Proteins: Structure, Function, Bioinformatics

Syndicate content
Wiley Online Library : Proteins: Structure, Function, and Bioinformatics
Updated: 1 year 50 weeks ago

Why does mutation of Gln61 in Ras by the nitro analog NGln maintain activity of Ras-GAP in hydrolysis of guanosine triphosphate?

Tue, 09/29/2015 - 11:16
ABSTRACT

Interpretation of the experiments showing that the Ras-GAP protein complex maintains activity in guanosine triphosphate (GTP) hydrolysis upon replacement of Glu61 in Ras with its unnatural nitro analog, NGln, is an important issue for understanding details of chemical transformations at the enzyme active site. By using molecular modeling we demonstrate that both glutamine and its nitro analog in the aci-nitro form participate in the reaction of GTP hydrolysis at the stages of proton transfer and formation of inorganic phosphate. The computed structures and the energy profiles for the complete pathway from the enzyme-substrate to enzyme-product complexes for the wild-type and mutated Ras suggest that the reaction mechanism is not affected by this mutation. Proteins 2015; 83:2091–2099. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Shortening a loop can increase protein native state entropy

Tue, 09/29/2015 - 11:14
ABSTRACT

Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. Proteins 2015; 83:2137–2146. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11

Tue, 09/29/2015 - 11:08
ABSTRACT

Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Interolog interfaces in protein–protein docking

Tue, 09/29/2015 - 11:03
ABSTRACT

Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near-native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure-based models of orthologs were generated for comparison with sequence-based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

Categories: Journal Articles

Modulation of HIV protease flexibility by the T80N mutation

Tue, 09/29/2015 - 10:50
ABSTRACT

The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide-angle X-ray scattering (WAXS) data was measured for a series of HIVp variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared with the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIVp and is critical to catalytic function. Proteins 2015; 83:1929–1939. © 2014 Wiley Periodicals, Inc.

Categories: Journal Articles

Methods of model accuracy estimation can help selecting the best models from decoy sets: Assessment of model accuracy estimations in CASP11

Mon, 09/28/2015 - 12:51
ABSTRACT

The article presents assessment of the model accuracy estimation methods participating in CASP11. The results of the assessment are expected to be useful to both—developers of the methods and users who way too often are presented with structural models without annotations of accuracy. The main emphasis is placed on the ability of techniques to identify the best models from among several available. Bivariate descriptive statistics and ROC analysis are used to additionally assess the overall correctness of the predicted model accuracy scores, the correlation between the predicted and observed accuracy of models, the effectiveness in distinguishing between good and bad models, the ability to discriminate between reliable and unreliable regions in models, and the accuracy of the coordinate error self-estimates. A rigid-body measure (GDT_TS) and three local-structure-based scores (LDDT, CADaa, and SphereGrinder) are used as reference measures for evaluating methods' performance. Consensus methods, taking advantage of the availability of several models for the same target protein, perform well on the majority of tasks. Methods that predict accuracy on the basis of a single model perform comparably to consensus methods in picking the best models and in the estimation of how accurate is the local structure. More groups than in previous experiments submitted reasonable error estimates of their own models, most likely in response to a recommendation from CASP and the increasing demand from users. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

In silico mutational studies of Hsp70 disclose sites with distinct functional attributes

Mon, 09/28/2015 - 12:31
ABSTRACT

The Mutation-Minimization Method (MuMi) to study the local response of proteins to point mutations has been introduced here. The heat shock protein Hsp70 as the test system since it displays features that have been studied in great detail has been used here. It has many conserved residues, serves several different functions on each of its domains, and displays interdomain allostery. For the analysis of spatial arrangement of residues within the protein, the network properties of the wild type (WT) protein as well as its all single alanine residue mutants using MuMi has been investigated. The measures to express the amount of change from the WT structure upon mutation and compare these deviations to find potential critical sites have been proposed. The functional significance of the potential sites to the parameter that uncovers them has been mapped. It was found that sites directly involved in binding were sensitive to mutations and were characterized by large displacements. On the other hand, sites that steer large conformational changes typically had increased reachability upon alanine mutations occurring elsewhere in the protein. Finally, residues that control communication within and between domains reside on the largest number of paths connecting pairs of residues in the protein. Proteins 2015; 83:2077–2090. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints

Mon, 09/28/2015 - 04:46
ABSTRACT

For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. Proteins 2015; 83:1947–1962. © 2015 Wiley Periodicals, Inc

Categories: Journal Articles

Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening

Mon, 09/28/2015 - 02:07
ABSTRACT

Nonribosomal peptide synthetases (NRPSs) synthesize a diverse array of bioactive small peptides, many of which are used in medicine. There is considerable interest in predicting NRPS substrate specificity in order to facilitate investigation of the many “cryptic” NRPS genes that have not been linked to any known product. However, the current sequence similarity-based methods are unable to produce reliable predictions when there is a lack of prior specificity data, which is a particular problem for fungal NRPSs. We conducted virtual screening on the specificity-determining domain of NRPSs, the adenylation domain, and found that virtual screening using experimentally determined structures results in good enrichment of the cognate substrate. Our results indicate that the conformation of the adenylation domain and in particular the conformation of a key conserved aromatic residue is important in determining the success of the virtual screening. When homology models of NRPS adenylation domains of known specificity, rather than experimentally determined structures, were built and used for virtual screening, good enrichment of the cognate substrate was also achieved in many cases. However, the accuracy of the models was key to the reliability of the predictions and there was a large variation in the results when different models of the same domain were used. This virtual screening approach is promising and is able to produce enrichment of the cognate substrates in many cases, but improvements in building and assessing homology models are required before the approach can be reliably applied to these models. Proteins 2015; 83:2052–2066. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11

Wed, 09/23/2015 - 10:33
ABSTRACT

We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy

Wed, 09/23/2015 - 10:27
ABSTRACT

Interactions between proteins and other molecules play essential roles in all biological processes. Although it is widely held that a protein's ligand specificity is determined primarily by its three-dimensional structure, the general principles by which structure determines ligand binding remain poorly understood. Here we use statistical analyses of a large number of protein−ligand complexes with associated binding-affinity measurements to quantitatively characterize how combinations of atomic interactions contribute to ligand affinity. We find that there are significant differences in how atomic interactions determine ligand affinity for proteins that bind small chemical ligands, those that bind DNA/RNA and those that interact with other proteins. Although protein-small molecule and protein-DNA/RNA binding affinities can be accurately predicted from structural data, models predicting one type of interaction perform poorly on the others. Additionally, the particular combinations of atomic interactions required to predict binding affinity differed between small-molecule and DNA/RNA data sets, consistent with the conclusion that the structural bases determining ligand affinity differ among interaction types. In contrast to what we observed for small-molecule and DNA/RNA interactions, no statistical models were capable of predicting protein−protein affinity with >60% correlation. We demonstrate the potential usefulness of protein-DNA/RNA binding prediction as a possible tool for high-throughput virtual screening to guide laboratory investigations, suggesting that quantitative characterization of diverse molecular interactions may have practical applications as well as fundamentally advancing our understanding of how molecular structure translates into function. Proteins 2015; 83:2100–2114. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

Categories: Journal Articles

Protein structure prediction using residue- and fragment-environment potentials in CASP11

Tue, 09/22/2015 - 01:36
ABSTRACT

An accurate scoring function that can select near-native structure models from a pool of alternative models is key for successful protein structure prediction. For the critical assessment of techniques for protein structure prediction (CASP) 11, we have built a protocol of protein structure prediction that has novel coarse-grained scoring functions for selecting decoys as the heart of its pipeline. The score named PRESCO (Protein Residue Environment SCOre) developed recently by our group evaluates the native-likeness of local structural environment of residues in a structure decoy considering positions and the depth of side-chains of spatially neighboring residues. We also introduced a helix interaction potential as an additional scoring function for selecting decoys. The best models selected by PRESCO and the helix interaction potential underwent structure refinement, which includes side-chain modeling and relaxation with a short molecular dynamics simulation. Our protocol was successful, achieving the top rank in the free modeling category with a significant margin of the accumulated Z-score to the subsequent groups when the top 1 models were considered. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis

Tue, 09/22/2015 - 01:33
ABSTRACT

The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the Hα hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. Proteins 2015; 83:1973–1986. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure

Tue, 09/22/2015 - 01:33
ABSTRACT

Amyloid fibers, implicated in a wide range of diseases, are formed when proteins misfold and stick together in long rope-like structures. As a natural mechanism, osmolytes can be used to modulate protein aggregation pathways with no interference with other cellular functions. The osmolyte sucrose delays fibrillation of the ribosomal protein S6 leading to softer and less shaped-defined fibrils. The molecular mechanism used by sucrose to delay S6 fibrillation was studied based on the two-state unfolding kinetics of the secondary and tertiary structures. It was concluded that the delay in S6 fibrillation results from stabilization and compaction of the slightly expanded tertiary native structure formed under fibrillation conditions. Interestingly, this compaction extends to almost all S6 tertiary structure but hardly affects its secondary structure. The part of the S6 tertiary structure that suffered more compaction by sucrose is known to be the first part to unfold, indicating that the native S6 has entered the unfolding pathway under fibrillation conditions. Proteins 2015; 83:2039–2051. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

The value of protein structure classification information—Surveying the scientific literature

Sat, 09/19/2015 - 01:09
ABSTRACT

The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP–extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012–2013 that cite SCOP, 439 actually use data from the resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non-SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings. Proteins 2015; 83:2025–2038. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

Categories: Journal Articles

Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade

Fri, 09/18/2015 - 01:41
ABSTRACT

We report the structure prediction results of a new composite pipeline for template-based modeling (TBM) in the 11th CASP experiment. Starting from multiple structure templates identified by LOMETS based meta-threading programs, the QUARK ab initio folding program is extended to generate initial full-length models under strong constraints from template alignments. The final atomic models are then constructed by I-TASSER based fragment reassembly simulations, followed by the fragment-guided molecular dynamic simulation and the MQAP-based model selection. It was found that the inclusion of QUARK-TBM simulations as an intermediate modeling step could help improve the quality of the I-TASSER models for both Easy and Hard TBM targets. Overall, the average TM-score of the first I-TASSER model is 12% higher than that of the best LOMETS templates, with the RMSD in the same threading-aligned regions reduced from 5.8 to 4.7 Å. Nevertheless, there are nearly 18% of TBM domains with the templates deteriorated by the structure assembly pipeline, which may be attributed to the errors of secondary structure and domain orientation predictions that propagate through and degrade the procedures of template identification and final model selections. To examine the record of progress, we made a retrospective report of the I-TASSER pipeline in the last five CASP experiments (CASP7-11). The data show no clear progress of the LOMETS threading programs over PSI-BLAST; but obvious progress on structural improvement relative to threading templates was witnessed in recent CASP experiments, which is probably attributed to the integration of the extended ab initio folding simulation with the threading assembly pipeline and the introduction of atomic-level structure refinements following the reduced modeling simulations. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Template based protein structure modeling by global optimization in CASP11

Mon, 09/14/2015 - 07:59
ABSTRACT

For the template-based modeling (TBM) of CASP11 targets, we have developed three new protein modeling protocols (nns for server prediction and LEE and LEER for human prediction) by improving upon our previous CASP protocols (CASP7 through CASP10). We applied the powerful global optimization method of conformational space annealing to three stages of optimization, including multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain remodeling. For more successful fold recognition, a new alignment method called CRFalign was developed. It can incorporate sensitive positional and environmental dependence in alignment scores as well as strong nonlinear correlations among various features. Modifications and adjustments were made to the form of the energy function and weight parameters pertaining to the chain building procedure. For the side-chain remodeling step, residue-type dependence was introduced to the cutoff value that determines the entry of a rotamer to the side-chain modeling library. The improved performance of the nns server method is attributed to successful fold recognition achieved by combining several methods including CRFalign and to the current modeling formulation that can incorporate native-like structural aspects present in multiple templates. The LEE protocol is identical to the nns one except that CASP11-released server models are used as templates. The success of LEE in utilizing CASP11 server models indicates that proper template screening and template clustering assisted by appropriate cluster ranking promises a new direction to enhance protein 3D modeling. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Examination of the dynamic assembly equilibrium for E. coli ClpB

Thu, 09/10/2015 - 01:37
ABSTRACT

Escherichia coli ClpB is a heat shock protein that belongs to the AAA+ protein superfamily. Studies have shown that ClpB and its homologue in yeast, Hsp104, can disrupt protein aggregates in vivo. It is thought that ClpB requires binding of nucleoside triphosphate to assemble into hexameric rings with protein binding activity. In addition, it is widely assumed that ClpB is uniformly hexameric in the presence of nucleotides. Here we report, in the absence of nucleotide, that increasing ClpB concentration leads to ClpB hexamer formation, decreasing NaCl concentration stabilizes ClpB hexamers, and the ClpB assembly reaction is best described by a monomer, dimer, tetramer, hexamer equilibrium under the three salt concentrations examined. Further, we found that ClpB oligomers exhibit relatively fast dissociation on the time scale of sedimentation. We anticipate our studies on ClpB assembly to be a starting point to understand how ClpB assembly is linked to the binding and disaggregation of denatured proteins. Proteins 2015; 83:2008–2024. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Nonlinearities in protein space limit the utility of informatics in protein biophysics

Thu, 09/10/2015 - 01:14
ABSTRACT

We examine the utility of informatic-based methods in computational protein biophysics. To do so, we use newly developed metric functions to define completely independent sequence and structure spaces for a large database of proteins. By investigating the relationship between these spaces, we demonstrate quantitatively the limits of knowledge-based correlation between the sequences and structures of proteins. It is shown that there are well-defined, nonlinear regions of protein space in which dissimilar structures map onto similar sequences (the conformational switch), and dissimilar sequences map onto similar structures (remote homology). These nonlinearities are shown to be quite common—almost half the proteins in our database fall into one or the other of these two regions. They are not anomalies, but rather intrinsic properties of structural encoding in amino acid sequences. It follows that extreme care must be exercised in using bioinformatic data as a basis for computational structure prediction. The implications of these results for protein evolution are examined. Proteins 2015; 83:1923–1928. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Probing protease sensitivity of recombinant human erythropoietin reveals α3–α4 inter-helical loop as a stability determinant

Tue, 09/08/2015 - 01:32
ABSTRACT

Although unglycosylated HuEpo is fully functional, it has very short serum half-life. However, the mechanism of in vivo clearance of human Epo (HuEpo) remains largely unknown. In this study, the relative importance of protease-sensitive sites of recombinant HuEpo (rHuEpo) has been investigated by analysis of structural data coupled with in vivo half-life measurements. Our results identify α3-α4 inter-helical loop region as a target site of lysosomal protease Cathepsin L. Consistent with previously-reported lysosomal degradation of HuEpo, these results for the first time identify cleavage sites of rHuEpo by specific lysosomal proteases. Furthermore, in agreement with the lowered exposure of the peptide backbone around the cleavage site, remarkably substitutions of residues with bulkier amino acids result in significantly improved in vivo stability. Together, these results have implications for the mechanism of in vivo clearance of the protein in humans. Proteins 2015; 83:1813–1822. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles