FEBS Letters

Syndicate content
FEBS Letters RSS feed. FEBS Letters is one of the world's leading journals in biochemistry and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, hypotheses and research letters that merit urgent publication.FEBS Letters offers:• Faster publication: − Accepted articles are published online in 3 days − The print version of the article is published in 3 to 5 weeks after acceptance• Full-text article disclosure in HTML and PDF formats• Articles in Press are included in PubMed• Easy online manuscript submission system• Transparent online peer review and manuscript tracking system• No page charges• Free color figures Subject Coverage:The subject area of FEBS Letters is broad. It covers biochemistry (including protein chemistry, enzymology, nucleic acid chemistry, metabolism, and immunochemistry), structural biology, biophysics, computational biology (genomics, proteomics, bioinformatics), molecular genetics, molecular biology and molecular cell biology (signal transduction, intracellular traffic, regulation of cellular proliferation, cell-cell interactions) and systems biology. Studies on microbes, plants and animals at the molecular level are within the scope of FEBS Letters.Submitting Authors: Manuscripts can be submitted to FEBS Letters at: http://ees.elsevier.com/febsletters/
Updated: 8 years 20 weeks ago

Re-wiring regulatory cell networks in immunity by galectin–glycan interactions

Sat, 09/05/2015 - 23:00
Programs that control immune cell homeostasis are orchestrated through the coordinated action of a number of regulatory cell populations, including regulatory T cells, regulatory B cells, myeloid-derived suppressor cells, alternatively-activated macrophages and tolerogenic dendritic cells. These regulatory cell populations can prevent harmful inflammation following completion of protective responses and thwart the development of autoimmune pathology. However, they also have a detrimental role in cancer by favoring escape from immune surveillance.

Cochlear hair cells: The sound-sensing machines

Sun, 08/30/2015 - 23:00
The sensory epithelium of the mammalian inner ear contains two types of mechanosensory cells: inner (IHC) and outer hair cells (OHC). They both transduce mechanical force generated by sound waves into electrical signals. In their apical end, these cells possess a set of stereocilia representing the mechanosensing organelles. IHC are responsible for detecting sounds and transmitting the acoustic information to the brain by converting graded depolarization into trains of action potentials in auditory nerve fibers.

Communication between circadian clusters: The key to a plastic network

Tue, 08/18/2015 - 23:00
Drosophila melanogaster is a model organism that has been instrumental in understanding the circadian clock at different levels. A range of studies on the anatomical and neurochemical properties of clock neurons in the fly led to a model of interacting neural circuits that control circadian behavior. Here we focus on recent research on the dynamics of the multiple communication pathways between clock neurons, and, particularly, on how the circadian timekeeping system responds to changes in environmental conditions.

Overcoming differences: The catalytic mechanism of metallo-β-lactamases

Tue, 08/18/2015 - 23:00
Metallo-β-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes. Here we provide a critical review of mechanistic studies of the three known subclasses of metallo-β-lactamases, analyzed at the light of structural and mutagenesis investigations.

Role of RSUME in inflammation and cancer

Tue, 08/18/2015 - 23:00
RSUME (for RWD-domain-containing sumoylation enhancer), RWDD3 gene, was identified from a pituitary tumor cell with increased tumorigenic and angiogenic potential, and has higher expression in cerebellum, pituitary, heart, kidney, liver, pancreas, adrenal gland and prostate. RSUME is induced by cellular stress like hypoxia and heat shock, and is increased in pituitary tumors, in gliomas and in VHL tumors. Seven splicing forms have been described. Two of them correspond to non-coding RNAs and the other five possess an RWD domain in the N-terminus and differ in their C-terminal end.

Contribution of autophagy to antiviral immunity

Tue, 08/18/2015 - 23:00
Although identified in the 1960’s, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a “self-eating” process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders.

Voltage-gated proton (H1) channels, a singular voltage sensing domain

Mon, 08/17/2015 - 23:00
The main role of voltage-gated proton channels (Hv1) is to extrude protons from the intracellular milieu when, mediated by different cellular processes, the H+ concentration increases. Hv1 are exquisitely selective for protons and their structure is homologous to the voltage sensing domain (VSD) of other voltage-gated ion channels like sodium, potassium, and calcium channels. In clear contrast to the classical voltage-dependent channels, Hv1 lacks a pore domain and thus permeation necessarily occurs through the voltage sensing domain.

Chromatin, DNA structure and alternative splicing

Mon, 08/17/2015 - 23:00
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.

Paving the way for adequate myelination: The contribution of galectin-3, transferrin and iron

Mon, 08/17/2015 - 23:00
Considering the worldwide incidence of well characterized demyelinating disorders such as Multiple Sclerosis (MS) and the increasing number of pathologies recently found to involve hypomyelinating factors such as micronutrient deficits, elucidating the molecular basis of central nervous system (CNS) demyelination, remyelination and hypomyelination becomes essential to the development of future neuroregenerative therapies. In this context, this review discusses novel findings on the contribution of galectin-3 (Gal-3), transferrin (Tf) and iron to the processes of myelination and remyelination and their potentially positive regulation of oligodendroglial precursor cell (OPC) differentiation.