1 Outline of Today’s Class

2 Order Statistics
 - Selection of Order Statistics in Expected Linear Time
 - Randomized Divide and Conquer
 - Selection of Order Statistics in Worst-case Linear Time
 - Median of Medians
 - Analysis of Worst-case Running Time
 - Order Statistics: Conclusions
Some Order Statistics We Know

Select the i^{th} smallest of n elements (the element with rank i):

- $i = 1$: minimum
- $i = n$: maximum
- $i = (n + 1)/2$: median
Order Statistics

Outline of Today's Class
Order Statistics

Selection of Order Statistics in Expected Linear Time
Selection of Order Statistics in Worst-case Linear Time
Order Statistics: Conclusions

Some Order Statistics We Know

Select the i^{th} smallest of n elements (the element with rank i):

- $i = 1$: minimum
- $i = n$: maximum
- $i = (n + 1)/2$: median

Design a simple algorithm to find the element with rank i
Some Order Statistics We Know

Select the \(i \)\(^{\text{th}} \) smallest of \(n \) elements (the element with rank \(i \)):

- \(i = 1 \): minimum
- \(i = n \): maximum
- \(i = (n + 1)/2 \): median

Design a simple algorithm to find the element with rank \(i \)
Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of n elements (the element with rank i):

- $i = 1$: minimum
- $i = n$: maximum
- $i = (n + 1)/2$: median

Design a simple algorithm to find the element with rank i

Naive algorithm: Sort and index i^{th} element.
Order Statistics

Some Order Statistics We Know

Select the \(i^{th}\) smallest of \(n\) elements (the element with rank \(i\)):
- \(i = 1\): minimum
- \(i = n\): maximum
- \(i = (n + 1)/2\): median

Design a simple algorithm to find the element with rank \(i\)

Naive algorithm: Sort and index \(i^{th}\) element.

Worst-case running time \(\in \theta(n \cdot \log n) + \theta(1)\)
\(\in \theta(n \cdot \log n)\)
Order Statistics

Some Order Statistics We Know

Select the \(i^{\text{th}} \) smallest of \(n \) elements (the element with rank \(i \)):

- \(i = 1 \): minimum
- \(i = n \): maximum
- \(i = (n + 1)/2 \): median

Design a simple algorithm to find the element with rank \(i \)

Naive algorithm: Sort and index \(i^{\text{th}} \) element.

Worst-case running time \(\in \theta(n \cdot \log n) + \theta(1) \)

\(\in \theta(n \cdot \log n) \)

...use mergesort or heapsort (not quicksort)
Some Order Statistics We Know

Select the i^{th} smallest of n elements (the element with rank i):

- $i = 1$: minimum
- $i = n$: maximum
- $i = (n + 1)/2$: median

Design a simple algorithm to find the element with rank i

Naive algorithm: Sort and index i^{th} element.

Worst-case running time $\in \theta(n \cdot \log n) + \theta(1)$

...use mergesort or heapsort (not quicksort)
Randomized Divide and Conquer Algorithm

RAND-SELECT(array A, p, q, i) ▷ i^{th} smallest of A[p...q]

1: if p = q then
2: return A[p]
3: r ← RAND-PARTITION(A, p, q)
4: k ← r − p + 1 ▷ k = rank(A[r])
5: if i = k then
6: return A[r]
7: if i < k then
8: return RAND-SELECT(A, p, r − 1, i)
9: else return RAND-SELECT(A, r + 1, q, i − k)
Randomized Select: Trace

Select the \(i = 7^{th} \) smallest element from the array below:

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\(i = 7 \)

pivot

Partition:

\[
\begin{array}{cccccccc}
2 & 5 & 3 & 6 & 8 & 13 & 10 & 11 \\
\end{array}
\]

\(k = 4 \)

Now select the \(7 - 4 = 3^{rd} \) smallest element recursively.
Randomized Select: Running Time Analysis

- Analysis follows closely that of quicksort
- For simplicity, we will assume that all elements are distinct
- We will first gain intuition through lucky/unlucky scenarios

Lucky: [assume a 1 : 9 partition after RAND-PARTITION]

\[
T(n) = T\left(\frac{9n}{10}\right) + \theta(n) \quad n^{\log_{10/9}(1)} = n^0 = 1
\]
\[
= \theta(n) \quad \text{CASE 3 of master theorem}
\]

Unlucky: [assume one side of the partitioned array is empty]

\[
T(n) = T(n - 1) + \theta(n) \quad \text{arithmetic series}
\]
\[
= \theta(n^2) \quad \text{worse than sorting!!}
\]
Randomized Select: Analysis of Expected Time

- Analysis similar to randomized quicksort
- Let $T(n)$ be the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent
- To obtain upper bound, assume the i^{th} smallest element always falls on the larger side of the partition:

$$T(n) = \begin{cases}
T(\max\{0, n-1\}) + \theta(n) & \text{if } 0:n-1 \text{ split} \\
T(\max\{1, n-2\}) + \theta(n) & \text{if } 1:n-2 \text{ split} \\
\cdots
\end{cases}$$

- Summing up we have:

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\}) + \theta(n)]$$
Randomized Select: Those pesky expectations...

\[E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n) \]

\[= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n) \]

get \(\theta(n) \) outside

upper terms appear twice
Randomized Select: Those pesky expectations...

\[
E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n) \quad \text{get } \theta(n) \text{ outside}
\]

\[
= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n) \quad \text{upper terms appear twice}
\]

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)
Randomized Select: Those pesky expectations...

\[E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n - k - 1\})] + \theta(n) \]

get \(\theta(n) \) outside

\[= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n) \]

upper terms appear twice

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)

Assume: \(E[T(k)] \leq c \cdot k \), where \(k < n \)
Randomized Select: Those pesky expectations...

\[E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n) \]

get \(\theta(n) \) outside

\[= \frac{2}{n} \sum_{k=[n/2]}^{n-1} E[T(k)] + \theta(n) \]

upper terms appear twice

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)

Assume: \(E[T(k)] \leq c \cdot k \), where \(k < n \)

Then: \(E[T(n)] \leq \frac{2}{n} \sum_{k=[n/2]}^{n-1} c \cdot k + \theta(n) \)
Randomized Select: Those pesky expectations...

\[E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n) \]

get \(\theta(n) \) outside

\[= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n) \]

upper terms appear twice

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)

Assume: \(E[T(k)] \leq c \cdot k \), where \(k < n \)

Then: \(E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n) \)

\[\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \leq \frac{3}{8} n^2 \] (exercise: show it)
Randomized Select: Those pesky expectations...

\[E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n) \]

get \(\theta(n) \) outside

\[= \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} E[T(k)] + \theta(n) \]

upper terms appear twice

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)

Assume: \(E[T(k)] \leq c \cdot k \), where \(k < n \)

Then: \(E[T(n)] \leq \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} c \cdot k + \theta(n) \)

\[\sum_{k=\lceil n/2 \rceil}^{n-1} k \leq \frac{3}{8} n^2 \] (exercise: show it)

So: \(E[T(n)] \leq cn - \left(\frac{cn}{4} - \theta(n) \right) \leq cn \) if \(\frac{cn}{4} - \theta(n) \geq 0 \)
Randomized Select: Those pesky expectations...

\[
E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)
\]

get \(\theta(n) \) outside

\[
= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)
\]

upper terms appear twice

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)

Assume: \(E[T(k)] \leq c \cdot k \), where \(k < n \)

Then: \(E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n) \)

\[
\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \leq \frac{3}{8} n^2 \quad \text{(exercise: show it)}
\]

So: \(E[T(n)] \leq cn - (\frac{cn}{4} - \theta(n)) \leq cn \) if \(\frac{cn}{4} - \theta(n) \geq 0 \)
Randomized Select: Those pesky expectations...

\[
E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)
\]

get $\theta(n)$ outside

\[
= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)
\]

upper terms appear twice

Prove: $E[T(n)] \leq c \cdot n$ for $c > 0$ (c large enough for base cases)

Assume: $E[T(k)] \leq c \cdot k$, where $k < n$

Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$

\[
\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \leq \frac{3}{8} n^2 \quad \text{(exercise: show it)}
\]

So: $E[T(n)] \leq cn - (\frac{cn}{4} - \theta(n)) \leq cn$ if $\frac{cn}{4} - \theta(n) \geq 0$

Easy to find a large value of c such that $\frac{cn}{4}$ dominates $\theta(n)$
Randomized Select: Those pesky expectations...

\[E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n) \]
\[= \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} E[T(k)] + \theta(n) \]

Prove: \(E[T(n)] \leq c \cdot n \) for \(c > 0 \) (\(c \) large enough for base cases)

Assume: \(E[T(k)] \leq c \cdot k \), where \(k < n \)

Then: \(E[T(n)] \leq \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} c \cdot k + \theta(n) \)
\[\sum_{k=\lceil n/2 \rceil}^{n-1} k \leq \frac{3}{8} n^2 \) (exercise: show it)

So: \(E[T(n)] \leq cn - (\frac{cn}{4} - \theta(n)) \leq cn \) if \(\frac{cn}{4} - \theta(n) \geq 0 \)

Easy to find a large value of \(c \) such that \(\frac{cn}{4} \) dominates \(\theta(n) \)
Randomized Select: Summary

- Works fast in the average case: linear expected time
- Very simple and fast algorithm in practice
- *But*, worst-case behavior is $\theta(n^2)$

Question: Is there an algorithm that runs in linear time even in the worst case?

Answer: Yes - in 1973, Blum, Floyd, Pratt, and Rivest designed such an algorithm

Basic Idea: Generate good pivots recursively to guarantee a good split
Worst-case Linear-time Order Statistics

\textbf{SELECT}(i,n)

1: Divide the \(n \) elements into groups of 5. Find the median of each 5-element group by rote.
2: Recursively \textbf{SELECT} the median \(x \) of the \(\lfloor n/5 \rfloor \) group medians to be the pivot
3: Partition around the pivot. Let \(k = \text{rank}(x) \)
4: \textbf{if} \(i = k \) \textbf{then}
5: \hspace{1em} \textbf{return} \(x \)
6: \textbf{if} \(i < k \) \textbf{then}
7: \hspace{1em} recursively \textbf{SELECT} \(i^{th} \) smallest element in lower part
8: \textbf{if} \(i > k \) \textbf{then}
9: \hspace{1em} recursively \textbf{SELECT} \((i - k)^{th} \) smallest element in upper part

Note: lines 3.-9. are the same as in RAND-SELECT
SELECT: Choosing the Pivot

Here is the input: \(n \) elements.
SELECT: Choosing the Pivot

1. Divide the n elements into groups of 5.
SELECT: Choosing the Pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
SELECT: Choosing the Pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.

2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
At least half of the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ elements.
At least half the group medians are \(\leq x \), which is at least \(\lceil \frac{n}{5} / 2 \rceil = \lfloor n/10 \rfloor \) group medians.

- If we assume that all elements are distinct, then there are \(3 \lfloor n/10 \rfloor \) elements \(\leq x \).
At least half the group medians are $\leq x$, which is at least $\lceil n/5 \rceil / 2 = \lceil n/10 \rceil$ group medians.

- If we assume that all elements are distinct, then there are $3 \lceil n/10 \rceil$ elements $\leq x$.
- Similarly, at least $3 \lceil n/10 \rceil$ elements are $\geq x$.
Select: Running Time Analysis

- For $n \geq 50$, we have $3\lfloor n/10 \rfloor \geq n/4$. So, the call to SELECT in lines 4 and on is executed recursively on at most $3n/4$ elements.

- The recurrence for the running time can assume that lines 4 and on takes $T(3n/4)$ in the worst case.

- For $n < 50$, we know that the worst-case time is $T(n) \in \theta(1)$.

The recurrence is:

$$T(n) = T(n/5) + \theta(n) + T(3n/4)$$

Breakdown:

- **Line 1:** $\theta(n)$
- **Line 2:** $T(n/5)$
- **Line 3:** $\theta(n)$
- **Lines ≥ 4:** $T(3n/4)$

Substitution:

$$T(n) \leq \frac{1}{5}c \cdot n + \frac{3}{4}c \cdot n + \theta(n)$$

$$= \frac{19}{20}c \cdot n + \theta(n)$$

$$= c \cdot n - (\frac{1}{20}c \cdot n - \theta(n))$$

$$\leq c \cdot n$$

if c is large enough to dominate $\theta(n)$.

Outline of Today’s Class

1. **Order Statistics**
2. **Selection of Order Statistics in Expected Linear Time**
3. **Selection of Order Statistics in Worst-case Linear Time**
4. **Order Statistics: Conclusions**
Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.

In practice, this algorithm runs slowly, because the constant in front of n is large.

The randomized algorithm is far more practical and simpler to implement.

Exercise: Why not divide into groups of 3?