An Access Authorization Model for Relational Databases Based
on Algebraic Manipulation of View Definitions

Amihai Motro

Computer Science Department
University of Southern California
University Park, Los Angeles, CA 90089-0782

Abstract

We describe a new model of access authorization for rela-
tional databases. In this model access permissions are a
form of database knowledge, from which access permis-
sions that apply to specific requests are inferred. The
basic principles of this model are: (1) Database access is
specified in terms of views: a set of views is defined, and
each user is granted permission to access one or more
views. (2) Users direct queries at the actual database,
not at any particular view. (3) When a request to access
a view is presented to the database system, the system
derives views of the request that are views of the views
to which the user has access permission, and presents
the user only with these views. The model represents
the definitions of views in special “meta-relations”, and
extends standard algebraic operators to these relations.
When a request is presented to the database system, it
is performed both on the meta-relations, resulting in a
“mask”, and on the actual relations, resulting in an an-
swer. The mask is then applied to the answer, yielding
the data that may be delivered to the user. This answer
is accompanied by statements describing the portions de-
livered.

1 Introduction

A wview (or a wirtual relation) is a relation that is de-
fined in terms of the actual database relations. Most
access authorization models for relational databases de-
fine access permissions by means of pairs: (user, view).
Each such pair grants user permission to access view.
When a query is submitted to the database system, the
permissions table is consulted to determine whether to
authorize the retrieval. Individual models differ substan-
tially in their details. Two well-documented models are
discussed below.

This work was supported in part by NSF Grant No. IRI-
8609912 and by an Amoco Foundation Engineering Faculty Grant.

CH2695-5/89/0000/0339$01.00 © 1989 IEEE

The authorization scheme of System R [1] allows per-
missions to be granted to both actual relations and views.
It is a flexible scheme that incorporates useful features,
such as allowing users to grant other users permissions
that were granted to them. In our opinion, however, the
mechanism has a serious limitation. Consider the situa-
tion of two actual relations A and B, and assume that
we want to permit access to a particular view of A and
B. We define this view V and grant access permission
to V, but not to A or B. Authorization is now granted
only to queries that access V. Queries that accesses A
or B, will be rejected for lack of access permissions to
these relations, even if the requests are within the per-
missions (as described in view V). Thus, V is not only
a statement of the permissions, but the actual “access
window”, as well. -

The authorization scheme of INGRES [5,2] is quite
different. Queries are handled by a “query modifica-
tion” algorithm. Essentially, the algorithm searches for
permitted views whose attributes contain the attributes
addressed by the query, and the qualifications placed on
these attributes in the views are then conjoined with the
qualification specified in the query. The algorithm is at-
tractive because when a query exceeds its permissions, it
delivers the data that are within the permissions. How-
ever, there are several limitations. First, permissions are
granted only for actual relations or views of single rela-
tions, and it is not possible to grant permissions to views
of several relations. Second, the algorithm does not han-
dle rows and columns symmetrically. Consider relation
A with attributes A;, A; and Aj, and assume permis-
sion is granted to the tuples of A; and A, that satisfy
a predicate P. A request to retrieve 4; and A, would
be reduced to the tuples of A; and A, that satisfy P.
However, a request to retrieve Ay, A, and A3z would be
denied altogether, where one would expect that it would
be reduced to tuples of A; and A,. In addition, there
are various cases where the algorithm actually delivers
less than what the user is permitted to view.

339

In this paper we describe a new model of access au-
thorization for relational databases. This model avoids
the restrictions and limitations described above. In par-
ticular, views are not access windows, but statements
of permissions (indeed, a form of database knowledge),
from which access permissions that apply to individual
access requests are inferred.

The basic principles of this model are:

e Database access is specified in terms of views: a
set of views is defined, and each user is granted
permission to access one or more views. Views are
conjunctive relational calculus expressions involv-
ing any number of relations.

Users direct queries at the actual database, not at
any particular view.

When a request to access a view is presented to the
database system, the system derives views of the
request that are views of the views to which the
user has access permission, and presents the user
only with these views.

In our approach, determining the access permissions
for a given query is a specific case of the following more
general problem: Given a query and set of database
views that possess a particular property, what views of
the answer possess this property?

In [4] we considered database views whose property is
that they have guaranteed integrity. The problem then
became: Given a query, what views of its answer have
guaranteed integrity? Solving this problem enabled us to
extend a database system so that every answer is accom-
panied by statements that define its integrity, resembling
a certification of quality.

In this paper we consider database views whose prop-
erty is that they are permitted to a particular user. The
problem then becomes: Given a query, what views of its
answer should be permitted to this user?

In each case, our solution is to represent the defi-
nitions of the given database views in special relations,
using the concept of meta-tuples. A meta-tuple defines
a subview (i.e., a selection and a projection) of a single
relation, and several meta-tuples can be used together
to define general views. All meta-tuples that define sub-
views of the same relation are stored together in one
meta-relation, whose structure mirrors the actual rela-
tion. Standard algebraic operators (product, selection
and projection) are extended to these meta-relations.

When a query is presented to the database system,
it is performed both on the actual relations, resulting in
an answer, and on the meta-relations, resulting in defi-
nitions of views of the answer that inherit the particular
property of the given views.

In the case of access permissions, this property is that
the views should be permitted to the user. Hence, they

are taken as a “mask” that is applied to the answer,
yielding the data that may be delivered to the user. This
data is accompanied by statements describing the por-
tions delivered.

‘We note that this paper focuses on the method for ex-
pressing and storing views, and on the method by which
permissions on individual access requests are inferred. It
does not address other important aspects of authoriza-
tion.

The remainder of this paper is organized as follows.
Section 2 defines the language with which access per-
missions are expressed, and Section 3 describes how ac-
cess permissions are stored. Section 4 defines the alge-
braic manipulations of access permissions, and Section
5 demonstrates how these manipulations are employed
to yield permission masks for individual access requests.
Section 6 concludes with a brief discussion of further
refinements of the model. This representation and ma-
nipulation of views was first introduced in [4], and has
been modified for the particular problem at hand.

2 Expressing Access Permissions

We assume the following definition of a relational data-
base [3]. A relation scheme R is a finite set of attributes
A1,...,An. With each attribute A; a set of values D;,
called the domain of A;, is associated (domains are non-
empty, finite or countably infinite sets). A relation on
the relation scheme R is a subset of the product of the
domains associated with the attributes of R. A database
scheme R is a set of relation schemes R;,...,R,. A
database instance D of the database scheme R is a set
of relations R;(D),..., R.(D), where each R;(D) is a
relation on the relation scheme R;.

A viewV is an expression in the relation schemes of R
that defines a new relation scheme, and for each database
instance D defines a unique relation on this scheme de-
noted V(D). The concept of views plays a fundamen-
tal role in most access schemes for relational databases.
Queries are simply requests to access particular views,
and access permissions are usually specified in terms of
views. In this paper we consider views that are defined
by conjunctive relational calculus ezpressions [6]. Using
domain relational calculus, expressions from this family
have the form:

{a1, .. an | (3b1)...(3B) b1 A ... A%m}

Where the 9’s may be of two kinds:

1. membership: (¢3,...,¢p) € R, where R is a data-

base relation (of arity p), and the ¢’s are either a’s
or b’s or constants.

. comparative: d; 8 ds, where d; is either an a or

340

a b, dj is either an a or a b or a constant, and 6 is
a comparator (e.g., <, <,>,>, =, #).

In particular, each a and each b must appear at least
once among the ¢’s.

We shall refer to such views as conjunctive views.
While this family is a strict subset of the relational cal-
culus, it is a powerful subset. The family of conjunctive
relational calculus expressions is precisely the family of
relational algebra expressions with the operations prod-
uct, selection and projection (where the selection expres-
sions are conjunctive). The attributes that participate in
the selection predicate will be called selection attributes,
and the attributes that participate in the projection will
be called projection atiributes. Often, we shall define
views that include the selection attributes in the pro-
jection attributes. The advantage of such views will be
evident later.

As an example, consider a database with the follow-
ing relation schemes:

EMPLOYEE = (NAME,TITLE, SALARY)
PROJECT = (NUMBER,SPONSOR,BUDGET)
ASSIGNMENT = (E_NAME,P_NO)

The view sk (salary of all employees) presents the names
and salaries of all employees:

SAE = {ai,az | (3b1)(a1,b1,a2) € EMPLOYEE}

The view PsA (projects sponsored by Acme) presents all
the attributes of projects sponsored by Acme:

PSA = {aj,a2,a3| (a1, a2, a3) € PROJECT A

az; = Acme}

The view ELP (employees of large projects) presents the
names and titles of employees assigned to projects with
budgets of at least $250,000:

{(11’ az,as, aq | (31)1)(3})2)
(a1,a2,b1) € EMPLOYEE A
(a3,b2, as) € PROJECT A
(a1, @3) € ASSIGNMENT A
as > 250,000}

ELP =

Note that this view is defined to include, in addition to
the names and the titles, also the project numbers and
the budgets. Finally, the view EST (employees with same
title) presents pairs of names of employees that have the
same title, along with that title:

{a1,a2,a3 | (3b1)(3b2)
(a1, a2,b1) € EMPLOYEE A
(as, as,b2) € EMPLOYEE}

EST =

For clarity, definitions of views may be specified with an
equivalent view statement, as in the following example
that defines the view ELP:

341

view ELP (EMPLOYEE.NAME, EMPLOYEE.TITLE,
PROJECT.NUMBER, PROJECT.BUDGET)
where EMPLOYEE.NAME = ASSIGNMENT.E_NAME
and PROJECT.NUMBER = ASSIGNMENT.P_NO
and PROJECT.BUDGET > 250,000

The next example, which defines the view EST, shows
how to handle cases where several membership subfor-
mulas reference the same relation:

view EST (EMPLOYEE:1.NAME, EMPLOYEE:2.NAME,
EMPLOYEE:1.TITLE)
where EMPLOYEE:1.TITLE = EMPLOYEE:2.TITLE

As mentioned earlier, views are used both in queries
and in the specification of access permissions. Permis-
sions are granted with a permit statement, as in the
following example to grant Klein permission to access
the view EST:

permit EST to KLEIN

Queries are expressed with a retrieve statement, as in
the following query for the names and titles of employees
assigned to projects sponsored by Acme:

retrieve (EMPLOYEE.NAME, EMPLOYEE.TITLE)

where EMPLOYEE.NAME = ASSIGNMENT.E_NAME
and ASSIGNMENT.P_NO = PROJECT.NUMBER
and PROJECT.SPONSOR = Acme

Finally, given a view, we define every view derived
from it by a selection and a projection, as its subview.
In particular, every view is its own subview.

3 Storing Access Permissions

Access permissions are stored in new relations that are
added to the database. For each database relation R a
meta-relation R’ is added. The scheme of R’ is similar
to the scheme of R, but with an additional attribute
called VIEW. Also, two auxiliary relations are defined:
COMPARISON = (VIEW,X, COMPARE, Y) and PERMISSION
= (USER,VIEW). In the previous example, the database
is extended with the following relations:

EMPLOYEE' = (VIEW,NAME, TITLE, SALARY)
PROJECT' = (VIEW,NUMBER,SPONSOR,BUDGET)
ASSIGNMENT' = (VIEW,E_NAME,P _NO)
COMPARISON = (VIEW, X, COMPARE,Y)
PERMISSION = (USER,VIEW)

Relations EMPLOYEE', PROJECT’ and ASSIGNMENT’ will
be used to store membership subformulas of views. Com-
parative subformulas will be stored in relation cOMPARI-
SON. Relation PERMISSION will be used to associate users
with views.

Consider a view V,

{a1,...,an [(3b1)...(Fbm) 1 A ... At}

A subformula 9 of the kind (¢y, ..., ¢,) € R is first mod-
ified so that the c’s that are a’s are suffixed with %, and
the ¢’s that are variables (i.e., a’s or b’s) that appear
only once in the whole expression are replaced with U
(blank). Hence, each component of the modified subfor-
mula is either a constant (a value), or a variable, or a
blank, and each may be suffixed by *. This meta-tuple is
prefixed with V (the name of the view), and is stored in
the meta-relation R/. A subformula v of the kind dy 6 ds,
where 0 is not =, is transformed to the tuple (V,d1, 8, d3)
and is stored in the auxiliary relation COMPARISON. If
6 is =, then all occurrences of d; in the other subformu-
las are substituted with d;. Finally, for each user that
is granted permission to access this view, a tuple is in-
serted into the auxiliary relation PERMISSION with the
appropriate user name and view name.

This representation of views in relations recalls the
representation of queries in QBE [7]. As an example,
Figure 1 shows an instance of the example database
extended with access permissions. For convenience of
presentation, each pair of relations R, R’ is shown as
a Figuresingle contiguous table. There are four views:
SAE (salary of all employees), ELP (employees of large
projects), EST (employees with same title), and Psa (pro-
jects sponsored by Acme). User Brown is permitted to
access SAE, PSA and EST, and user Klein is permitted to
access ELP and EST.

Note that each individual meta-tuple may be regarded
as defining a subview of the corresponding relation. The
constants and variables specify the selection condition,
and the #’s specify the projected attributes. For exam-
ple, the meta-tuple (PSA, *, Acmex,) stored in PROJECT’
specifies a selection of all tuples of relation PROJECT for
which SPONSOR = Acme, and a projection of NUMBER,
SPONSOR and BUDGET. And the meta-tuple (ELP, z1%, *,
U) stored in EMPLOYEE' specifies a selection of all tu-
ples of relation EMPLOYEE for which NAME = z;, and
a projection of NAME and TITLE. (A variable shared by
another meta-tuple, such as z; in the view ELP in the
meta-relation EMPLOYEE', specifies a selection condition
which is satisfied by any value from a set of values de-
fined elsewhere.)

|4

4 Manipulating Access Permissions

Consider user U who is accessing database Ry,..., Ra.
Assume that meta-relations Rj,..., R}, and COMPARI-
soN include definitions for views Vi, ..., Vi, and assume
that relation PERMISSION includes permissions for U to
access Vi,..., V.

EMPLOYEE
VIEW | NAME TITLE SALARY
Jones | manager | 26,000
Smith | technician | 22,000
Brown | engineer 32,000
SAE * *
ELP Tk *
EST | % Ta*
EST * Ta*
PROJECT
VIEW | NUMBER | SPONSOR | BUDGET
bg-45 Acme 300,000
sv-72 Apex 450,000
vg-13 Summit 150,000
PSA | % Acmex *
ELP Tox T3k
ASSIGNMENT
VIEW | ENAME | P_.NO
Jones bg-45
Smith bg-45
Jones sv-72
Brown sv-72
Smith vg-13
Brown vg-13
ELP T1% Tok
PERMISSION
USER VIEW
COMPARISON Brown | SAE
VIEW | X | COMPARE | Y Brown | PSA
ELP z3 > 250,000 Brown | EST
Klein ELP
Klein EST

Figure 1: Database Extended with Access Permissions

Granting user U permission to access Vi,..., Vp im-
plies that permission is also granted to access any view
of Vi,...,Vm. Therefore, any request by U to access a
view of Ry, ..., R, should be authorized, if the requested
view is also a view of V;,...,Vp,.

Assume now that user U requests to access view Q
(i.e., user U submits query Q). @ should be authorized if
it is also a view of Vi, . . ., Vin. In addition, any subview of
Q which is also a view of V4, ..., Vi may be authorized.

Consequently, given a request to access view @ of
Ry, ..., Ry, we are interested in the subviews of @ that
are also views of Vi,..., Vis. In particular, we want to
find out whether Q itself is also a view of V1,..., V.

As an example, recall that Klein was granted permis-
sion to access the view ELP, which presents the names
and titles of employees that are assigned to projects with
budgets exceeding $250,000. If Klein submits a query to

342

list the names of employees that are assigned to projects
with budgets exceeding $500,000, then the query should
be authorized, since it is a view of ELP. If Klein sub-
mits a query to list the names and salaries of employ-
ees that are assigned to projects with budgets exceeding
$500,000, then only the subview of the request which is a
view of ELP should be authorized: the names of employ-
ees that are assigned to projects with budgets exceeding
$500,000.

We describe a method that discovers subviews of a
given query that should be authorized. Basically, this
method generates views of V4, ..., V,, that are subviews
of @, by manipulating the definitions of V4,...,V,, al-
gebraically. These manipulations mirror those that are
necessary to implement Q. In effect, we generalize the
standard product, selection and projection operations to
manipulate also relations of view definitions.

This method is illustrated by the commutative dia-
gram shown in Figure 2. The solid lines describe the
current situation: the views R’ define the permissions
on the database relations R, and the virtual relation A
is derived from R to answer query Q. The dashed lines
describe our method: query processing is extended to
manipulate also R’ to yield the views A’ that define the
permissions on the answer A.

R R

A’ A

Figure 2: Extending Query Processing to Manipulate
Access Permissions

For simplicity, in the remainder of this section we
shall assume that attribute view had already been re-
moved from the meta-relations R, ..., R.,.

4.1 Meta-Relation Operations

Definition 1: Assume that R’ and S’ are meta-relations
that define, respectively, views of R and S. The prod-
uct of R/ and S, denoted R’ x S, is defined as follows.
For every pair » and s of meta-tuples from R’ and S,

respectively,

r = {a1,...,am)

(b, ..., bn)

R’ x S includes the meta-tuple:

S =

q = '7b11)

Proposition 1: Let D be an instance of this data-

base, and let r(D), s(D) and ¢(D) denote, respectively,
the relations defined by r, s and ¢. Then ¢(D) = r(D) x
s(D).
Proof: Let A and p denote, respectively, the selection
predicates of r and s, and let « and § denote, respec-
tively, the projected attributes of » and s. Then (D),
5(D) and ¢(D) can be expressed as the following product-
selection-projection expressions:

(al""vam)bli"

r(D) = maor(R(D))

s(D) = mpou(S(D))

¢(D) = maupoanu(R(D) x S(D))
We observe that T,upoan, (R(D)XxS(D)) = maor(R(D))
xmgo,(S(D)).

Definition 2: Assume that R’ is a meta-relation
that defines views of R. Let A denote a primitive selec-
tion predicate (i.e., either A/ 0¢c, or A} A}). The selec-
tion from R’ by predicate A, denoted o\ (R’), is defined
as follows. Consider first the case A = 4;8¢, and let »
be a meta-tuple from R/,

S NPT,
Denote by u the selection predicate expressed by a; L. If
a; is suffixed by *, then oy(R’) includes the meta-tuple:
oy am)

1
g = (a,...,a},..

where a} represents A A u. Consider now the case A =
A; 0 A;, and let r be a meta-tuple from R/,

ro= (@1,...,8,...,85,...,0m)
Denote by u the selection predicate expressed by a; and
aj. If a; and a; are both suffixed by *, then o)\(R')
includes the meta-tuple:

/

g = (a1,-.,0,...,0},...,am)

where a; and a} represent A A p.

Proposition 2: Let D be an instance of this database,
and let r(D) and ¢(D) denote, respectively, the relations
defined by r and ¢. Then ¢(D) = o5r(D).

Proof: Let o denote the projected attributes of ». Then

11f a; is blank, then y is true.

343

r(D) and ¢(D) can be expressed as the following selection-
projection expressions:

r(D)
¢(D)

We observe that if the predicate A is on attributes in «,
then moouax(R(D)) = oamaou(R(D)).

Definition 3: Assume that R’ is a meta-relation
that defines views of R. The projection of R’ that re-
moves its i’th attribute, denoted mr_4,(R'), is defined
as follows. For every meta-tuple » from R/,

7a0,u(R(D))
Taouar(R(D))

r (at,...,am)

If a; is U (possibly suffixed with), then mgr_4,(R’) in-
cludes the meta-tuple:
q (@15, @ic1, @ity - ooy Gm)

Proposition 3: Let D be an instance of this database,

and let 7(D) and ¢(D) denote, respectively, the rela-
tions defined by the meta-tuples 7 and ¢g. Then ¢(D) =
7a-4,(r(D)) %
Proof: Let A denote the selection predicate of r, let o
denote the projected attributes of r, and let § = R— A;.
Then r(D) and ¢(D) can be expressed as the following
selection-projection expressions:

r(D)
¢(D)

We observe that if the 7’th attribute of R does not partic-
ipate in the predicate A, then maoa7g(R(D)) = maTa0x
(R(D)).

Briefly, the selection and projection operations be-
have as follows: selection requires the attributes it selects
to be in the projection attributes of the meta-tuple; and
projection requires the attribute it removes not to be in
the selection attributes of the meta-tuple.

Propositions 1, 2 and 3 are summarized in the fol-
lowing theorem:

Theorem: Assume user U is accessing database Ry,
..., Rn. Assume the meta-relations R}, ..., R} and coM-
PARISON include definitions for views V4, ..., V,,, and as-
sume that relation PERMISSION includes permissions for
U to access Vi,...,Vin. Let Q be a conjunctive query
against this database. Let S be the relational algebra
expression that implements @. Let S’ be the relational
algebra expression obtained from S by substituting ev-
ery reference to R with a reference to R'. S operates on
the relations to yield the answer A. S’ operates on the

Ta0A(R(D))
TaoAm(R(D))

2In general, we define 7o (R) as a projection on those attributes
in o that are in R. Thus, if attribute A; had already been removed,
a projection on R — A; has no effect.

344

meta-relations to yield the meta-answer A’. Then, the
meta-tuples in A’ define views of A that are also views

of Vi,...,Vm.
The theorem guarantees that meta-tuples in A’ de-
fine subviews of A that are views of V;,...,Vy, (and

therefore user U is authorized to access them). However,
some meta-tuples may still contain references to meta-
tuples outside A’, and are therefore not expressible en-
tirely within A’. Such subviews are avoided if ' is mod-
ified so that all products are performed first, and their
result is pruned to retain only those meta-tuples that do
not contain references to other meta-tuples. Also, as we
explain below, it is advantageous to perform selections
before projections. Altogether, S’ is transformed to a
sequence of products, followed by selections, and ending
with projections. This simple strategy for implementing
conjunctive queries is not necessarily optimal. However,
we note that the optimality is not so essential for meta-
relations, because they are relatively small. For the ac-
tual relations, where optimality is essential, a different
strategy may be implemented.

4.2 Refinements

The theorem guarantees that the method for generating
subviews is sound, but it does not guarantee that it is
complete. That is, this method generates subviews of
the result that should indeed be authorized, but does
not necessarily generate all such subviews. A method
that would guarantee completeness would undoubtedly
be of a different complexity altogether. Yet, with several
simple refinements, it can be improved to generate ad-
ditional desirable subviews. Three such refinements are
sketched below.

When an attribute of R’ is removed, all the meta-
tuples that restrict this attribute (with a variable or a
constant) are discarded. Consequently, some views may
be lost. For example, assume that Q is a product of
R and S, followed by a projection that removes all the
attributes of S. Obviously, @ is equivalent to R, and A’
should retain all the meta-tuples of R'. However, these
meta-tuples may be discarded by the projection, if they
contain restrictions in the attributes contributed by S'.
To handle this situation we may extend the product of
meta-relations to include also these two tuples:

(a1,...,am, U, ...,)
(U, ... U, b1,...,6n)

q1
q2

These tuples define all previous subviews of R and S as
subviews of the product of R and S.

The selection operation offers additional refinement
opportunities. As defined, this operation requires con-
juncting u, the predicate expressed in the meta-tuple,
with), the predicate expressed in the query. However,

as all the tuples in the resulting relation satisfy A, the
expression p A A is simply p. Therefore, it appears that
a simpler definition of the selection operation may be
provided, which simply retains all meta-tuples without
any modification. On the other hand, this simpler def-
inition often would not generate the best definitions of
views, nor would it detect views that are indeed irrele-
vant. As an example, assume a meta-tuple that defines
the projects whose budgets are between $300,000 and
$600,000, and consider the following four queries that se-
lect the projects whose budgets are (1) between $200,000
and 8400,000, (2) between $200,000 and $700,000, (3) be-
tween $400,000 and $500,000, and (4) under $300,000.
In each case, the given view (projects whose budgets are
between $300,000 and $600,000) could be retained as a
view of the projects selected. However, it would be more
desirable to handle this selection on a case by case basis,
as follows. In the first query, modify the given view to
define the projects whose budgets are between $300,000
and $400,000; in the second query, retain the given view
without any modification; in the third query, modify the
given view so it does not restrict the budget at all; and,
in the fourth query, discard the given view altogether.
In general, we observe four different cases: If A implies
4, the meta-tuple is selected and the corresponding field
is cleared (i.e., the variable or the constant is replaced
by U); if 4 implies A, the meta-tuple is selected without
any modification; if A and p are contradictory, the meta-
tuple is discarded; otherwise, the meta-tuple is selected,
and is modified to represent p A X. Clearing selection
predicates ensures that more meta-tuples will “survive”
future projections. Determining the appropriate case for
given pu and A may require consulting relation COMPAR-
ISON, and, possibly, modifying it. While for most views
and queries this task is quite simple, if an implementa-
tion chooses not to determine the case for predicates of
certain form, then in those cases the relevant meta-tuple
must not be selected. Note that the only other time
where relation COMPARISON is used, is when the views
in A’ are described to the user.

Finally, with a simple procedure, it is often possi-
ble to infer additional subviews from subviews that are
stored in the same meta-relation. For example, assume
that EMPLOYEE' has two meta-tuples: (#, *,U) and (%, U,
*). A query that selects both TITLE and SALARY, will
not select any of these meta-tuples. However, it can
be shown that in this case (x,, *) is also a view of EM-
PLOYEE which should be authorized, and this meta-tuple
would have been selected by the same query. Let r and
s be meta-tuples in relation R/ that do not belong to the
same view. Assume that the subviews defined by r and s
can participate in a lossless join (for example, both sub-
views include the key of this relation). We define their
self-join with a meta-tuple ¢, as follows: ¢; is the dis-

junction of the subviews defined in a; and b;, and it is
suffixed by #* if both a; or b; are suffixed by . It can be
shown that self-joins are subviews of R which should be
authorized. Note that self-joins need not be generated
for every query; once generated, they should be stored
with the original view definitions, until these definitions
are modified.

5 The Authorization Process

In the previous section we described a method that dis-
covers subviews of a given query to which the user has
access permissions. In this section we demonstrate the
authorization process based on this method.

Example 1: Assume Brown submits a request to
retrieve the names and sponsors of large projects:

retrieve (PROJECT.NUMBER, PROJECT.SPONSOR)
where PROJECT.BUDGET > 250,000

This query may be implemented with the following se-
quence of algebraic operations:

L. A — 0gupGET»250,000)(PROJECT)

2. A < TNUMBER,SPONSOR (4)

First, PROJECT' is pruned to include only tuples of
views that Brown is permitted to access, and that are
defined in this relation in their entirety:

PROJECT/
VIEW | NUMBER | SPONSOR | BUDGET
PSA * Acmex *

Now, the same operations that are applied to the
database relations are applied to their meta-relation coun-
terparts:

1. A" — 0(gypGET>250,000)(PROIECT')

2. A’ +- TNUMBER,SPONSOR (A")

The selection retains the only view tuple unmodified,
and the final projection yields:

AI

NUMBER | SPONSOR
* Acmex

Recall that Brown was entitled to access the projects
sponsored by Acme, and requested to access the numbers
and sponsors of all projects. The above mask indicates
that Brown is restricted to projects sponsored by Acme.
Thus, all numbers and sponsors of projects not spon-
sored by Acme will be masked, and the following view
definition will inform the user that permission exists only
for SPONSOR = Acme:

permit (NUMBER, SPONSOR)
where SPONSOR = Acme

345

Example 2: Assume Klein submits a request to re-
trieve the names and salaries of engineers assigned to
very large projects:

retrieve (EMPLOYEE.NAME, EMPLOYEE.SALARY)

where EMPLOYEE.TITLE = engineer

and EMPLOYEE.NAME = ASSIGNMENT.E_NAME
and ASSIGNMENT.P_.NO = PROJECT.NUMBER
and PROJECT.BUDGET > 300,000

This query may be implemented with the following se-
quence of algebraic operations:

1. A — EMPLOYEE X ASSIGNMENT X PROJECT
2. A« O(TiTLE=engineer)A(NAME=E_NAME)A (A)
(NUMBER =P_NO)A(BUDGET>300,000)

3. A — TNAME,SALARY(A)

First, the meta-relations are pruned to include only
tuples of views that Klein is permitted to access, and
that are defined in these relations in their entirety:

EMPLOYEE’
VIEW | NAME | TITLE | SALARY
ELP T1% *
EST * Tq*
EST * Tak
PROJECT/

VIEW | NUMBER | SPONSOR | BUDGET
ELP Tok T3
ASSIGNMENT/

VIEW | EZNAME | P.NO
ELP Ty% To*

COMPARISON PERMISSION
VIEW | X | COMPARE Y :ﬁ:l: Eﬁ;ﬁ
ELP | z3 > 300,000 Kiein | EST

Now, the same operations that are applied to the
database relations are applied to their meta-relations
counterparts:

1. A’ « EMPLOYEE’ X ASSIGNMENT’/ X PROJECT’

2. A" — 0(rrTLE=engineer)A(NAME=E_NAME)A (&)
(NUMBER=P _NO)A(BUDGET>250,000)

3. A’ « TNAME,SALARY (A’)

The result of the product after replications are re-
moved is 3:

3For brevity, the VIEW attributes are omitted from intermediate
results (they are not used in selections, and the final projections
remove them anyway).

NAM | TIT | SAL | EZNA | P_.NO NUM | SPO | BUD
T1* * ZT1% To* To* T3*
AR * 1% To*

T1* To* T3*
ZTi*
* Ta* ZT1* To* Tok T3*
* Ta* ZTi* To¥*
% Ta* To* Z3*
* T4*
1% To* ZTo* T3*
T1* To*x
To* T3*

The selection retains only the first view tuple, and
clears its variables:

A/
NAM | TIT | SAL | EXNA | P.NO [NUM | SPO | BUD
* *
Finally, after the projection:
AI
NAME | SALARY
*

Recall that Klein was entitled to access the names
and titles of employees of large projects, and the names
of employees with the same title. He requested to ac-
cess the names and salaries of engineers assigned to very
large projects. The above mask indicates that Klein is
permitted to access their names, but not their salaries.
Thus, the values of salaries in the two column result will
be masked, and the following view definition will inform
the user that permission exists only for attribute NAME:

permit (NAME)

Example 3: Assume Brown submits a request to
retrieve the names and salaries of employees with the
same title:

retrieve (EMPLOYEE:l .NAME, EMPLOYEE:1.SALARY,
EMPLOYEE:2.NAME, EMPLOYEE:2.SALARY)
where EMPLOYEE:1.TITLE = EMPLOYEE:2.TITLE

This query may be implemented with the following se-
quence of algebraic operations 4:

1. A — EMPLOYEE X EMPLOYEE
2. A < O(rrTLE:1=TITLE:2)(A)

3. A — TNAME.1,SALARY:1,NAME:2,SALARY:2(4)
First, the relevant meta-relations are pruned to in-
clude only tuples of views that Brown is permitted to

4When a relation has several attributes named A, then A : ¢
denotes the i’th appearance of A.

346

access, and that are defined in these relations in their
entirety:

EMPLOYEE'
VIEW NAME TITLE | SALARY
SAE * *
EST * Ta*
EST * Ta*
PERMISSION
USER VIEW
Brown | SAE
Brown | PSA
Brown | EST

The first tuple in EMPLOYEE’ may be combined either
with the second or with the third, yielding:

EMPLOYEE'
VIEW NAME | TITLE | SALARY
EST, SAE * Taxk *
EST, SAE * Ta* *

Now, the same operations that are applied to the
database relations are applied to their meta-relations
counterparts:

1. A’ — EMPLOYEE’ X EMPLOYEE/
I ’
2. Al = o(rrLE 1=TITLE:2)(A")

7 ’
3. Al — ”NAME;l,SALARY:I,NAME:Q,SALARY:Z(A)

The result of the product after replications are re-
moved is:

A,
NAM:1 | TIT:1 | SAL:1 | NAM:2 | TIT:2 | SAL:2
* T4x * * 4% *
* Tya* *
* Ta* *

The selection retains only the first view tuple, and
clears its variables:

AI
NAM:1 | TIT:1 | SAL:1 | NAM:2 | TIT:2 | SAL:2
* * * *
Finally, after the projection:
A/
NAME:1 SALARY:1 NAME:2 | SALARY:2
* * * *

Recall that Brown was entitled to access the names
of employees with the same title, and the salaries of all
employees. He requested the names and salaries of em-
ployees with the same title. The above mask indicates
that Brown is permitted to access the entire answer. This
answer will be delivered without any accompanying per-
mit statements.

6 Conclusion

We presented a new model for access authorization to
relational databases. Work is underway on extensions in
three areas. (1) Currently, the model incorporates only
retrieval permissions. We see no difficulty in extending it
to incorporate update permissions, such as insert, delete
and modify®. (2) Another restriction of our model is that
currently it handles only conjunctive views and queries.
This restriction can be relaxed in several ways. For ex-
ample, the current methods can be extended to handle
views with disjunctions and views with aggregate func-
tions. Finally, (3) the algorithm yields only permitted
views (masks) that can be expressed with the attributes
requested. It should be possible to extend our meth-
ods to deliver views that are expressed with additional
attributes.

Work is also-underway on a database “front-end” in-
terface that will implement our methods and enable ex-
perimentation. The user will define access authoriza-
tion with permit statements, and the system will in-
sert automatically the appropriate meta-tuples into the
meta-relations. In response to a retrieve statement, the
user will receive a derived relation, whose structure cor-
responds to the request but whose tuples include only
permitted values, and a set of inferred permit state-
ments describing the portion delivered. Thus, the meta-
relations and the meta-tuple notation would be com-
pletely transparent, with all user-system communication
done with customary query language statements.

References

[1} P. P. Griffiths and B. W. Wade. An authoriza-
tion mechanism for a relational database system.
ACM Transactions on Database Systems, 1(3):242-
255, Sep. 1976.

[2] SunINGRES Manual Set. Sun Microsystems, Moun-
tain View, California, Release 5.0, 1987.

[3] D.Maier. The Theory of Relational Databases. Com-
puter Science Press, Rockville, Maryland, 1983.

[4] A. Motro. Integrity = Validity + Completeness.
Technical Report, Department of Computer Science,
University of Southern California, Dec. 1987.

[5] M. Stonebraker and E. Wong. Access control in a re-
lational database management system by query mod-
ification. In Proceedings of ACM Annual Conference,
pages 180-186, 1974.

[6] 3. D. Ullman. Principles of Database Sysiems. Com-
puter Science Press, Rockville, Maryland, 1982.

[7] M. Zloof. Query-by-Example: a database language.
IBM Systems Journal, 16(4):324-343, Dec. 1977.

5Note that the problem of propagating view updates and mod-
ifications to the actual relations remains, in general, unsolvable.

347

