Lecture 5: Logical Agents and Propositional Logic
CS 580 (001) - Spring 2016

Amarda Shehu

Department of Computer Science
George Mason University, Fairfax, VA, USA

February 17, 2016
Outline of Today's Class

Knowledge-based Agents

Wumpus World

Logic - Models and Entailment

Propositional (Boolean Logic)

Equivalence, Validity, and Satisfiability

Inference and Theorem Proving
- Forward Chaining
- Backward Chaining
- Resolution
Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):

TELL it what it needs to know
Then it can ASK itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
A Simple Knowledge-based Agent

function \texttt{KB-Agent(percept)} \texttt{returns} an \texttt{action}

\texttt{static: } \texttt{KB}, a knowledge base
\hspace{1em} \texttt{t}, a counter, initially 0, indicating time

\texttt{Tell(KB, Make-Percept-Sentence(percept, t))}
\texttt{action} \leftarrow \texttt{Ask(KB, Make-Action-Query(t))}
\texttt{Tell(KB, Make-Action-Sentence(action, t))}
\texttt{t} \leftarrow t + 1
\texttt{return action}

The agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions
Performance measure
- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators
- Left turn, Right turn,
- Forward, Grab, Release, Shoot

Sensors
- Breeze, Glitter, Smell
Wumpus World Characterization

Observable?

No—only local perception

Deterministic?

Yes—outcomes exactly specified

Episodic?

No—sequential at the level of actions

Static?

Yes—Wumpus and Pits do not move

Discrete?

Yes

Single-agent?

Yes—Wumpus is essentially a natural feature
Observable? No—only local perception
Wumpus World Characterization

Observable? No—only local perception

Deterministic??
Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified
Wumpus World Characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic??
Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions
Wumpus World Characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static?
Wumpus World Characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus and Pits do not move
Wumpus World Characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete??
Wumpus World Characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus and Pits do not move

Discrete? Yes
Wumpus World Characterization

- **Observable**: No—only local perception
- **Deterministic**: Yes—outcomes exactly specified
- **Episodic**: No—sequential at the level of actions
- **Static**: Yes—Wumpus and Pits do not move
- **Discrete**: Yes
- **Single-agent**: Yes
Wumpus World Characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic? No—sequential at the level of actions

Static? Yes—Wumpus and Pits do not move

Discrete? Yes

Single-agent? Yes—Wumpus is essentially a natural feature
<table>
<thead>
<tr>
<th>Characterization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable</td>
<td>No—only local perception</td>
</tr>
<tr>
<td>Deterministic</td>
<td>Yes—outcomes exactly specified</td>
</tr>
<tr>
<td>Episodic</td>
<td>No—sequential at the level of actions</td>
</tr>
<tr>
<td>Static</td>
<td>Yes—Wumpus and Pits do not move</td>
</tr>
<tr>
<td>Discrete</td>
<td>Yes</td>
</tr>
<tr>
<td>Single-agent</td>
<td>Yes—Wumpus is essentially a natural feature</td>
</tr>
</tbody>
</table>
Exploring a Wumpus World

Diagram of a Wumpus World grid with agent paths and Wumpus locations.
Other Tight Spots

Breeze in (1,2) and (2,1) ⇒ no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1) ⇒ cannot move
Can use a strategy of coercion:
- shoot straight ahead
- wumpus was there ⇒ dead ⇒ safe
- wumpus wasn’t there ⇒ safe
Logic in General

Logics are formal languages for representing information such that conclusions can be drawn. Syntax defines the sentences in the language. Semantics define the “meaning” of sentences; i.e., define truth of a sentence in a world.

E.g., the language of arithmetic

\[x + 2 \geq y \] is a sentence; \[x^2 + y > \] is not a sentence
\[x + 2 \geq y \] is true iff the number \(x + 2 \) is no less than the number \(y \)
\[x + 2 \geq y \] is true in a world where \(x = 7, \ y = 1 \)
\[x + 2 \geq y \] is false in a world where \(x = 0, \ y = 6 \)
Entailment means that one thing follows from another:

\[KB \models \alpha \]

Knowledge base \(KB \) entails sentence \(\alpha \)
if and only if \(\alpha \) is true in all worlds where \(KB \) is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

E.g., \(x + y = 4 \) entails \(4 = x + y \)

Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics

Note: brains process syntax (of some sort)
Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \).

\(M(\alpha) \) is the set of all models of \(\alpha \).

Then \(KB \models \alpha \) if and only if \(M(KB) \subseteq M(\alpha) \).

E.g. \(KB = \text{Giants won and Reds won} \) \(\alpha = \text{Giants won} \)
Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits

3 Boolean choices \implies 8 possible models
KB = wumpus-world rules + observations
Wumpus Models

$KB = \text{wumpus-world rules } + \text{ observations}$

$\alpha_1 = \"[1,2] is safe\", KB \models \alpha_1$, proved by model checking
Wumpus Models

\[KB = \text{wumpus-world rules + observations} \]
\[KB = \text{wumpus-world rules} + \text{observations} \]
\[\alpha_2 = \text{“[2,2] is safe”, } \neg KB \models \alpha_2 \]
Inference

\(KB \vdash_i \alpha = \) sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

Consequences of \(KB \) are a haystack; \(\alpha \) is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: \(i \) is sound if
whenever \(KB \vdash_i \alpha \), it is also true that \(KB \models \alpha \)

Completeness: \(i \) is complete if
whenever \(KB \models \alpha \), it is also true that \(KB \vdash_i \alpha \)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).
Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1, P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \implies S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \iff S_2$ is a sentence (biconditional)
Each model specifies true/false for each proposition symbol

E.g. \(P_{1,2}, P_{2,2}, P_{3,1} \)

\[
\begin{array}{ccc}
\text{true} & \text{true} & \text{false} \\
\end{array}
\]

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model \(m \):

\[
\begin{align*}
\neg S & \quad \text{is true iff} \quad S \quad \text{is false} \\
S_1 \land S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is true and} \quad S_2 \quad \text{is true} \\
S_1 \lor S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is true or} \quad S_2 \quad \text{is true} \\
S_1 \implies S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is false or} \quad S_2 \quad \text{is true} \\
& \quad \text{i.e.,} \quad \text{is false iff} \quad S_1 \quad \text{is true and} \quad S_2 \quad \text{is false} \\
S_1 \iff S_2 & \quad \text{is true iff} \quad S_1 \quad \text{is true and} \quad S_2 \quad \text{is true} \quad S_2 \implies S_1 \quad \text{is true} \\
\end{align*}
\]

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[
\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \text{true} \land (\text{false} \lor \text{true}) = \text{true} \land \text{true} = \text{true}
\]
Truth Tables for Connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \implies Q$</th>
<th>$P \iff Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Let $P_{i,j}$ be true if there is a pit in $[i,j]$.

Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

$\neg P_{1,1}$

$\neg B_{1,1}$

$B_{2,1}$

“Pits cause breezes in adjacent squares”
Let $P_{i,j}$ be true if there is a pit in $[i,j]$.

Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

\[\neg P_{1,1} \]
\[\neg B_{1,1} \]
\[B_{2,1} \]

“Pits cause breezes in adjacent squares”

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]
\[B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \]

“A square is breezy if and only if there is an adjacent pit”
Truth Tables for Inference

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_{1,1}$</td>
<td>$B_{2,1}$</td>
<td>$P_{1,1}$</td>
<td>$P_{1,2}$</td>
<td>$P_{2,1}$</td>
<td>$P_{2,2}$</td>
<td>$P_{3,1}$</td>
<td>R_1</td>
<td>R_2</td>
<td>R_3</td>
<td>R_4</td>
<td>R_5</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

Enumerate rows (different assignments to symbols), if KB is true in row, check that α is too
Inference by Enumeration

Depth-first enumeration of all models is sound and complete

\begin{verbatim}
function TT-ENTAILS?(KB, \alpha) returns true or false
 inputs: KB, the knowledge base, a sentence in propositional logic
 \alpha, the query, a sentence in propositional logic

 symbols ← a list of the proposition symbols in KB and \alpha
 return TT-CHECK-ALL(KB, \alpha, symbols, [])

function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
 if EMPTY?(symbols) then
 if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)
 else return true
 else do
 P ← FIRST(symbols); rest ← REST(symbols)
 return TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, true, model))
 and
 TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, false, model))
\end{verbatim}

$O(2^n)$ for n symbols; problem is \textbf{co-NP-complete}
Logical Equivalence

Two sentences are logically equivalent iff true in same models:

\(\alpha \equiv \beta \) if and only if \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg\alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \implies \beta) & \equiv (\neg\beta \implies \neg\alpha) \quad \text{contraposition} \\
(\alpha \implies \beta) & \equiv (\neg\alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \implies \beta) \land (\beta \implies \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
A sentence is valid if it is true in all models, e.g., \(\text{True}, \ A \lor \neg A, \ A \implies A, \ (A \land (A \implies B)) \implies B \)

Validity is connected to inference via the Deduction Theorem: \(KB \models \alpha \) if and only if \((KB \implies \alpha) \) is valid

A sentence is satisfiable if it is true in some model e.g., \(A \lor B, \ C \)

A sentence is unsatisfiable if it is true in no models e.g., \(A \land \neg A \)

Satisfiability is connected to inference via the following: \(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable i.e., prove \(\alpha \) by \textit{reductio ad absurdum}
Proof methods divide into (roughly) two kinds:

Application of inference rules
- Legitimate (sound) generation of new sentences from old
- **Proof** = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in \(n \))
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms
Forward and Backward Chaining

Horn Form (restricted)

KB = conjunction of Horn clauses

Horn clause =
 ♦ proposition symbol; or
 ♦ (conjunction of symbols) ⇒ symbol

E.g., \(C \land (B \implies A) \land (C \land D \implies B) \)

Modus Ponens (for Horn Form): complete for Horn KBs

\[
\begin{align*}
\alpha_1, \ldots, \alpha_n, & \quad \alpha_1 \land \cdots \land \alpha_n \implies \beta \\
& \beta
\end{align*}
\]

Can be used with forward chaining or backward chaining.

These algorithms are intuitive and run in linear time.
Forward Chaining

Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

Q

$M \implies P$

$L \implies M$

$P \implies L$

$B \implies L$
function PL-FC-ENTAILS?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional Horn clauses
 q, the query, a proposition symbol

local variables: count, table indexed by clause, initial nr. of premises
 inferred, table indexed by symbol, entries initially false
 agenda, list of symbols, initial symbols known in KB

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 Push(HEAD[c], agenda)
 return false
Forward Chaining Example

[Diagram showing a network of nodes labeled Q, P, L, M, A, and B with arrows indicating connections.]
Forward Chaining Example
Forward Chaining Example
Forward Chaining Example

```
Q
  ^
  |  1
  v
  P
1   1
  |   |
  v   v
  L   M
1   0
  |   |
  v   v
  A   B
0   0
```

Forward Chaining Example

\[Q \]

\[1 \]

\[P \]

\[0 \]

\[M \]

\[0 \]

\[L \]

\[1 \]

\[B \]

\[0 \]

\[A \]

\[0 \]
Forward Chaining Example
Proof of Completeness

FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m

Proof: Suppose a clause $a_1 \land \ldots \land a_k \Rightarrow b$ is false in m

Then $a_1 \land \ldots \land a_k$ is true in m and b is false in m

Therefore the algorithm has not reached a fixed point!
4. Hence m is a model of KB
5. If $KB \models q$, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α
Idea: work backwards from the query q:
- to prove q by BC, check if q is known already, or
- prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
 1) has already been proved true, or
 2) has already failed
Backward Chaining Example

[Diagram with nodes labeled Q, P, M, L, A, B]
Backward Chaining Example
Forward versus Backward Chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions.

May do lots of work that is irrelevant to the goal.

BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB.
Resolution

Conjunctive Normal Form (CNF—universal)

conjunction of disjunctions of literals

conjunction of disjunctive clauses

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

Resolution inference rule (for CNF): complete for propositional logic

\[
\ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n
\]

\[
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
\]

where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,

\[
P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2}
\]

\[
P_{1,3}
\]

Resolution is sound and complete for propositional logic
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \implies \beta) \land (\beta \implies \alpha) \).

\[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1}) \]

2. Eliminate \(\implies \), replacing \(\alpha \implies \beta \) with \(\neg \alpha \lor \beta \).

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Resolution Algorithm

Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```plaintext
function PL-Resolution($KB$, $\alpha$) returns true or false
inputs: $KB$, the knowledge base, a sentence in propositional logic
        $\alpha$, the query, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of $KB \land \neg \alpha$
new ← \{

loop do
      for each $C_i$, $C_j$ in clauses do
          resolvents ← PL-Resolve($C_i$, $C_j$)
          if resolvents contains the empty clause then return true
          new ← new $\cup$ resolvents
      if new $\subseteq$ clauses then return false
      clauses ← clauses $\cup$ new
```

Amarda Shehu (580)
$KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \alpha = \neg P_{1,2}$
Logical agents apply inference to a knowledge base to derive new information and make decisions.

Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
Forward, backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic

Propositional logic lacks expressive power