Lecture: Analysis of Algorithms (CS483 - 001)

Amarda Shehu

Spring 2017
Probabilistic Analysis

- Average Case Analysis of Insertion Sort
Definition

Let $T(n)$ denote the average case time complexity used by an algorithm to solve a problem on an input size n. Then:

$$T(n) = \sum_{I \in D_n} P(I) \circ t(I)$$

- D_n is the set of all input instances of size n
- I denotes instance I taking values over sample space D_n
- $P(I)$ denotes the probability with which I occurs
- $t(I)$ denotes time it takes to solve problem on input instance I
- $\sum_{I \in D_n} P(I) = 1$ for correct analysis
Light Exercise: Average Case Analysis of Insertion Sort
Need a bit of a refresher on expected values and random variables.
Need a bit of a refresher on *expected* values and *random variables*
Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable X_H to track this number

$E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2$
Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable X_H to track this number

$$E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2$$

Expected number of H’s from one flip of a fair coin is 1/2.
Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable X_H to track this number

$$E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2$$

Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?
Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable X_H to track this number

$$E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2$$

Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let $X = \sum_{i=1}^{n} X_{H,i}$ be the total number of H’s in n tosses.
Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable X_H to track this number

$$E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2$$

Expected number of H’s from one flip of a fair coin is $1/2$.

Q: What is the expected number of Heads in n tosses of a coin?

Let $X = \sum_{i=1}^{n} X_{H,i}$ be the total number of H’s in n tosses.

Then:

$$E[X] = E[\sum_{i=1}^{n} X_{H,i}] = \sum_{i=1}^{n} E[X_H] = \sum_{i=1}^{n} 1/2 = n/2$$
Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable X_H to track this number

$$E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2$$

Expected number of H’s from one flip of a fair coin is $1/2$.

Q: What is the expected number of Heads in n tosses of a coin?

Let $X = \sum_{i=1}^{n} X_{H,i}$ be the total number of H’s in n tosses.

Then:

$$E[X] = E[\sum_{i=1}^{n} X_{H,i}] = \sum_{i=1}^{n} E[X_{H,i}] = \sum_{i=1}^{n} 1/2 = n/2$$

*Expected number of H’s from n tosses of a fair coin is $1/2$.***
Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable \(X_H \) to track this number

\[
E[X_H] = 1 \cdot P(X_H = 1) + 0 \cdot P(X_H = 0) = 1 \cdot (1/2) + 0 \cdot (1/2) = 1/2
\]

Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in \(n \) tosses of a coin?

Let \(X = \sum_{i=1}^{n} X_{H,i} \) be the total number of H’s in \(n \) tosses.

Then:
\[
E[X] = E[\sum_{i=1}^{n} X_{H,i}] = \sum_{i=1}^{n} E[X_H]
\]

\[
= \sum_{i=1}^{n} 1/2 = n/2
\]

Expected number of H’s from \(n \) tosses of a fair coin is 1/2.
InsertionSort\((\text{array} A[1 \ldots n]) \)

1: for \(j \leftarrow 2 \) to \(n \) do
2: Temp \(\leftarrow A[j] \)
3: \(i \leftarrow j - 1 \)
4: while \(i > 0 \) and \(A[i] > \) Temp do
5: \(A[i + 1] \leftarrow A[i] \)
6: \(i \leftarrow i - 1 \)
7: \(A[i + 1] \leftarrow \) Temp

- Loop invariant: At the start of each iteration \(j \), \(A[1 \ldots j - 1] \) is sorted.

Recall:
\[
T(n) = \sum_{j=2}^{n} \{ A + \sum_{i=0}^{j-1} B + C \}
\]

Ignoring machine-dependent constants, we can write:
\[
T(n) = \sum_{j=2}^{n} k_j, \text{ where } k_j \text{ is a variable that tracks the total number of iterations of the inner while loop in an iteration of the outer for loop}
\]

In the worst-case analysis, we assumed that \(k_j \leq j \), arriving at a total quadratic running time for insertion sort.

Here we ask for \(E[k_j] \)
Average Case Analysis of Insertion Sort

\(k_j \): random variable counting total number of moves to the right

So: \(E[k_j] = E[\sum_{i=1}^{j-1} k_i] \), where \(k_i \) is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: \(E[k_j] = \sum_{i=1}^{j-1} E[k_i] \)

What is \(E[k_i] \)?
Average Case Analysis of Insertion Sort

\(k_j \): random variable counting total number of moves to the right

So: \(E[k_j] = E[\sum_{i=1}^{j-1} k_i] \), where \(k_i \) is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: \(E[k_j] = \sum_{i=1}^{j-1} E[k_i] \)

What is \(E[k_i] \)?

\[E[k_i] = P(\text{move}) \times 1 + P(\text{no move}) \times 0 \]
Average Case Analysis of Insertion Sort

\(k_j \): random variable counting total number of moves to the right

So: \(E[k_j] = E[\sum_{i=1}^{j-1} k_i] \), where \(k_i \) is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: \(E[k_j] = \sum_{i=1}^{j-1} E[k_i] \)

What is \(E[k_i]？ \)

\[E[k_i] = P(\text{move}) \times 1 + P(\text{no move}) \times 0 \]

\[P(\text{move}) = P(A[i] > \text{Key}) = 0.5 \]
Average Case Analysis of Insertion Sort

k_j: random variable counting total number of moves to the right

So: $E[k_j] = E[\sum_{i=1}^{j-1} k_i]$, where k_i is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: $E[k_j] = \sum_{i=1}^{j-1} E[k_i]

What is $E[k_i]$?

$E[k_i] = P(move) \times 1 + P(no\ move) \times 0$

$P(move) = P(A[i] > Key) = 0.5$

So: $E[k_i] = 0.5 \times 1 = 0.5 \implies E[k_j] = \sum_{i=1}^{j-1} 0.5 = \frac{j-1}{2}$

Finally:

$E[T(n)] = \sum_{j=2}^{n} j - 1 \cdot 0.5 = \frac{j-1}{2}$

You can show that this expected running time is no better than the worst-case running time.
Average Case Analysis of Insertion Sort

- **k_j:** random variable counting total number of moves to the right

So: $E[k_j] = E[\sum_{i=1}^{j-1} k_i]$, where k_i is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: $E[k_j] = \sum_{i=1}^{j-1} E[k_i]$

What is $E[k_i]$?

$E[k_i] = P(move) \times 1 + P(no \ move) \times 0$

$P(move) = P(A[i] > Key) = 0.5$

So: $E[k_i] = 0.5 \times 1 = 0.5 \Rightarrow E[k_j] = \sum_{i=1}^{j-1} 0.5 = \frac{j-1}{2}$

Finally: $E[T(n)] = \sum_{j=2}^{n} \frac{j-1}{2}$
k_j: random variable counting total number of moves to the right

So: \(E[k_j] = E[\sum_{i=1}^{j-1} k_i] \), where \(k_i \) is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: \(E[k_j] = \sum_{i=1}^{j-1} E[k_i] \)

What is \(E[k_i] \)?

\(E[k_i] = P(move) \times 1 + P(no \ move) \times 0 \)

\(P(move) = P(A[i] > Key) = 0.5 \)

So: \(E[k_i] = 0.5 \times 1 = 0.5 \implies E[k_j] = \sum_{i=1}^{j-1} 0.5 = \frac{j-1}{2} \)

Finally: \(E[T(n)] = \sum_{j=2}^{n} \frac{j-1}{2} \)

You can show that this expected running time is no better than the worst-case running time.
Average Case Analysis of Insertion Sort

k_j: random variable counting total number of moves to the right

So: $E[k_j] = E[\sum_{i=1}^{j-1} k_i]$, where k_i is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: $E[k_j] = \sum_{i=1}^{j-1} E[k_i]$

What is $E[k_i]$? $E[k_i] = P(move) \times 1 + P(no \ move) \times 0$

$P(move) = P(A[i] > Key) = 0.5$

So: $E[k_i] = 0.5 \times 1 = 0.5 \implies E[k_j] = \sum_{i=1}^{j-1} 0.5 = \frac{j-1}{2}$

Finally: $E[T(n)] = \sum_{j=2}^{n} \frac{j-1}{2}$

You can show that this expected running time is no better than the worst-case running time.
Can we do better than $\theta(n^2)$?

You have have already seen an example ...
Can we do better than $\theta(n^2)$?

You have already seen an example ...

More follow
Can we do better than $\theta(n^2)$?

You have already seen an example ...

More follow