Lecture: Analysis of Algorithms (CS483 - 001)\(^1\)

Amarda Shehu

Spring 2017

\(^1\)Some material adapted from Kevin Wayne’s Algorithm Class © Princeton
Finding Minimum Spanning Trees

- Enumerating Spanning Trees
- Minimum Spanning Trees
- Kruskal’s Algorithm
- Prim’s Algorithm
Overview

- Uninformed graph search (for finding paths)
 - Depth-first Search (DFS) ✓
 - Breadth-first Search (BFS) ✓
 - Depth-limited search (DLS) ✓
 - Iterative Deepening Search (IDS) ✓

- Informed graph search (for finding shortest paths)
 - Dijkstra [Edsger Dijkstra 1959] ✓
 - B* [Hans Berliner 1979]
 - Best-First Search [Judea Pearl 1984]

- Informed graph search (for finding minimum spanning trees)
 - Boruvka [Otakar Boruvka 1926]
 - Jarnik [V. Jarnik 1930]
 - Kruskal [Joseph B. Kruskal 1956]
 - Prim [Run C. Prim 1957]
 - Chazelle [Bernard Chazelle 2000]
What is the Spanning Tree of a Graph?

If $G = (V, E)$ is a graph, then any subgraph of G that (i) contains all vertices V of G and (ii) is a tree is a **spanning tree** of G.

Figure: Graph $G = (V, E)$

Figure: Spanning tree $T = (V, E')$ of graph G

Figure: Another spanning tree of graph G
Some Spanning Trees are Better than Others

- A weighted (connected) undirected graph $G = (V, E)$
- Weight function $w : E \rightarrow R$ associates a weight with an edge
- The weight $w(T)$ of a tree T is $\sum_{(u,v) \in T} w(u, v)$
- A minimum spanning tree (MST) has the minimum $w(T)$ over all spanning trees T of a graph G

Figure: Weighted graph

Figure: MST: $w(T) = 50$
Finding MSTs is Useful in Diverse Applications

- Network design
 - Phone, electric, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems
 - Traveling Salesman Problem, Steiner trees
- Other (indirect) applications
 - Maximum bottleneck paths
 - LDPC codes for error correction
 - Image registration with Renyi entropy
 - Learn features for real-time face verification
 - Reduce data storage in sequencing amino acids in a protein
 - Model locality of particle interactions in turbulent fluid flows
 - Autoconfig protocol for Ethernet bridging to avoid cycles
Problem: Given a weighted (connected) undirected graph $G = (V, E)$, find an MST of G.

Input: A connected, undirected graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$

Output: A spanning tree T of G that is of minimum weight $w(T) = \sum_{(u,v) \in T} w(u, v)$
There’s the history:

- **Boruvka** [Otakar Boruvka 1926]
 - Wanted to minimize the cost of electric coverage of Moravia
- **Jarnik** [V. Jarnik 1930]
- **Kruskal** [Joseph B. Kruskal 1956]
- **Prim** [Run C. Prim 1957]
- **Chazelle** [Bernard Chazelle 2000]

And then there’s us:

- Brute-force approach
- Something smarter?
Enumerating spanning trees of a graph

- Denote the number of spanning trees of a graph G by $t(G)$
- $t(G)$ is easy to compute for special graphs
- Cayley’s formula gives $t(G)$ for a complete graph on n vertices: $t(G) = n^{n-2}$ for $n > 1$
- Example: in a complete graph on 4 vertices, $t(G) = 16$
- For any graph G, $t(G)$ can be computed with Kirchhoff’s matrix-free theorem: $t(G) = \frac{1}{n} \lambda_1 \cdot \ldots \cdot \lambda_{n-1}$, where λ_i are the non-zero eigenvalues of the Laplacian matrix of G
- Bottom line: Too many spanning trees to enumerate to find MST through a brute-force approach
Brute-force Approach: terribly inefficient

Greedy Approach:

- Find a key property of the MST to help determine whether an edge of G is part of the MST
- Then build up the MST one step (edge/vertex) at a time
Greedy Algorithms to Find the MST of a Graph

- **Kruskal’s Algorithm**

 Heuristic: Select best edge for insertion

 Approach: (i) Start with $T = \emptyset$. (ii) Consider edges in ascending order of weight/cost. (iii) Insert edge e in T unless doing so creates a cycle.

- **Reverse-Delete Algorithm**

 Heuristic: Select worst edge for deletion

 Approach: (i) Start with $T = E$. (ii) Consider edges in descending order of weight/cost. (iii) Delete edge e from T unless doing so disconnects T.

- **Prim’s Algorithm**

 Heuristic: Select best vertex

 Approach: (i) Start with some vertex s as root node. (ii) Greedily grow T from s outward. (iii) At each step, add cheapest edge e to T that has exactly one endpoint in T.

Amarda Shehu
Lecture: Analysis of Algorithms (CS483 - 001)
A Generic Algorithmic Template for Finding MSTs

Generic-MST(G, w)
1: $T \leftarrow \{\}$
2: while T does not form a spanning tree do
3: find an edge in E that is safe for T
4: $T \leftarrow T \cup \{u, v\}$
5: return T

Taking care of some implementation and correctness details:
- line 2: when do we know T forms a spanning tree?
- line 3: what does it mean to add a safe edge to T?
- lines 3-4: safeness has to address both low cost and no cycles
Cycles and Cuts

Cycle: Set of edges \(\{(v_1, v_2), \ldots, (v_k, v_1)\} \)

Cut: A subset \(S \) of vertices \(V \)

Cutset: Subset \(D \) of edges with exactly one endpoint in \(S \)

Figure: Cycle \(C = \{(1, 2), \ldots, (6, 1)\} \)

Figure: Cut \(S = (4, 5, 8) \). Cutset \(D = \{(5, 6), \ldots, (7, 8)\} \)
Greedy Algorithms for MSTs Exploit Certain Properties

- **Simplifying assumption**: All edge costs/weights are distinct.
- **Cut property**: Let S be any subset of vertices V in the graph $G = (V, E)$. Let $e \in E$ be the minimum weight edge with exactly one endpoint in S. Then, the MST of G contains e.
- **Cycle property**: Let C be any cycle, and let f be the maximum weight edge in C. Then, the MST does not contain f.

![Figure: e is in the MST](image)

![Figure: f is not in the MST](image)
Lemma: A cycle and a cutset intersect in an even number of edges

Cycle $C = \{(1, 2), (2, 3), \ldots, (6, 1)\}$
Cutset $D = \{(3, 4), (3, 5), \ldots, (7, 8)\}$
Intersection $I = \{(3, 4), (5, 6)\}$

Proof: Argument built from picture below
Cut Property Lemma: Let S be any subset of vertices V of $G = (V, E)$. Let $e \in E$ be the minimum weight edge with exactly one endpoint in S. Then, the MST T^* of G contains e.

Proof: (cut-and-paste argument)

- Suppose $e \not\in E(T^*)$. We are given that $e = (u, v)$, where $u \in S$ and $v \in V - S$. So, $e \in D$, the cutset corresponding to S.
- As a spanning tree, T^* contains a unique path from u to v without e in it.
- Adding e to T^* would create a cycle C in T^*. So, $e \in C \cap D$.
- Since $C \cap D$ contains an even number of edges, $\exists f \in C \cap D$.
- Create $T' = T^* \cup \{e\} - \{f\}$. Since $w(e) < w(f) \Rightarrow w(T') < w(T^*)$.
- T' is more optimal than T^* \Rightarrow proof achieved by contradiction.
Cycle Property: Proof

Cycle Property Lemma: Let C be any cycle in $G = (V, E)$. Let f be the maximum weight edge in C. Then, the MST T^* of G does not contain f.

Proof: (cut-and-paste argument)

- Suppose $f \in E(T^*)$. Deleting f from T^* creates a cut S in T^*. So $f \in D$, the cutset corresponding to S.

- Edge $f \in C$ as well, so $f \in C \cap D$.

- Since $C \cap D$ contains an even number of edges, $\exists e \in C \cap D$.

- Create $T' = T^* \cup \{e\} - \{f\}$. Since $w(e) < w(f) \Rightarrow w(T') < w(T^*)$.

- T' is more optimal than T^* \Rightarrow proof achieved by contradiction.
Kruskal’s Algorithm [Kruskal, 1956]

- Start with $E(T) \leftarrow \emptyset$
- Consider edges in $E(G)$ in ascending order of weight
- Case 1: If adding e to $E(T)$ creates a cycle, discard e (cycle property)
- Case 2: Else, insert $e = (u, v)$ in $E(T)$, where S is the set of vertices in u’s connected component (cut property)
Kruskal’s Algorithm: Implementation and Analysis

Kruskal-MST(G = (V, E), w)

1: sort the edges of G in ascending order of weights
2: V(T) ← V(G), E(T) ← ∅
3: for each edge e = (u, v) ∈ E in sorted order do
4: if u and v are in different connected components then
5: E(T) ← E(T) ∪ {e}
6: return T

Analysis:
- Sorting ⇒ O(|E| · lg(|E|)) time in the worst-case
- For loop iterates over all |E| edges in sorted order
- Potentially, line 4 could be slow. How can one find quickly whether the endpoints of e are disconnected in S?
- Line 4 can be performed in O(1) time through the union-find operation on a disjoint-set data structure
- Short detour...
Disjoint-set Data Structure

- Maintains a collection of disjoint dynamic sets \(\{S_1, \ldots, S_k\} \)
- Each \(S_i \) can be represented as a linked list or tree
- The unique “key” of a set can be stored at root

Operations:

- Make-Set(\(x \)): create \(\{x\} \)
- Find-Set(\(x \)): find set that contains \(x \)
- Union(\(x, y \)): merge sets that contain \(x \) and \(y \)

A sequence of \(O(m) \) Union and Find-Set operations on \(m \) elements can be performed in \(O(m \cdot \log m) \) time.
Kruskal-MST(G, w)

1: S ← {}
2: for each vertex v ∈ V(G) do
3: Make-Set(v)
4: sort the edges of G in ascending order of weights
5: for each edge e = (u, v) in sorted order do
6: if Find-Set(u) ≠ Find-Set(v) then
7: S ← S ∪ {(u, v)}
8: Union(u,v)
9: return S

Analysis: Lines 5-8 contain O(E) Find-Set and Union operations. Along with |V| Make-Set, these take O((V + E) · α(V)), where α is a slowly growing function. Total running time is O(E · lg(E)), since E ≥ |V| − 1 in a connected graph (equiv. O(E · lg(V))).
Kruskal’s Algorithm in Action

Diagram of a network with weighted edges between nodes A, B, C, D, E, F, and G.
Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action

Graph with weighted edges demonstrating the process of finding a minimum spanning tree.
Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action
Prim’s Algorithm: One Vertex at a Time

Prim’s Algorithm [Jarnik 1930, Dijkstra 1957, Prim 1959]

- Initialize S to be any vertex of G
- Apply cut property to S
- Add minimum weight edge $e = (u, v)$ in cutset D corresponding to S to the growing MST and add new v to S
Prim’s Algorithm

Prim-MST(G, w)

1: let T contain first an arbitrary vertex $s \in V$
2: while T has fewer than $|V|$ vertices do
3: find the lightest edge connecting T to $G - T$
4: add it to T
5: return T

- Maintain set of explored vertices (that are already nodes in the tree) in S
- For each unexplored vertex $v \in V - S$, maintain the attachment cost $d[v] = \text{weight of lightest edge connecting } v \text{ to a node in } S$
- Key to a fast implementation: maintain $V - S$ as a priority queue, where the key of each unexplored vertex is the attachment cost, the weight of the lightest edge connecting v to S
Implementing Prim’s Algorithm

Remember: Maintain \(V - S \) as a priority queue \(Q \). The key of each vertex \(v \) in \(Q \) is the weight of the lightest edge connecting \(v \) to \(S \)

Prim-MST(G, w)

1: \(Q \leftarrow V \)
2: \(\text{key}[v] \leftarrow \infty \) and \(\pi[v] \leftarrow \infty \) for all \(v \in V \)
3: \(\text{key}[s] \leftarrow 0 \) for an arbitrary \(s \in V \)
4: \textbf{while} \(Q \neq \emptyset \) \textbf{do}
5: \(u \leftarrow \text{Extract-Min}(Q) \)
6: \textbf{for} each \(v \in \text{Adj}(u) \) \textbf{do}
7: \textbf{if} \(v \in Q \) and \(w(u, v) < \text{key}[v] \) \textbf{then}
8: \(\text{key}[v] \leftarrow w(u, v) \)
9: \(\pi(v) \leftarrow u \)
10: \textbf{return} \((v, \pi(v))\) as the MST in the end
Prim’s Algorithm in Action [explored vertices in \(A \)]

- \(\in A \)
- \(\in V - A \)
Prim's Algorithm in Action [explored vertices in A]

$\in A$

$\in V - A$
Prim’s Algorithm in Action [explored vertices in A]
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Outline of Today's Class
Finding Minimum Spanning Trees
- Minimum Spanning Trees
- Kruskal’s Algorithm
- Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

$\in A$
$\in V - A$

Amarda Shehu
Lecture: Analysis of Algorithms (CS483 - 001)
Prim’s Algorithm in Action [explored vertices in A]

$\in A$

$\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Prim’s Algorithm in Action [explored vertices in A]
Prim’s Algorithm in Action [explored vertices in A]
Prim’s Algorithm in Action [explored vertices in A]

\[\epsilon A \]
\[\epsilon V - A \]
Analysis of Prim’s Algorithm

\[Q \leftarrow V \]
\[\text{key}[v] \leftarrow \infty \text{ for all } v \in V \]
\[\text{key}[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]

\[\text{while } Q \neq \emptyset \]

\[\text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \]

\[\text{for each } v \in \text{Adj}[u] \]

\[\text{do if } v \in Q \text{ and } w(u, v) < \text{key}[v] \]

\[\text{then } \text{key}[v] \leftarrow w(u, v) \]
\[\pi[v] \leftarrow u \]
Analysis of Prim’s Algorithm

Time = $\theta(V) \cdot T(\text{Extract - Min}) + \theta(E) \cdot T(\text{Decrease - Key})$

<table>
<thead>
<tr>
<th>Q</th>
<th>$T(\text{Extract-Min})$</th>
<th>$T(\text{Decrease-Key})$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(1)$</td>
<td>$O(lgV)$</td>
<td>$O(E \cdot lgV)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(lgV)$</td>
<td>$O(1)$</td>
<td>$O(E + V \cdot lgV)$</td>
</tr>
</tbody>
</table>