Methods for Open-box Analysis in Artificial Development

Adrian Grajdeanu

George Mason University Evolutionary Computation Lab Fairfax, VA, USA

GECCO 7-11 July 2007, London, UK

Open-box Analysis in Artificial Development

Why Open The Box?

- Understand the evolved mechanisms
- Manually purge the artifact
- Manually tweak the artifact

How to Proceed?

- Gene activation map
- Chemical concentration monitors
- Environmental features ablation
- Gene suppression
- Modeling the regulatory network
- Subsystem simulation

The Self-Repair Experiment

The Task

- Start with an egg-cell
- Grow a colony of cells to a certain size
- Maintain the size
- Environment randomly kills patches of cells
- Detect damage and self-repair

The Self-Repair Experiment

Experimental Details

- ADS framework
 - internal and external protein concentrations
 - ▶ a gene is an if <condition> then <action> rule
 - genome is a collection of rules/genes evaluated in sequence
 - variable length representation
 - all cells share same genome
- \blacktriangleright 27 \times 27 grid seeded in center with egg
- ► 4 proteins configured (p0 p3)
- Evoutionary algorithm: ES(2+16)

The Self-Repair Experiment Desired Behavior Has Evolved

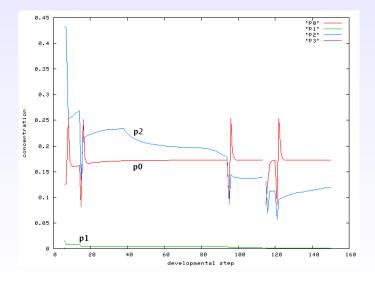
condition-0	#	g06
action-protein absorb p0 -0.46875		
condition-0	#	g07
action-protein eliminate p2 -0.09375		
condition-1 > p1 -0.96875	#	g08
action-protein eliminate p2 -0.484375		
condition-2 <= p0 0.78125 p1 -0.210938	#	g09
action-protein eliminate p1 -0.390625		
condition-0	#	g10
action-protein consume p0 -0.148438		-
condition-1 < p0 -0.539062	#	g11
action-protein consume p0 -0.664062		0
condition-1 < p0 -0.101562	#	g12
action-protein produce p0 0.296875		0
condition-1 <= p0 -0.578125	#	g13
action-none		0
condition-1 >= p2 -0.859375	#	g14
action-protein produce p0 -0.65625		~
condition-2 >= p0 -0.445312 p0 0.257812	#	g15
action-protein produce p3 -0.40625		~
condition-1 < p3 0.015625	#	g16
action-protein absorb p2 0.992188		~
condition-0	#	g17
action-none		0
condition-0	#	g18
action-neighbor-affinity p3 0.34375		
condition-0	#	g19
action-proteins-affinity		-
condition-1 >= p2 -0.46875	#	g20
action-divide		-
condition-0	#	g21
action-protein absorb p2 -0.484375		
condition-0	#	g22
action-protein absorb p2 -0.476562		
condition-1 >= p1 -0.976562	#	g23
action-protein produce p2 0.835938]		-

genome [
condition-2 > p0 0.90625 p3 0.210938	# g00
action-neighbor-affinity p2 -0.226562	
condition-1 >= p0 -0.867188	# g01
action-none condition-2 > p0 0.78125 p2 0.210938	# g02
action-protein consume p2 -0.695312	
condition-0	# g03
action-protein absorb p1 0.460938	
condition-2 <= p0 -0.59375 p2 -0.390625	# g04
action-protein eliminate p1 0.789062	-
condition-0	# g05
action-neighbor-affinity p0 0.0078125	

The Self-Repair Experiment Understanding the Evolved Mechanism of Self-Repair

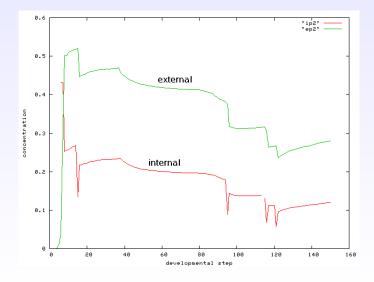
How to Proceed?

- Gene activation map
- Gene suppression
- Environmental features ablation
- Chemical concentration monitors
- Modeling the regulatory network
- Subsystem simulation

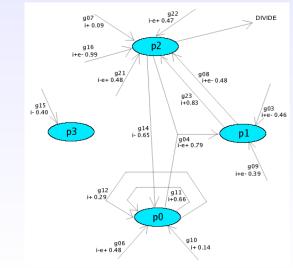

Chemical Concentration Monitors

Protein p0 Concentrations Internal External

Protein p2 Concentrations Internal External



Internal Chemical Concentrations in a Typical Cell


Typical Internal and External Protein p2 Concentrations

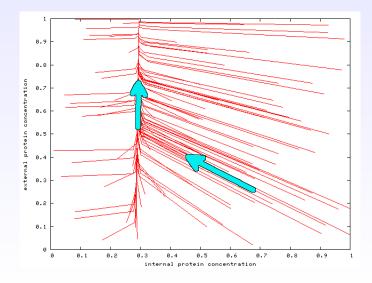
Modeling the Regulatory Network

Use Gene Activation Map for a cell in stationary regime.

What does this say?

Protein p0 Subsystem Simulation Stabilizing the Concentration

Genomic Code:


genome [
condition-0	# g10
action-protein consume p0 -0.148438 condition-1 < p0 -0.539062 action-protein consume p0 -0.664062	# g11
condition-1 < p0 -0.101562 action-protein produce p0 0.296875	# g12
<pre> condition-1 >= p2 -0.859375</pre>	# g14

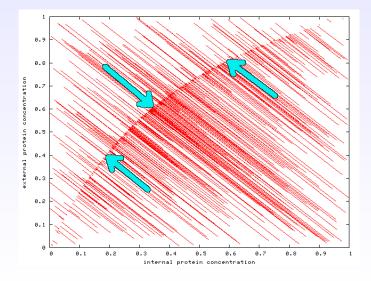
Equivalent Recurrent System:

 $\begin{cases} int_{t+1} = 0.274607 + 0.0367324 \times int_t + 0.032411 \times ext_t \times int_t \\ ext_{t+1} = ext_t + 0.46875 \times int_t - 0.46875 \times ext_t \times int_t \end{cases}$

Protein p0 Subsystem Simulation Stabilizing the Concentration (continued)

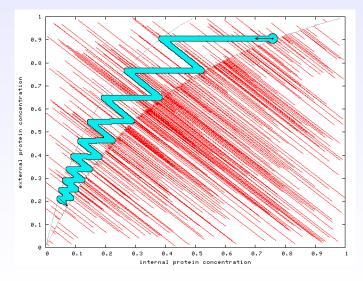
Protein p2 Subsystem Simulation Self-Repair Mechanism Revealed

Genomic Code:

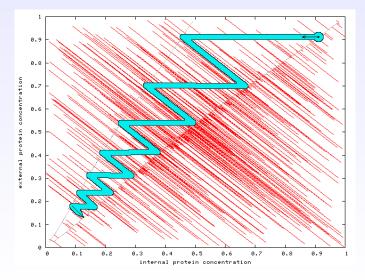

genome [
condition-0 action-protein eliminate p2 -0.09375	# g07
<pre>condition-1 < p3 0.015625 action-protein absorb p2 0.992188</pre>	# g16
condition-0 action-protein absorb p2 -0.484375	# g21
condition-0 action-protein absorb p2 -0.476562	# g22
··· J	

Equivalent Recurrent System:

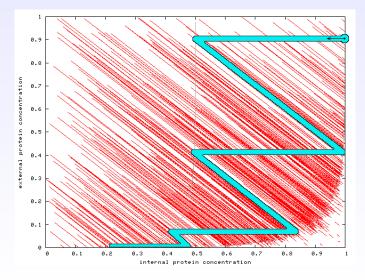
$$\begin{array}{lll} \textit{int}_{t+1} &=& a_{0,0} + a_{0,1} \times \textit{ext}_t + a_{1,0} \times \textit{int}_t + \dots + a_{8,8} \times \textit{int}_t^8 \times \textit{ext}_t^8 \\ \textit{ext}_{t+1} &=& b_{0,0} + b_{0,1} \times \textit{ext}_t + b_{1,0} \times \textit{int}_t + \dots + b_{8,8} \times \textit{int}_t^8 \times \textit{ext}_t^8 \end{array}$$

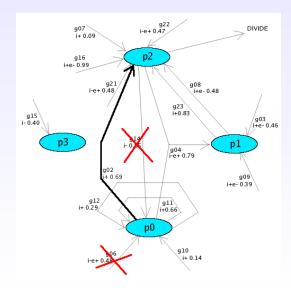

Protein p2 Subsystem Simulation Self-Repair Mechanism Revealed (continued)

Protein p2 Subsystem Simulation Self-Repair Mechanism Revealed (continued)

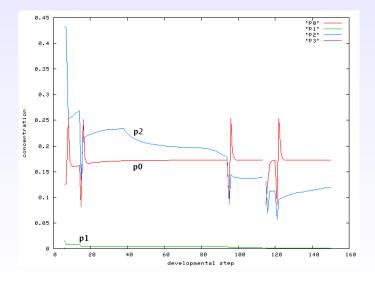

'Healthy' Self-Repair:

Protein p2 Subsystem Simulation Understanding Aging

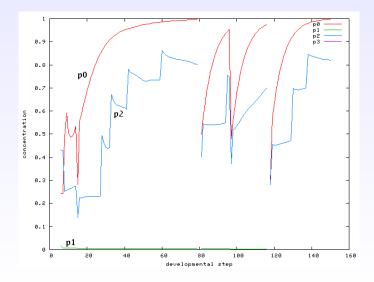

Either Gene g21 or Gene g22 Suppressed \rightarrow Premature Aging:


Protein p2 Subsystem Simulation Understanding Aging (continued)

Both Gene g21 and Gene g22 Suppressed \rightarrow Accelerated Aging:



Modeling the Regulatory Network – Revisited Cause of Cancerous Behavior



Internal Chemical Concentrations in a Typical Cell (Repeat Slide)

Internal Chemical Concentrations in a Typical Cell Gene g14 Suppressed; Regulation Mechanisms Fail

Conclusions

Relevance

- Engineers care 'how' an artifact works
- Open-box analysis can provide the necessary understanding
- Investigative methods can be borrowed from biology

Methods For Open-box Analysis in Artificial Development

- Gene activation map
- Gene suppression
- Environmental features ablation
- Chemical concentration monitors
- Modeling of the regulatory network
- Subsystem simulation

The End

Thank You!


Questions?

Protein p2 Subsystem Simulated Understanding Aging

From Gene Suppression experiments, g21 and g22 induce aging.

Normal Premature Accelerated

g21 and g22 suppressed

