PLoS Computational Biology

Syndicate content
Publishing science
Updated: 1 year 51 weeks ago

Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis

Fri, 10/23/2015 - 16:00

by Philipp S. Orekhov, Daniel Klose, Armen Y. Mulkidjanian, Konstantin V. Shaitan, Martin Engelhard, Johann P. Klare, Heinz-Jürgen Steinhoff

Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors.
Categories: Journal Articles

Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

Fri, 10/23/2015 - 16:00

by Tobias Brosch, Heiko Neumann, Pieter R. Roelfsema

The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies.
Categories: Journal Articles

Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures

Fri, 10/23/2015 - 16:00

by Mingming Chen, Daqing Guo, Min Li, Tao Ma, Shengdun Wu, Jingling Ma, Yan Cui, Yang Xia, Peng Xu, Dezhong Yao

The basal ganglia (BG), serving as an intermediate bridge between the cerebral cortex and thalamus, are believed to play crucial roles in controlling absence seizure activities generated by the pathological corticothalamic system. Inspired by recent experiments, here we systematically investigate the contribution of a novel identified GABAergic pallido-cortical pathway, projecting from the globus pallidus externa (GPe) in the BG to the cerebral cortex, to the control of absence seizures. By computational modelling, we find that both increasing the activation of GPe neurons and enhancing the coupling strength of the inhibitory pallido-cortical pathway can suppress the bilaterally synchronous 2–4 Hz spike and wave discharges (SWDs) during absence seizures. Appropriate tuning of several GPe-related pathways may also trigger the SWD suppression, through modulating the activation level of GPe neurons. Furthermore, we show that the previously discovered bidirectional control of absence seizures due to the competition between other two BG output pathways also exists in our established model. Importantly, such bidirectional control is shaped by the coupling strength of this direct GABAergic pallido-cortical pathway. Our work suggests that the novel identified pallido-cortical pathway has a functional role in controlling absence seizures and the presented results might provide testable hypotheses for future experimental studies.
Categories: Journal Articles

An Exploration of the Universe of Polyglutamine Structures

Fri, 10/23/2015 - 16:00

by Àngel Gómez-Sicilia, Mateusz Sikora, Marek Cieplak, Mariano Carrión-Vázquez

Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease.
Categories: Journal Articles

The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex

Fri, 10/23/2015 - 16:00

by Joel Z. Leibo, Qianli Liao, Fabio Anselmi, Tomaso Poggio

Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions.
Categories: Journal Articles

Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling

Fri, 10/23/2015 - 16:00

by Armin Meier, Johannes Söding

Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins’ atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite.
Categories: Journal Articles

Intracellular Information Processing through Encoding and Decoding of Dynamic Signaling Features

Thu, 10/22/2015 - 16:00

by Hirenkumar K. Makadia, James S. Schwaber, Rajanikanth Vadigepalli

Cell signaling dynamics and transcriptional regulatory activities are variable within specific cell types responding to an identical stimulus. In addition to studying the network interactions, there is much interest in utilizing single cell scale data to elucidate the non-random aspects of the variability involved in cellular decision making. Previous studies have considered the information transfer between the signaling and transcriptional domains based on an instantaneous relationship between the molecular activities. These studies predict a limited binary on/off encoding mechanism which underestimates the complexity of biological information processing, and hence the utility of single cell resolution data. Here we pursue a novel strategy that reformulates the information transfer problem as involving dynamic features of signaling rather than molecular abundances. We pursue a computational approach to test if and how the transcriptional regulatory activity patterns can be informative of the temporal history of signaling. Our analysis reveals (1) the dynamic features of signaling that significantly alter transcriptional regulatory patterns (encoding), and (2) the temporal history of signaling that can be inferred from single cell scale snapshots of transcriptional activity (decoding). Immediate early gene expression patterns were informative of signaling peak retention kinetics, whereas transcription factor activity patterns were informative of activation and deactivation kinetics of signaling. Moreover, the information processing aspects varied across the network, with each component encoding a selective subset of the dynamic signaling features. We developed novel sensitivity and information transfer maps to unravel the dynamic multiplexing of signaling features at each of these network components. Unsupervised clustering of the maps revealed two groups that aligned with network motifs distinguished by transcriptional feedforward vs feedback interactions. Our new computational methodology impacts the single cell scale experiments by identifying downstream snapshot measures required for inferring specific dynamical features of upstream signals involved in the regulation of cellular responses.
Categories: Journal Articles

Ten Simple Rules for Creating a Good Data Management Plan

Thu, 10/22/2015 - 16:00

by William K. Michener

Categories: Journal Articles

Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity

Thu, 10/22/2015 - 16:00

by Paul C. Bressloff, Samuel R. Carroll

We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo.
Categories: Journal Articles

Qualitative and Quantitative Protein Complex Prediction Through Proteome-Wide Simulations

Thu, 10/22/2015 - 16:00

by Simone Rizzetto, Corrado Priami, Attila Csikász-Nagy

Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data—such as protein abundances, domain-domain interactions and functional annotations—to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.
Categories: Journal Articles

Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways

Wed, 10/21/2015 - 16:00

by Sean L. Seyler, Avishek Kumar, M. F. Thorpe, Oliver Beckstein

Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions.
Categories: Journal Articles

Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration

Wed, 10/21/2015 - 16:00

by Ioana Niculescu, Johannes Textor, Rob J. de Boer

Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels of complexity. We extend the Cellular Potts Model with an actin-inspired feedback mechanism that allows small stochastic cell rufflings to expand to cell protrusions. This simple phenomenological model produces realistically crawling and deforming amoeboid cells, and gliding half-moon shaped keratocyte-like cells. Both cell types can migrate randomly or follow directional cues. They can squeeze in between other cells in densely populated environments or migrate collectively. The model is computationally light, which allows the study of large, dense and heterogeneous tissues containing cells with realistic shapes and migratory properties.
Categories: Journal Articles

Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

Tue, 10/20/2015 - 16:00

by Robin van der Lee, Qian Feng, Martijn A. Langereis, Rob ter Horst, Radek Szklarczyk, Mihai G. Netea, Arno C. Andeweg, Frank J. M. van Kuppeveld, Martijn A. Huynen

The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research.
Categories: Journal Articles

Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model

Tue, 09/29/2015 - 16:00

by Naiqian Zhang, Haiyun Wang, Yun Fang, Jun Wang, Xiaoqi Zheng, X. Shirley Liu

The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated with different drugs and selecting genomic or functional genomic features to regress or classify the drug response. Here, we propose a dual-layer integrated cell line-drug network model, which uses both cell line similarity network (CSN) data and drug similarity network (DSN) data to predict the drug response of a given cell line using a weighted model. Using the Cancer Cell Line Encyclopedia (CCLE) and Cancer Genome Project (CGP) studies as benchmark datasets, our single-layer model with CSN or DSN and only a single parameter achieved a prediction performance comparable to the previously generated elastic net model. When using the dual-layer model integrating both CSN and DSN, our predicted response reached a 0.6 Pearson correlation coefficient with observed responses for most drugs, which is significantly better than the previous results using the elastic net model. We have also applied the dual-layer cell line-drug integrated network model to fill in the missing drug response values in the CGP dataset. Even though the dual-layer integrated cell line-drug network model does not specifically model mutation information, it correctly predicted that BRAF mutant cell lines would be more sensitive than BRAF wild-type cell lines to three MEK1/2 inhibitors tested.
Categories: Journal Articles

Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model

Fri, 09/25/2015 - 16:00

by Greg Jensen, Fabian Muñoz, Yelda Alkan, Vincent P. Ferrera, Herbert S. Terrace

Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort’s success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models.
Categories: Journal Articles

miRTex: A Text Mining System for miRNA-Gene Relation Extraction

Fri, 09/25/2015 - 16:00

by Gang Li, Karen E. Ross, Cecilia N. Arighi, Yifan Peng, Cathy H. Wu, K. Vijay-Shanker

MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes.
Categories: Journal Articles

How to Grow a Computational Biology Lab

Thu, 09/24/2015 - 16:00

by Alice Carolyn McHardy

Categories: Journal Articles

You Are Not Working for Me; I Am Working with You

Thu, 09/24/2015 - 16:00

by Florian Markowetz

Categories: Journal Articles

Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations

Thu, 09/24/2015 - 16:00

by Pete Riley, Michal Ben-Nun, Jon A. Linker, Angelia A. Cost, Jose L. Sanchez, Dylan George, David P. Bacon, Steven Riley

The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion pC of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: pC, 0.0133–0.150 and R0, 1.09–2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with pC approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R0 and pC could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics.
Categories: Journal Articles

Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity

Wed, 09/23/2015 - 16:00

by Noah Ollikainen, René M. de Jong, Tanja Kortemme

Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.
Categories: Journal Articles