only one. The
Tetra is four-voice multitimbral, however: each of its
four voices can be assigned a different patch. Multitim-
bral patches (“combos” in Tetra-speak) have their own
separate sysex. We’ll see an example of a multitimbral
synthesizer in the next Section.

These synthesizers overlap so closely with one another
and with the Prophet ’08 that with care it is possible to
create a unified patch editor for all of them: but they
differ enough to require different-length sysex messages,
different ranges for some parameters, and (for some un-
known reason) a different ordering of NRPN messages
for individual parameters. Particularly problematically,
the Mopho and Tetra devices have a few parameters
whose values are not contiguous — there’s a hole in the
middle of them which the user cannot set.9 This can
pose a challenge to an editor’s GUI widgets.

9And in fact if you set them to values in this hole, it can crash the
synthesizer.

Figure 7: Waldorf Blofeld.
Image by “deepsonic”, CC BY-SA 2.0, https://flickr.com/photos/73143485@N02/50013762981

Sequential went on to make a successor to the Prophet
’08 called the Prophet Rev2 with many more features.
Indeed the two are similar enough in internal structure
that it is possible to convert Prophet ’08 patches to the
Prophet Rev2 and (to the degree possible) the other way.
Unfortunately, while the Prophet ’08 has meticulously
described sysex and MIDI control, the Prophet Rev2’s
sysex is completely undocumented and has certain unex-
pected bugs. The sysex spec had to be entirely reverse
engineered from scratch.10

8 Case Study: the Waldorf Blofeld

Waldorf is a German synthesizer company founded
in 1988, and is strongly associated with so-called
wavetable synthesis. The company was restructuring from
bankruptcy in 2007 when it produced its most successful
synthesizer, the Blofeld.11 The Blofeld is a combination
wavetable and virtual analog synthesizer, and is famous
for having many capabilities packed into a small pack-
age. The Blofeld came in keyboard and desktop versions:
the module version is shown in Figure 7.

The Blofeld is multitimbral, and has eight banks of 128
single-mode patches, plus one bank of 128 multimode
patches. It can also play a large number of samples
loaded by the user as part of single patches. Like many
multitimbral synthesizers, the Blofeld has two modes:
single and multi. In single mode the Blofeld plays a
single patch and so has a single current working memory
area. In multimode, the Blofeld plays a multimode patch
referring to up to 16 single patches. Each of the single
patches has its own current working memory area and
can have its parameters updated independently.

Because the Blofeld has both single-mode and multi-
mode patches, this means that there are two different
sets of sysex messages for everything, which requires
two separate editors in Edisyn, one for each patch type.

Though early Waldorf was famous for its meticulously
documented and carefully debugged sysex, the Blofeld’s
sysex is a mixed bag. Its single-mode sysex is well

10For the reverse engineered Rev2 sysex spec, see the very end of
https://github.com/eclab/edisyn/blob/master/edisyn/synth/
sequentialprophetrev2/SequentialProphetRev2.java

11Yes, it’s named after the Bond villian.

12

amplifiermodamount
amplifiermodsource
amplifiervelocity
amplifiervolume
arp01accent
arp01glide
arp01length
arp01step
arp01timing
arp02accent
arp02glide
arp02length
arp02step
arp02timing
arp03accent
arp03glide
arp03length
arp03step
arp03timing
arp04accent
arp04glide
arp04length
arp04step
arp04timing
arp05accent
arp05glide
arp05length
arp05step
arp05timing
arp06accent
arp06glide
arp06length
arp06step
arp06timing
arp07accent
arp07glide
arp07length
arp07step
arp07timing
arp08accent

arp08glide
arp08length
arp08step
arp08timing
arp09accent
arp09glide
arp09length
arp09step
arp09timing
arp10accent
arp10glide
arp10length
arp10step
arp10timing
arp11accent
arp11glide
arp11length
arp11step
arp11timing
arp12accent
arp12glide
arp12length
arp12step
arp12timing
arp13accent
arp13glide
arp13length
arp13step
arp13timing
arp14accent
arp14glide
arp14length
arp14step
arp14timing
arp15accent
arp15glide
arp15length
arp15step
arp15timing
arp16accent

arp16glide
arp16length
arp16step
arp16timing
arpeggiatorclock
arpeggiatordirection
arpeggiatorlength
arpeggiatormode
arpeggiatoroctave
arpeggiatorpattern
arpeggiatorpatternlength
arpeggiatorpatternreset
arpeggiatorsortorder
arpeggiatortempo
arpeggiatortimingfactor
arpeggiatorvelocitymode
category
effect1mix
effect1parameter0
effect1parameter1
effect1parameter10
effect1parameter11
effect1parameter12
effect1parameter13
effect1parameter2
effect1parameter3
effect1parameter4
effect1parameter5
effect1parameter6
effect1parameter7
effect1parameter8
effect1parameter9
effect1type
effect2mix
effect2parameter0
effect2parameter1
effect2parameter10
effect2parameter11
effect2parameter12
effect2parameter13

effect2parameter2
effect2parameter3
effect2parameter4
effect2parameter5
effect2parameter6
effect2parameter7
effect2parameter8
effect2parameter9
effect2type
envelope1attack
envelope1attacklevel
envelope1decay
envelope1decay2
envelope1mode
envelope1release
envelope1sustain
envelope1sustain2
envelope1trigger
envelope2attack
envelope2attacklevel
envelope2decay
envelope2decay2
envelope2mode
envelope2release
envelope2sustain
envelope2sustain2
envelope2trigger
envelope3attack
envelope3attacklevel
envelope3decay
envelope3decay2
envelope3mode
envelope3release
envelope3sustain
envelope3sustain2
envelope3trigger
envelope4attack
envelope4attacklevel
envelope4decay
envelope4decay2

envelope4mode
envelope4release
envelope4sustain
envelope4sustain2
envelope4trigger
filter1cutoff
filter1drive
filter1drivecurve
filter1envamount
filter1envvelocity
filter1fmamount
filter1fmsource
filter1keytrack
filter1modamount
filter1modsource
filter1pan
filter1panamount
filter1pansource
filter1resonance
filter1type
filter2cutoff
filter2drive
filter2drivecurve
filter2envamount
filter2envvelocity
filter2fmamount
filter2fmsource
filter2keytrack
filter2modamount
filter2modsource
filter2pan
filter2panamount
filter2pansource
filter2resonance
filter2type
filterrouting
lfo1clocked
lfo1delay
lfo1fade
lfo1keytrack

lfo1shape
lfo1speed
lfo1startphase
lfo1sync
lfo2clocked
lfo2delay
lfo2fade
lfo2keytrack
lfo2shape
lfo2speed
lfo2startphase
lfo2sync
lfo3clocked
lfo3delay
lfo3fade
lfo3keytrack
lfo3shape
lfo3speed
lfo3startphase
lfo3sync
modifier1constant
modifier1operation
modifier1sourcea
modifier1sourceb
modifier2constant
modifier2operation
modifier2sourcea
modifier2sourceb
modifier3constant
modifier3operation
modifier3sourcea
modifier3sourceb
modifier4constant
modifier4operation
modifier4sourcea
modifier4sourceb
modulation10amount
modulation10destination
modulation10source
modulation11amount

modulation11destination
modulation11source
modulation12amount
modulation12destination
modulation12source
modulation13amount
modulation13destination
modulation13source
modulation14amount
modulation14destination
modulation14source
modulation15amount
modulation15destination
modulation15source
modulation16amount
modulation16destination
modulation16source
modulation1amount
modulation1destination
modulation1source
modulation2amount
modulation2destination
modulation2source
modulation3amount
modulation3destination
modulation3source
modulation4amount
modulation4destination
modulation4source
modulation5amount
modulation5destination
modulation5source
modulation6amount
modulation6destination
modulation6source
modulation7amount
modulation7destination
modulation7source
modulation8amount
modulation8destination

modulation8source
modulation9amount
modulation9destination
modulation9source
name0
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
name11
name12
name13
name14
name15
name16
noisebalance
noisecolour
noiselevel
osc1balance
osc1bendrange
osc1brilliance
osc1detune
osc1fmamount
osc1fmsource
osc1keytrack
osc1level
osc1limitwt
osc1octave
osc1pulsewidth
osc1pwmamount
osc1pwmsource
osc1samplebank
osc1semitone
osc1shape

osc2balance
osc2bendrange
osc2brilliance
osc2detune
osc2fmamount
osc2fmsource
osc2keytrack
osc2level
osc2limitwt
osc2octave
osc2pulsewidth
osc2pwmamount
osc2pwmsource
osc2samplebank
osc2semitone
osc2shape
osc2synctoosc3
osc3balance
osc3bendrange
osc3brilliance
osc3detune
osc3fmamount
osc3fmsource
osc3keytrack
osc3level
osc3octave
osc3pulsewidth
osc3pwmamount
osc3pwmsource
osc3semitone
osc3shape
oscallocation
oscglide
oscglidemode
oscgliderate
oscpitchamount
oscpitchsource
ringmodbalance
ringmodlevel
unisono
unisonodetune

Table 4: Waldorf Blofeld single mode patch parameters in alphabetical order (using Edisyn names).

documented by the company, but that’s it. The mul-
timode12 and wavetable uploading13 sysex is undocu-
mented, though both have been reverse engineered and
are now reasonably well understood. Its sample up-
loading sysex is still undocumented and its format is
unknown. I hope to convince the company to release
that information.

8.1 Single-Mode Patches

When in single mode, the Blofeld plays only a single
patch at a time, and thus only has a single current work-
ing memory buffer.

Updating Individual Parameters in Working Memory
Some parameters can be updated via CC. All parame-
ters can be updated via sysex. Whether parameters are
updated via CC, sysex, or both, is specified by the user
on the front panel. Updates via sysex look like this:

0xF0 0x3E 0x13 synth-id 0x20 0x00 MSB LSB data
0xF7

0x3E of course indicates Waldorf. 0x13 declares that
this message is for the Waldorf Blofeld. The synth-id is
a value 0...127 which you manually set on your Blofeld
and which distinguishes it from other Blofelds you might

12For the reverse engineered Blofeld Multimode sysex spec, see
https://github.com/eclab/edisyn/blob/master/edisyn/synth/
waldorfblofeld/WaldorfBlofeldMulti.java

13For the reverse engineered Blofeld Wavetable sysex spec, see
https://github.com/eclab/edisyn/blob/master/edisyn/synth/
waldorfblofeld/WaldorfBlofeldWavetable.java

own.14 If you set the synth-id to 127, all Blofelds listening
will respond to your message. The synth-id strategy
has been adopted by a number of modern synthesizers,
displacing the earlier embedded-channel approach that
the DX7 took.

0x20 indicates that this is a parameter update mes-
sage, and 0x0 indicates that the parameter to be updated
is in current working memory (there are other options
in multimode). The parameter being updated is one
of 307 parameters spread among 387 values (the others
being unused). It’s not worthwhile showing them here.
However note that some parameters are actually mul-
tiple parameters encoded together, such as “oscillator
allocation” and “unison”; or “arp01step”, “arp01glide”,
and “arp01accent”. This means that when you update a
parameter of this kind, in your patch editor, you must
combine it with several other parameters and send a
single message with all of them glommed together. That
is not pretty.

Changing Patches This is done by first setting the
bank (via a Bank Change using CC 32 or 0, it doesn’t
matter which), and then doing a Program Change. You
must pause for 200ms after a patch change or the Blofeld
will get confused.

14In the manual for the Waldorf Blofeld synthesizer, it says that
if you have purchased 127 Blofelds and so have run out of IDs to
distinguish them, to contact Waldorf and the head of the company will
invite you for a hamburger dinner.

13

arptempo
inst1bank
inst1bend
inst1channel
inst1detune
inst1edits
inst1hikey
inst1hivel
inst1local
inst1lowkey
inst1lowvel
inst1midi
inst1modwheel
inst1number
inst1panning
inst1pressure
inst1progchange
inst1status
inst1sustain
inst1transpose
inst1usb
inst1volume
inst2bank
inst2bend
inst2channel
inst2detune
inst2edits
inst2hikey
inst2hivel
inst2local

inst2lowkey
inst2lowvel
inst2midi
inst2modwheel
inst2number
inst2panning
inst2pressure
inst2progchange
inst2status
inst2sustain
inst2transpose
inst2usb
inst2volume
inst3bank
inst3bend
inst3channel
inst3detune
inst3edits
inst3hikey
inst3hivel
inst3local
inst3lowkey
inst3lowvel
inst3midi
inst3modwheel
inst3number
inst3panning
inst3pressure
inst3progchange
inst3status

inst3sustain
inst3transpose
inst3usb
inst3volume
inst4bank
inst4bend
inst4channel
inst4detune
inst4edits
inst4hikey
inst4hivel
inst4local
inst4lowkey
inst4lowvel
inst4midi
inst4modwheel
inst4number
inst4panning
inst4pressure
inst4progchange
inst4status
inst4sustain
inst4transpose
inst4usb
inst4volume
inst5bank
inst5bend
inst5channel
inst5detune
inst5edits

inst5hikey
inst5hivel
inst5local
inst5lowkey
inst5lowvel
inst5midi
inst5modwheel
inst5number
inst5panning
inst5pressure
inst5progchange
inst5status
inst5sustain
inst5transpose
inst5usb
inst5volume
inst6bank
inst6bend
inst6channel
inst6detune
inst6edits
inst6hikey
inst6hivel
inst6local
inst6lowkey
inst6lowvel
inst6midi
inst6modwheel
inst6number
inst6panning

inst6pressure
inst6progchange
inst6status
inst6sustain
inst6transpose
inst6usb
inst6volume
inst7bank
inst7bend
inst7channel
inst7detune
inst7edits
inst7hikey
inst7hivel
inst7local
inst7lowkey
inst7lowvel
inst7midi
inst7modwheel
inst7number
inst7panning
inst7pressure
inst7progchange
inst7status
inst7sustain
inst7transpose
inst7usb
inst7volume
inst8bank
inst8bend

inst8channel
inst8detune
inst8edits
inst8hikey
inst8hivel
inst8local
inst8lowkey
inst8lowvel
inst8midi
inst8modwheel
inst8number
inst8panning
inst8pressure
inst8progchange
inst8status
inst8sustain
inst8transpose
inst8usb
inst8volume
inst9bank
inst9bend
inst9channel
inst9detune
inst9edits
inst9hikey
inst9hivel
inst9local
inst9lowkey
inst9lowvel
inst9midi

inst9modwheel
inst9number
inst9panning
inst9pressure
inst9progchange
inst9status
inst9sustain
inst9transpose
inst9usb
inst9volume
inst10bank
inst10bend
inst10channel
inst10detune
inst10edits
inst10hikey
inst10hivel
inst10local
inst10lowkey
inst10lowvel
inst10midi
inst10modwheel
inst10number
inst10panning
inst10pressure
inst10progchange
inst10status
inst10sustain
inst10transpose
inst10usb

inst10volume
inst11bank
inst11bend
inst11channel
inst11detune
inst11edits
inst11hikey
inst11hivel
inst11local
inst11lowkey
inst11lowvel
inst11midi
inst11modwheel
inst11number
inst11panning
inst11pressure
inst11progchange
inst11status
inst11sustain
inst11transpose
inst11usb
inst11volume
inst12bank
inst12bend
inst12channel
inst12detune
inst12edits
inst12hikey
inst12hivel
inst12local

inst12lowkey
inst12lowvel
inst12midi
inst12modwheel
inst12number
inst12panning
inst12pressure
inst12progchange
inst12status
inst12sustain
inst12transpose
inst12usb
inst12volume
inst13bank
inst13bend
inst13channel
inst13detune
inst13edits
inst13hikey
inst13hivel
inst13local
inst13lowkey
inst13lowvel
inst13midi
inst13modwheel
inst13number
inst13panning
inst13pressure
inst13progchange
inst13status

inst13sustain
inst13transpose
inst13usb
inst13volume
inst14bank
inst14bend
inst14channel
inst14detune
inst14edits
inst14hikey
inst14hivel
inst14local
inst14lowkey
inst14lowvel
inst14midi
inst14modwheel
inst14number
inst14panning
inst14pressure
inst14progchange
inst14status
inst14sustain
inst14transpose
inst14usb
inst14volume
inst15bank
inst15bend
inst15channel
inst15detune
inst15edits

inst15hikey
inst15hivel
inst15local
inst15lowkey
inst15lowvel
inst15midi
inst15modwheel
inst15number
inst15panning
inst15pressure
inst15progchange
inst15status
inst15sustain
inst15transpose
inst15usb
inst15volume
inst16bank
inst16bend
inst16channel
inst16detune
inst16edits
inst16hikey
inst16hivel
inst16local
inst16lowkey
inst16lowvel
inst16midi
inst16modwheel
inst16number
inst16panning

inst16pressure
inst16progchange
inst16status
inst16sustain
inst16transpose
inst16usb
inst16volume
name0
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
name11
name12
name13
name14
name15
name16
volume

Table 5: Waldorf Blofeld multimode patch parameters in alphabetical order (using Edisyn names).

Requesting the Current Working Patch The sysex
message is:

0xF0 0x3E 0x13 synth-id 0x00 0x7F 0x00 0x00 0xF7

0x3E 0x13 as usual indicate Waldorf and the Blofeld,
and the synth-id is self-explanatory. 0x00 indicates a
request for a patch, and 0x7F 0x00 indicates that it is
from the current working memory in singe-mode. The
final 0x00 is notionally a checksum but in fact is ignored.

Requesting a Patch from RAM The sysex message is:

0xF0 0x3E 0x13 synth-id 0x00 bank number 0x00

0xF7

This is just like requesting from current working mem-
ory, except that bank indicates the bank (A–H, thus 0–7)
and number represents the patch number.

Sending/Receiving the Current Working Patch This
is:

0xF0 0x3E 0x13 synth-id 0x10 0x7F 0x00 data...
checksum 0xF7

As usual 0x3E 0x13 and synth-id represent the Wal-
dorf Blofeld with a given ID. 0x10 indicates a patch
dump, and 0x7F 0x00 indicates that it is from the cur-
rent working memory in singe-mode. The data... is 383
bytes representing all of the parameters, one sysex byte
per parameter. However recall that some “parameters”
are amalgams of up to three parameters when updat-
ing individual parameters. It’s the same here: they are
combined into a single byte, which complicates matters.

The checksum is somewhat similar to how the DX7
does it. First we sum all the data... bytes as unsigned
integers. The checksum is simply this value mod 128.

Writing/Receiving a Patch to/from RAM This is al-
most the same as sending the current working patch:

0xF0 0x3E 0x13 synth-id 0x10 bank number data...
checksum 0xF7

The only difference here is that we specify the bank
and number of the patch in RAM. The Blofeld requires
a pause of 75ms after a patch is written to it in order to
process the message.

Requesting All Single-Mode Patches There is a way
to request all the patches from the Blofeld:

0xF0 0x3E 0x13 synth-id 0x00 0x40 0x00 0x00 0xF7

This is just like requesting patches from RAM or the
current working memory, except that 0x40 0x00 instead
asks for all the single-mode patches on the machine. The
Blofeld will respond by dumping every single patch, one
by one, from RAM.

There is no way to request a single bank of patches
nor to write a bank: to do that you must request or write
patches one by one.

8.2 Multimode Patches

Multimode patches are not very complicated. They con-
sist of just a patch name, an overall volume, an overall
tempo (Blofeld single patches have features which can be
synced to beats); and then, for each part, various param-
eters defining that part. This includes the single-mode
patch to be used in the given part, whether various fea-
tures are turned on (like pitch bend or the sustain pedal),
the volume, pan, transpose, an detuning of the part,
the MIDI channel used by the part, and the lowest and
highest velocity and key (in order to split the keyboard
among multiple parts). That’s it.

When a multimode patch is loaded, the single-mode
patches are also loaded into their respective parts. Thus

14

in addition to the current working memory of the multi-
mode patch, there are dedicated current working mem-
ory parts for each of the single-mode patches.

Updating Individual Parameters in Working Memory
It is not possible to update multimode parameters. It is
possible to update parameters of each of the single mode
patches in the parts’ current working memory areas, but
this isn’t particularly useful in practice. To do this, you’d
say:

0xF0 0x3E 0x13 synth-id 0x20 part MSB LSB data
0xF7

These values have the same meaning as updating pa-
rameters in single-mode: except that part refers to the
particular current working memory part (0–15).

Changing Patches There is just one multimode bank
on the Blofeld: but you still need to “change” to that
bank. To do this, do a Bank Change (using CC 32 or
0, it doesn’t matter which) to bank 32 (that’s the magic
number). Then you can do a Program Change to the
given patch number. This is a slow process: you must
pause for a full 800ms after a patch change or the Blofeld
will get confused.

Requesting the Current Working Patch The sysex
message is:

0xF0 0x3E 0x13 synth-id 0x01 0x7F 0x00 0xF7

This is similar to requesting the current working patch
in single mode, except 0x01 requests a patch in multi-
mode. There is no additional 0x00 as there was in single
mode.

Requesting a Patch from RAM The sysex message is:

0xF0 0x3E 0x13 synth-id 0x01 bank number 0xF7

This is similar to requesting the a patch from RAM in
single mode, except 0x01 requests a patch in multimode.
Again, there is no additional 0x00 as there was in single
mode.

Sending/Receiving the Current Working Patch This
is:

0xF0 0x3E 0x13 synth-id 0x11 0x7F 0x00 data...
checksum 0xF7

This is just like sending/receiving the current work-
ing patch in single mode, except that 0x11 indicates a
multimode patch.

Writing/Receiving a Patch to/from RAM This is:

0xF0 0x3E 0x13 synth-id 0x11 bank number data...
checksum 0xF7

Again, this is just like writing/receiving a patch
to/from RAM in single mode, except that 0x11 indi-
cates a multimode patch. The Blofeld requires a pause
of 75ms after a patch is written to it in order to process
the message.

Requesting All Multimode Patches Just as is the case
for single-mode, we can request all the multimode
patches (effectively the whole bank) like this:

0xF0 0x3E 0x13 synth-id 0x01 0x40 0x00 0xF7

Note again the 0x01 indicating multimode, and the
lack of an additional final 0x00.

8.3 Other Features

The Blofeld has sysex for a number of other features.
Notably it can also update and dump global parame-
ters in a manner similar to per-patch dumps. But most
importantly, sysex is used to load sound samples into
the Blofeld as well as wavetables. The sound sample
sysex format has not been deciphered, but the wavetable
sysex has been reverse engineered, and it is just a series
of chunks of sound data corresponding to each wave in
the wavetable. See Footnote 13 (page 13).

9 The Sysex Clown Show

In developing a patch editor, you will be forced to write
a lot of hooks and customization. A lot. This is because
while MIDI is standardized (thankfully), sysex is not,
and even CC and NRPN have lots of wiggle room. As a
result synthesizer manufacturers interpret these proto-
cols in their own broken, mistaken, buggy, user-hostile,
and sometimes utterly insane ways.

You will need to be prepared. Let’s go over some
examples, shall we?

Sending to Current Memory is Job #1, Yet... The
Kawai K5, Oberheim Matrix 6, Kawai K1, Audiothingies
Micromonsta, and Casio CZ-230S have no command to
send a patch to current working memory. Many E-Mu
machines have no way to request or send to current work-
ing memory. This is like building a house and forgetting
to include the front door. It is the single most important
capability a synthesizer must offer a patch editor and
these stupid machines can’t even get that right. Instead,
Edisyn is forced to repurpose one of the RAM patches
as a “scratch patch” — it writes to the patch, then tells
the synth to change to that patch, thus loading it into

15

current memory (but making that patch number use-
less).15 Note that this wastes one of just four available
Casio CZ-230S patch slots. The only alternative would
be to update each parameter separately, a potentially
very slow process, if it’s available on the machines at all
(and this is the only option for the Micromonsta).

The Ashun Sound Machines (ASM) Hydrasynth can
send to current memory but with a very problematic
twist. The Hydrasynth doesn’t store a patch in current
memory: it stores all patches in current memory. There’s
no way to write a patch: you must upload a patch to cur-
rent memory, then write all patches from current memory
to Flash. But there is no command to upload the cur-
rent working patch: you must specify which patch number
in current memory you want to upload to. This is a
problem for the following reason. Let’s say you have
modified patch A4. You abandon it and switch to patch
B7 and start editing it. Then you decide to write patch
B7 to Flash. This will also write the modified A4 patch
as well! Remember that all patches are written. The
only real workaround is, once again, to use a scratch
patch: instead of editing A4, we copy A4 to scratch
patch H127 and edit there instead. Did I mention that
the Hydrasynth can’t request the current patch?

Sysex Reuse The Novation SL series uses the same
exact, very long, sysex dump message for all of the ma-
chines in its family: but they all use the message in com-
pletely different ways depending on the machine. There
is no way to tell for which kind of machine a message
was intended by examining the message itself.

NRPN Only The PreenFM, Futuresonus Parva, ASM
Hydrasynth, and Audiothingies Micromonsta cannot
upload or download patches to current working mem-
ory via a single sysex message: instead you must
S L O W L Y send every single parameter individually
via NRPN. To make matters worse, the Audiothingies
Micromonsta has weird NRPN bugs. Some Micromon-
sta parameters expect the MSB to be sent first, and others
expect the LSB to be sent first, and if you do it wrong,
the synthesizer will register bad values.

Pauses Many early machines had small cheap buffers
that couldn’t hold very much, and so you had to send
long sysex messages piecemeal with significant pauses
in-between the fragments. It’s not entirely clear if this
is legal MIDI. But the Casio CZ series really pushed the

15In development of Edisyn’s E-Mu Proteus 2000 editor, it appeared
for some time that, like earlier E-Mu machines, the Proteus 2000s
couldn’t to send to current memory. This would be particularly bad
because the Proteus 2000 memory is not battery-backed RAM but is
Flash, and sending to current memory via a scratch patch would burn
Flash, eventually ruining the machine. But sending to current memory
is critical. The alternative, updating parameter-by-parameter, is very
slow as the Proteus 2000 has 800 or so parameters. Fortunately, it
turned out that there was a secret way to send to current memory, but
E-Mu had forgotten to document it.

boundary of what was permissible in MIDI. The CZ re-
quires that you send a piece of a sysex message, then wait
for a piece of a sysex message response, then send the
remainder of your message, then wait for the remainder
of the response. Edisyn is written in Java, and Java is
supposed to handle the ability to break sysex messages
into fragments, but in fact it was never implemented be-
cause it’s so obscure. This means that on some platforms
(like Windows) it’s impossible to write a patch editor in
Java for the CZ.

Speed Continuing the pause mess: the M-Audio
Venom can require as much as a 1 second pause be-
tween patch updates. The ASM Hydrasynth may be
even slower. The Yamaha FS1R has a massive buffer, but
if you stuff it full of patch writes, it will sit for many,
many minutes slowly processing them.

Insane Complexity The Korg Wavestation’s sysex is
so complex it requires six long, long documents to ex-
plain it. Likewise the Kawai K5000. For their Proteus
2000 series, E-Mu decided to develop a massive, extraor-
dinarily overwrought, future-proof protocol (requiring
a book), which was still filled with bugs: then the com-
pany was promptly shut down and never made any
future machines.

Baroque Parameters To change individual parameters,
the Korg Wavestation actually requires that their values
be embedded in sysex as text strings. For example, to set
a parameter to -42, its sysex will actually look like 0xF0

... ’-’ ’4’ ’2’ ... 0xF7

Request What? You cannot request a patch from the
Red Sound Darkstar, Yamaha DX7, or many Yamaha 4-
Op synthesizers. The only way to get a patch from them
is to manually send the patch from the synthesizer itself.

Bank Only Some synthesizers, such as certain Yamaha
4-Op synthesizers, the Korg Poly-800 and EX-800, and
the Korg Wavestation (Wavesequences only), cannot
send or receive individual patches: instead you must
send or receive the entire bank at once. Thus in order
to update a patch, you have to request the entire bank,
modify it, and then resend the entire bank.

Bit Packing Some devices have exactly one byte or ex-
actly two bytes per parameter. That’s great! It allows an
editor to write a patch to the synth using just a for-loop
and a list of parameters. But many devices, especially
early ones, cram their parameters together in crazy ways
to squeeze every last bit out of them and save memory.
Indeed, some devices actually break parameters into
pieces in order to stuff them into the crannies of different
bytes. This results in extremely tedious, complex writing
and reading.

16

MIDI Only The Yamaha FB-01, Yamaha TQ5, and
M-Audio Venom cannot be fully programmed by the
user directly. You have to use a patch editor. It doesn’t help
that the some of the Venom’s sysex is undocumented. A
few machines, like the DSI Evolver Rack and the Ober-
heim Matrix 1000, cannot be edited at all from the front
panel and must be edited via a patch editor.

Required Global Editors Edisyn as a rule does not
have editors for global synthesizer-wide parameters (as
opposed to patches), as they are normally set-and-forget
affairs. But there are two exceptions. The Oberheim
Matrix 1000 and M-Audio Venom both require global
parameter editors because, in the absence of a editor,
there is no other way to set these parameters. They cannot
be set from the front panel of the machine itself! And
they’re not unimportant parameters either.

Pretend Hierarchies The Roland D-110 is a standard
multitimbral synthesizer, with single-mode patches and
multimode patches. But it pretends to the user to only
have multimode patches with the single-mode patches “em-
bedded” inside them. You cannot play a single patch:
you have to play 8 patches at a time, and so to hear just
one patch, you must turn the other 7 of them off. This is
extraordinarily inconvenient, but it also means that how
it presents itself to a patch editor over sysex and how
it presents itself to the user is entirely different, making
users extremely confused when they use a patch editor.
Lest you think this was a fluke, a number of Yamaha ma-
chines caught this disease as well, up to and including
the Yamaha FS1R.

Inability to Save State The 1990s saw the introduction
of a variety of so-called General MIDI machines. Many
of these were miniature synthesizers with no keyboard
and few controls, meant to play fixed preset sounds, and
were often designed to attach to a computer sound card
to play music when you were playing a video game. In
many cases you could program the patches on a General
MIDI machine to some degree (so your video game can
customize its music) but critically you often could not
save the patches on the machine. If you power cycled
the synthesizer, it was reset to its default state. These
machines are thus mostly useless for modern purposes.

Custom Manual Modes In order to upload or down-
load patches to the Audiothingies Microsmonsta, you
have to manually reboot the machine into a special up-
load/download mode. Similarly, the Novation Drumsta-
tion and D station must be switched into “receive Sysex”
mode (with an actual switch on the front panel) in order
to accept patches.

Arbitrary Data Transfer A few machines (PreenFM2,
Roli Seaboard series) use sysex not as a standardized
protocol but as a transport mechanism for the raw bits
of their internal data structure, including floats and who
knows what else for their particular CPU and memory
model. Even when the spec is open, it’s exceptionally
hard to encode and decode properly.

Sysex Messages Aren’t Patches Some machines, such
as the Waldorf Kyra, Emu Proteus 2000, M Audio Venom,
Roland JV880, Roland U110, Yamaha 4-Operator Se-
ries, and ASM Hydrasynth, unnecessarily break a patch
dump into some N messages, thus greatly complicating
the patch loading process. Even more fun: the Roland U-
220 stuffs multiple patches into a smaller number of multiple
sysex messages: and it’s effectively impossible to deter-
mine if a series of messages represents a single patch, the
start of a bank of patches, or something in the middle of
a stream.

Odd Undocumented Byte Encodings As mentioned
in Section 7, one common 8-to-7-bit encoding is to send
seven bytes with the high bits stripped, plus a byte con-
sisting of all the high bits. Another is to break the 8-bit
byte into 4-bit nybbles, sent separately. These are typ-
ically well documented and even if not, they’re very
obvious and easy to work out. But the ASM Hydrasynth
uses Base64, an encoding mechanism meant to embed
data in text email messages. In Base64, you concatenate
three 8-bit bytes into a 24-bit string, then break it into
four 6-bit chunks. Base64 assigns each possible chunk
value to a unique ASCII character from the 64 characters
A...Z a...z 0...9 + / with = used to pad at the end.
Since ASCII only uses the first 7 bits, you can then just
write out the Base64 characters as four characters in your
sysex message. On top of it, ASM embedded a 4-byte
CRC32 checksum, reversed and not in proper network
order, and with each of the checksum bytes then sub-
tracted from 255. And refused to provide documentation
on it. It took me a month to crack it.

Manufacturer Namespace Violations We’re not done
with ASM’s shenanigans yet. The Hydrasynth has a
second way of dumping patches and banks over MIDI,
meant to be fed directly to another Hydrasynth. This
wraps the data in the format 0xF0 0x01 0x03 0x05

0x07 data... 0xF7 (individual patches) or 0xF0 0x02

0x04 0x06 0x08 data... 0xF7 (banks). See the problem?
0x01 is the namespace for Sequential, and 0x02 is the
namespace for Big Briar. That is, the Hydrasynth gener-
ates illegal data masquerading as other manufacturer’s
sysex packets. You’ll have to special-case for this.

17

10 The End of Sysex

If I may rant a bit more.
In the late 1980s, synthesizer manufacturers were gen-

erally good about publishing specifications for their sy-
sex protocols. MIDI was open, and that was the spirit.
And any way, if people made tools to interoperate with
your synthesizer, this could only help boost its sales.
Specifications appeared in the back of manuals, or as
separate booklets available to developers, or as part of a
machine’s service manual. In the 1990s with the prolifer-
ation of rackmounts, this tradition only strengthened as
these machines were difficult (or impossible) to program
directly and relied heavily on patch editors.

Manufacturers following this tradition included ev-
ery single one of the big names: Yamaha, Sequential,
Oberheim, Korg, Waldorf, Roland, Casio, Kawai, E-Mu,
Ensoniq, and so on. Even later manufacturers like
M-Audio or Red Sound made their specs available. This
wasn’t just synthesizer manufacturers: effects units,
MIDI routers, and so on also made their specs available.

Many manufacturers put a lot of effort into these spec-
ifications: they were large, detailed, and only somewhat
buggy. It was a point of pride. Casio even put its spec in
a cute booklet on MIDI control of the device, including
silly cartoon characters to help explain what MIDI and
sysex were [4].

In the 2000s we began to see synthesizer manufactur-
ers neglecting sysex and their own third-party and user
communities, necessitating reverse engineering. Some
manufacturers began to treat sysex as a trade secret, per-
haps to enable the sale of their own proprietary tools;
and sometimes for no good reason at all. Arturia was an
early adopter of this awful behavior, and ASM does it
too. Other manufacturers didn’t bother to release their
sysex documentation, or lost it, requiring complete re-
verse engineering: I’ve had experiences along these lines
from Novation, Audiothingies, M-Audio, Sequential,
and Waldorf.16 But the worst has been very recent ma-
chines with no sysex at all. Instead patches are uploaded
via proprietary USB protocols. Korg has been doing this
for quite some time, starting with the Microsampler,17

and recently the WaveState. This is nothing less than
planned obsolescence, as it makes the synthesizers de-
pendent on proprietary software which eventually stops
working.

Why would manufacturers cut out the very patch edi-
tor and tool developers who were helping their commu-
nities grow? People imagine a variety of invalid reasons,
such as worries that buggy sysex would bomb the ma-
chine (as if not documenting would fix this), or being

16Novation apparently lost a lot of internal documentation in the
early 2000s due to, I was told, a hard drive failure. They’re been kindly
forthcoming with what they have, but it hasn’t helped much.

17Indeed, the Microsampler’s proprietary USB protocol appears to
embed a custom version of sysex in the USB protocol to transfer samples
to the machine. But you can’t use the same sysex to transfer samples
over standard MIDI.

embarrassed by the low quality of one’s sysex protocol,
or somehow thinking that opening sysex in turn opens
the manufacturer to reverse engineering their firmware
(they have nothing to do with one another).

In fact I have seen only three reasons.

• Selling Software Manufacturers starting selling
patch editor and librarian software as an add-on to
their devices, and didn’t want the competition. 1K
Multimedia has gone so far as to require you to pay
$20 to transfer your license to their (notionally free)
only patch editor when you sell your synthesizer
used.

• Free Software In other cases, manufacturers sold
their synthesizer with a free software package, and
figured there was no need for third-party tools. Un-
fortunately in practically every case this software
became obsoleted with operating system upgrades
(particularly on the Mac) and the manufacturers
had no incentive to revise their software or to make
it open source.

• Laziness The 2000s saw a dramatic decrease in the
technical sophistication of the typical synthesizer
customer. As a result, manufacturers likely felt that
the customers who would use a patch editor, librar-
ian, or external tool was dwindling, and so didn’t
bother to clean up and release a polished spec at all.

These reasons are all pretty bad, and the downside
(killing their developer community) is not pretty.

There are some bright spots. Sequential still release
specs, with some exceptions (such as the Rev2). They do
this despite it not being in their interest to do so: they
contract with a company to sell patch editor software.
Waldorf also releases specs, though a few of their newer
machines (Quantum, Iridium) unfortunately don’t sup-
port sysex at all. Kawai still proudly publishes the specs
for their machines even though they’ve been out of the
synthesizer business for 20 years.

I think that the era of patch editors for new synthesiz-
ers is probably coming to a close. Many newer machines
have poor sysex, or none, or secret sysex, and so a patch
editor will largely be relegated to supporting older ma-
chines. Still, if you’ve got an older synthesizer you’d like
to support for the community, a patch editor is a great
thing to write. It’s can be an exercise in reverse engi-
neering (hopefully not), bit twiddling, working out bugs
hidden in 30 year old hardware. But it’s fun! That’s why
I started Edisyn: I wanted to learn how patch editors,
and my synthesizers, worked. For fun.

If you’ve read this far, maybe you’re serious
about building an editor. If so, send me email
(sean@cs.gmu.edu) and I’d be glad to tell you anything
you want to know, including how to build off of Edisyn
and so take advantage of its capabilities.

18

References

[1] Sean Luke. Stochastic synthesizer patch exploration
in Edisyn. In International Conference on Computa-
tional Intelligence in Music, Sound, Art and Design (Evo-
MUSART), 2019.

[2] Dave Smith and Chet Wood. The ‘USI’, or Universal
Synthesizer Interface. Journal of the Audio Engineering
Society, October 1981.

[3] Sean Luke. Computational Music Synthe-
sis. First edition, 2021. Available for free at
http://cs.gmu.edu/∼sean/book/synthesis/.

[4] Casio Computer Co. Ltd. Guidebook for MIDI, 1985.

19

