Feed aggregator

Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in <i>Insr</i><sup>/+<i>P1195L</i>/+</sup> mice fed high-fat-diet

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in <i>Insr</i><sup>/+<i>P1195L</i>/+</sup> mice fed high-fat-diet

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep17565

Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep17399

Rational design of inorganic dielectric materials with expected permittivity

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

Rational design of inorganic dielectric materials with expected permittivity

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep16769

Electric-field-assisted formation of an interfacial double-donor molecule in silicon nano-transistors

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

Electric-field-assisted formation of an interfacial double-donor molecule in silicon nano-transistors

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep17377

Peginterferon plus Ribavirin for HIV-infected Patients with Treatment-Naïve Acute or Chronic HCV Infection in Taiwan: A Prospective Cohort Study

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

Peginterferon plus Ribavirin for HIV-infected Patients with Treatment-Naïve Acute or Chronic HCV Infection in Taiwan: A Prospective Cohort Study

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep17410

Inhibition of insulin fibrillation by osmolytes: Mechanistic Insights

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

Inhibition of insulin fibrillation by osmolytes: Mechanistic Insights

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep17599

&lt;i&gt;In Vivo&lt;/i&gt; Linking of Membrane Lipids and the Anion Transporter Band 3 with Thiourea-modified Amphiphilic Lipid Probes

Nature Scientific Reports - Mon, 11/30/2015 - 00:00

<i>In Vivo</i> Linking of Membrane Lipids and the Anion Transporter Band 3 with Thiourea-modified Amphiphilic Lipid Probes

Scientific Reports, Published online: 30 November 2015; doi:10.1038/srep17427

Editorial Board

FEBS Letters - Mon, 11/30/2015 - 00:00

Editorial Board

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24









Categories: Journal Articles

Contents List

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24









Categories: Journal Articles

HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Federico Miozzo, Délara Sabéran-Djoneidi, Valérie Mezger

Starting as a paradigm for stress responses, the study of the transcription factor (TF) family of heat shock factors (HSFs) has quickly and widely expanded these last decades, thanks to their fascinating and significant involvement in a variety of pathophysiological processes, including development, reproduction, neurodegeneration and carcinogenesis. HSFs, originally defined as classical TFs, strikingly appeared to play a central and often pioneering role in reshaping the epigenetic landscape. In this review, we describe how HSFs are able to sense the epigenetic environment, and we review recent data that support their role as sculptors of the chromatin landscape through their complex interplay with chromatin remodelers, histone-modifying enzymes and non-coding RNAs.
Graphical abstract




Categories: Journal Articles

Solution NMR Studies of an Alternative Mode of Sin3 Engagement by the Sds3 Subunit in the Histone Deacetylase-Associated Sin3L/Rpd3L Corepressor Complex

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Michael David Clark, Yongbo Zhang, Ishwar Radhakrishnan

The Sds3 transcriptional corepressor facilitates the assembly of the 1- to 2-MDa histone deacetylase-associated Sin3L/Rpd3L complex by providing a crucial homodimerization activity. Sds3 engages the scaffolding protein Sin3A, via a bipartite motif within the Sin3 interaction domain (SID) comprising a helix and an extended segment. Here, we show that the SID samples two discrete, substantially populated conformations with lifetimes in the tens of milliseconds range. The two conformations differ via a translation of the main chain and the corresponding side chains in the 5- to 7-Å range. Given the close proximity of the SID to other functional motifs in Sds3 at the sequence level, the conformational exchange has the potential to regulate these activities.
Graphical abstract




Categories: Journal Articles

Structure of Zeste–DNA Complex Reveals a New Modality of DNA Recognition by Homeodomain-Like Proteins

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Guan-Nan Gao, Mingzhu Wang, Na Yang, Ying Huang, Rui-Ming Xu

Drosophila Zeste is a DNA binding protein important for chromatin-targeted regulation of gene expression. It is best studied in the context of transvection—a mechanism of interallelic gene regulation involving paired chromosomes—and repression of the expression of white by Zeste mutants. Both of these functions depend on the DNA binding and self-association properties of Zeste, but the underlying structural basis remains unknown. Here we report the crystal structure of the DNA binding domain of Zeste in complex with a 19-bp DNA duplex containing the consensus recognition sequence motif. The structure reveals a helix–turn–helix Myb/homeodomain-like fold with the Zeste-specific insertion sequence forming a short helix and a long loop. Direct base contacts by the major groove binding helix principally account for the sequence-specific recognition, and backbone contacts via the Zeste-specific insertion are mainly responsible for the length requirement and the orientation of DNA. Our structural and biochemical characterizations of the DNA binding property of Zeste uncover an altered DNA binding modality of homeodomain-like proteins, and the structural information should facilitate the unraveling of the intricate mechanism of Zeste in regulation of gene expression.
Graphical abstract




Categories: Journal Articles

The Bacterial Transcription Termination Factor Rho Coordinates Mg2+ Homeostasis with Translational Signals

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Michelle A. Kriner, Eduardo A. Groisman

The bacterial protein Rho triggers transcription termination at the ends of many operons and when transcription and translation become uncoupled. In addition to these genome wide activities, Rho implements regulation of specific genes by dictating whether RNA polymerase terminates transcription within the 5′ leader region or continues into the downstream coding region. Here, we report that the Mg2+ channel gene corA in Salmonella enterica serovar Typhimurium, which was previously thought to be constitutively expressed, is regulated by a Rho-dependent terminator located within its 5′ leader region. We demonstrate that the unusually long and highly conserved corA leader mRNA can adopt two mutually exclusive conformations that determine whether or not Rho interacts with a Rho utilization site on the nascent RNA and thereby prevents transcription of the corA coding region. The RNA conformation that promotes Rho-dependent termination is favored by efficient translation of corL, a short open reading frame located within the corA leader. Thus, corA transcription is inversely coupled to corL translation. This mechanism resembles those governing expression of Salmonella's other two Mg2+ transport genes, suggesting that Rho links Mg2+ uptake to translational signals.
Graphical abstract




Categories: Journal Articles

Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Yoo-Sup Lee, Jinhyuk Lee, Kyoung-Seok Ryu, Yuno Lee, Tai-Geun Jung, Jeong-Hwa Jang, Dae-Won Sim, Eun-Hee Kim, Min-Duk Seo, Keun Woo Lee, Hyung-Sik Won

The activation process of the redox-regulated chaperone heat shock protein 33 (Hsp33) is constituted by the oxidation-induced unfolding of the C-terminal zinc-binding domain and concomitant oligomerization of the N-terminal core domain. Herein, the semi-empirical solution structure of Escherichia coli Hsp33 in the reduced, inactive form was generated through conformational space annealing calculations, utilizing minimalistic NMR data and multiple homology restraints. The various conformations of oxidized Hsp33 and some mutant forms were also investigated in solution. Interestingly, a specific region concentrated around the interdomain linker stretch and its interacting counterparts, the N-terminal β-strand 1 and α-helix 1, hardly showed up as signals in the NMR measurements. The NMR spectra of an Hsp33 derivative with a six-residue deletion in the disordered N-terminus implied a plausible conformational exchange associated with the identified region, and the corresponding exchange rate appeared slower than that of the wild type. Subsequent mutations that destroyed the structure of the β1 or α1 elements resulted in the formation of a reduced but active monomer, without the unfolding of the zinc-binding domain. Collectively, structural insights into the inactive and active conformations, including wild-type and mutant proteins, suggest that the dynamic interactions of the N-terminal segments with their contacting counterpart, the interdomain linker stretch, in the reduced, inactive state are the structural determinants regulating the activation process of the post-translationally regulated chaperone, Hsp33.
Graphical abstract




Categories: Journal Articles

Crystal Structure of the Human tRNA m1A58 Methyltransferase–tRNA3Lys Complex: Refolding of Substrate tRNA Allows Access to the Methylation Target

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Janet Finer-Moore, Nadine Czudnochowski, Joseph D. O'Connell, Amy Liya Wang, Robert M. Stroud

Human tRNA3 Lys is the primer for reverse transcription of HIV; the 3′ end is complementary to the primer-binding site on HIV RNA. The complementarity ends at the 18th base, A58, which in tRNA3 Lys is modified to remove Watson–Crick pairing. Motivated to test the role of the modification in terminating the primer-binding sequence and thus limiting run-on transcription, we asked how the modification of RNA could be accomplished. tRNA m1A58 methyltransferase (m1A58 MTase) methylates N1 of A58, which is buried in the TΨC-loop of tRNA, from cofactor S-adenosyl-l-methionine. This conserved tRNA modification is essential for stability of initiator tRNA in Saccharomyces cerevisiae. Reported here, three structures of human tRNA m1A58 MTase in complex with human tRNA3 Lys and the product S-adenosyl-l-homocysteine show a dimer of heterodimers in which each heterodimer comprises a catalytic chain, Trm61, and a homologous but noncatalytic chain, Trm6, repurposed as a tRNA-binding subunit that acts in trans; tRNAs bind across the dimer interface such that Trm6 from the opposing heterodimer brings A58 into the active site of Trm61. T-loop and D-loop are splayed apart showing how A58, normally buried in tRNA, becomes accessible for modification. This result has broad impact on our understanding of the mechanisms of modifying internal sites in folded tRNA. The structures serve as templates for design of inhibitors that could be used to test tRNA m1A58 MTase's impact on retroviral priming and transcription.
Graphical abstract




Categories: Journal Articles

Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Olivier Genest, Joel R. Hoskins, Andrea N. Kravats, Shannon M. Doyle, Sue Wickner

Hsp90 is a highly conserved molecular chaperone that remodels hundreds of client proteins, many involved in the progression of cancer and other diseases. It functions with the Hsp70 chaperone and numerous cochaperones. The bacterial Hsp90 functions with an Hsp70 chaperone, DnaK, but is independent of Hsp90 cochaperones. We explored the collaboration between Escherichia coli Hsp90 and DnaK and found that the two chaperones form a complex that is stabilized by client protein binding. A J-domain protein, CbpA, facilitates assembly of the Hsp90Ec–DnaK–client complex. We identified E. coli Hsp90 mutants defective in DnaK interaction in vivo and show that the purified mutant proteins are defective in physical and functional interaction with DnaK. Understanding how Hsp90 and Hsp70 collaborate in protein remodeling will provide the groundwork for the development of new therapeutic strategies targeting multiple chaperones and cochaperones.
Graphical abstract




Categories: Journal Articles

Conformational Transitions that Enable Histidine Kinase Autophosphorylation and Receptor Array Integration

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Anna R. Greenswag, Alise Muok, Xiaoxiao Li, Brian R. Crane

During bacterial chemotaxis, transmembrane chemoreceptor arrays regulate autophosphorylation of the dimeric histidine kinase CheA. The five domains of CheA (P1–P5) each play a specific role in coupling receptor stimulation to CheA activity. Biochemical and X-ray scattering studies of thermostable CheA from Thermotoga maritima determine that the His-containing substrate domain (P1) is sequestered by interactions that depend upon P1 of the adjacent subunit. Non-hydrolyzable ATP analogs (but not ATP or ADP) release P1 from the protein core (domains P3P4P5) and increase its mobility. Detachment of both P1 domains or removal of one within a dimer increases net autophosphorylation substantially at physiological temperature (55°C). However, nearly all activity is lost without the dimerization domain (P3). The linker length between P1 and P3 dictates intersubunit (trans) versus intrasubunit (cis) autophosphorylation, with the trans reaction requiring a minimum length of 47 residues. A new crystal structure of the most active dimerization-plus-kinase unit (P3P4) reveals trans directing interactions between the tether connecting P3 to P2–P1 and the adjacent ATP-binding (P4) domain. The orientation of P4 relative to P3 in the P3P4 structure supports a planar CheA conformation that is required by membrane array models, and it suggests that the ATP lid of CheA may be poised to interact with receptors and coupling proteins. Collectively, these data suggest that the P1 domains are restrained in the off-state as a result of cross-subunit interactions. Perturbations at the nucleotide-binding pocket increase P1 mobility and access of the substrate His to P4-bound ATP.
Graphical abstract




Categories: Journal Articles

Long-Range Energetic Changes Triggered by a Proline Switch in the Signal Adapter Protein c-CrkII

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Philipp A.M. Schmidpeter, Lena K. Ries, Tatjana Theer, Franz X. Schmid

The signal adapter protein c-CrkII from chicken but not from human uses isomerization at Pro238 in the SH3C domain to regulate the activity of the SH3N domain. The different behavior of human and chicken c-CrkII originates from only two differences in sequence, at positions 239 after Pro238 and 272 in the N-Src loop of SH3C. We analyzed the kinetics of substrate binding to SH3N and an assay for its coupling with Pro238 isomerization in SH3C to identify the molecular path from Pro238 to the substrate binding site of SH3N. The trans → cis isomerization at Pro238 and a relocation of Phe239 re-organize the energetics of a hydrophobic cluster in the N-Src loop of SH3C and re-shape this region to optimize its interactions with SH3N. Concomitantly, the backbone becomes strained at Met272. We suggest that, in human c-CrkII, movement at position 239 and strain at position 272 are not tolerated because the β-branched residues Ile239 and Val272 restrain the backbone mobility and thus destabilize the cis Pro238 form.
Graphical abstract




Categories: Journal Articles

Structure of Full-Length Human PDGFRβ Bound to Its Activating Ligand PDGF-B as Determined by Negative-Stain Electron Microscopy

Journal of Molecular Biology - Sun, 11/29/2015 - 23:48
Publication date: 4 December 2015
Source:Journal of Molecular Biology, Volume 427, Issue 24

Author(s): Po-Han Chen, Vinzenz Unger, Xiaolin He

Members of the receptor tyrosine kinases (RTKs) regulate important cellular functions such as cell growth and migration, which are key steps in angiogenesis, in organ morphogenesis and in the unregulated states, cancer formation. One long-standing puzzle regarding RTKs centers on how the extracellular domain (ECD), which detects and binds to growth factors, is coupled with the intracellular domain kinase activation. While extensive structural works on the soluble portions of RTKs have provided critical insights into RTK structures and functions, lack of a full-length receptor structure has hindered a comprehensive overview of RTK activation. In this study, we successfully purified and determined a 27-Å-resolution structure of PDGFRβ [a full-length human platelet-derived growth factor receptor], in complex with its ligand PDGF-B. In the ligand-stimulated complex, two PDGFRβs assemble into a dimer via an extensive interface essentially running along the full-length of the receptor, suggesting that the membrane-proximal region, the transmembrane helix and the kinase domain of PDGFRβ are involved in dimerization. Major structural differences are seen between the full-length and soluble ECD structures, rationalizing previous experimental data on how membrane-proximal domains modulate receptor ligand-binding affinity and dimerization efficiency. Also, in contrast to the 2-fold symmetry of the ECD, the intracellular kinase domains adopt an asymmetric dimer arrangement, in agreement with prior observations for the closely related KIT receptor. In essence, the structure provides a first glimpse into how platelet-derived growth factor receptor ECD, upon ligand stimulation, is coupled to its intracellular domain kinase activation.
Graphical abstract




Categories: Journal Articles
Syndicate content