Lecture: Analysis of Algorithms (CS583 - 002)

Amarda Shehu

Fall 2017
Dynamic Programming

- Longest Common Subsequence
- Dynamic Programming Hallmark #1: Optimal Substructure
- Dynamic Programming Solution to LCS
- Dynamic Programming Hallmark #2: Overlapping subproblems
Dynamic Programming is a design technique like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

Given two sequences \(x[1 \ldots m]\) and \(y[1 \ldots n]\), find a longest subsequence common to them both:

\[
x: \quad A \quad B \quad C \quad B \quad D \quad A \quad B
\]
\[
y: \quad B \quad D \quad C \quad A \quad B \quad A
\]

\(BCBA = LCS(x, y)\)
Brute-force LCS Algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis:

- There are 2^m possible subsequences of x, since each bit-vector of length m represents a distinct subsequence of x
- Checking each one of them into y takes $O(n)$ time
- So, worst-case running time is $O(n \cdot 2^m)$
- An exponential running time is impractical
A Better Algorithm

Simplification:
- Look at the length of a longest common subsequence
- Extend the algorithm to find the LCS itself

Notation: Let $|s|$ denote the length of a sequence s

Proposed Strategy: Consider prefixes of x and y
- Define $c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])|$
- Then, $\text{LCS}(x, y) = c[m, n]$
Theorem:

\[
c[i, j] = \begin{cases}
c[i-1, j-1] + 1 & \text{if } x[i] = y[j] \\
\max\{c[i-1, j], c[i, j-1]\} & \text{otherwise}
\end{cases}
\]

Proof: Case \(x[i] = y[j]\)

Let \(z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j])\), where \(c[i, j] = k\). Then \(z[k] = x[i]\). Otherwise, \(z\) could be extended by \(x[i]\). Moreover, \(z[1 \ldots k - 1] = \text{LCS}(x[1 \ldots i - 1], y[1 \ldots j - 1])\).
Continuing Proof in Case 1

Claim: \[z[1 \ldots k - 1] = LCS(x[1 \ldots i - 1], y[1 \ldots j - 1]) \]

Proof of Claim by Contradiction:

- Suppose \(w \) is a longer common subsequence of \(x[1 \ldots i - 1] \) and \(y[1 \ldots j - 1] \). That is, \(|w| > k - 1 \).

- Then, cut and paste: \(w \cdot z[k] \) (\(w \) concatenated by \(z[k] \)) is also a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \). Since \(|w \cdot z[k]| > k \), we have reached a contradiction, proving the above claim.

- So, \(c[i - 1, j - 1] = k - 1 \), which implies that \(c[i, j] = c[i - 1, j - 1] + 1 \).

Case 2 is proven with a similar argument.
Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z = \text{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.
Recursive Algorithm for LCS

\[\text{LCS}(x, y, i, j) \]

1. \(\text{if } x[i] = y[j] \text{ then} \)

2. \(c[i, j] \leftarrow \text{LCS}(x, y, i - 1, j - 1) + 1 \)

3. \(\text{else } c[i, j] = \max \{ \text{LCS}(x, y, i - 1, j), \text{LCS}(x, y, i, j - 1) \} \)

Worst-case: When \(x[i] \neq y[j] \), the algorithm evaluates two subproblems, each one with only one parameter decremented.
The height of the recursion tree is $m + n$. It seems that the work is exponential because we are solving the same subproblems over and over. We need to remember subproblems once we solve them!
Dynamic Programming: Hallmark # 2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Memoization Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

LCS(x, y, i, j)
1: if \(c[i,j] = NIL \) then
2: if \(x[i] = y[j] \) then
3: \(c[i,j] \leftarrow LCS(x, y, i - 1, j - 1) + 1 \)
4: else \(c[i,j] = \max\{LCS(x, y, i - 1, j), LCS(x, y, i, j - 1)\} \)

Running Time Analysis: \(T(n, m) \in \theta(m \cdot n) \) since the amount of work per table entry is constant.
Space Analysis: \(S(n, m) \in \theta(m \cdot n) \) since we only store the table.
Dynamic Programming Algorithm

Idea:
- Fill the table top left to bottom right
- $T(n, m) \in \theta(m \cdot n)$
- Reconstruct the LCS by tracing backwards
- $S(n, m) \in \theta(m \cdot n)$
- Exercise: reduce $S(n, m)$ to $O(\min\{m, n\})$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Amarda Shehu
Lecture: Analysis of Algorithms (CS583 - 002)
Lecture: Analysis of Algorithms (CS583 - 002)

Amarda Shehu

Fall 2017
1 Greedy Algorithms
 - In the Context of the Following Problems
 - The 0/1 Integer Knapsack Problem
 - The Fractional Knapsack Problem
 - Huffman Coding
Greedy Algorithms

- Used to solve optimization problems
- A greedy algorithm builds a solution one step at a time
- At each step, the algorithm makes the *currently* best choice from a small number of choices
- The currently best choice is also referred to as the *locally* optimal choice
- Greedy algorithms are similar to DP algorithms in:
 - the solution is efficient if the problem exhibits substructure
- BUT
 - The greedy solution may not be optimal even if the problem exhibits optimal substructure
When to Apply the Greedy Approach

When to Design Greedy Algorithms

- On problems with optimal substructure where the greedy approach is the optimal approach
- These problems are said to have the greedy-choice property: a “locally optimal” choice leads to a “globally optimal” solution
- Applying the greedy approach to other problems that do not have this property can yield suboptimal solutions
- Suboptimal solutions may be good enough approximations of the optimal solution on some applications
 - Instance: when globally optimal solution is too expensive to compute
Sample Problems to Illustrate Greedy Algorithms

- The 0/1 Integer Knapsack Problem
- The Fractional Knapsack Problem
- Variable-length (Huffman) Coding
The 0/1 Integer Knapsack Problem

- Given \(n \) objects
- Each object has an integer weight \(w_i \) and integer profit \(p_i \)
- You have a knapsack with an integer weight capacity \(M \)
- Problem: Find the subset of \(n \) objects that fits in the knapsack and gives the maximum total profit
Examples of Possible Solutions

Say the knapsack has capacity $M = 20$:

<table>
<thead>
<tr>
<th>Object i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit p_i</td>
<td>7</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Weight w_i</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>5</td>
</tr>
</tbody>
</table>

Possible solutions:
- Put items 1-3 in knapsack: Total weight is 20, and profit is 25
- Put items 1, 2, 4, and 6: Total weight now is 19, profit is 32
- Other possible solutions ...

How long does it take to evaluate all *feasible* solutions?
MAXIMIZE

\[p_1 \cdot x_1 + p_2 \cdot x_2 \ldots p_n \cdot x_n \]

such that (SUBJECT TO CONSTRAINT)

\[w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots w_n \cdot x_n \leq M \]

where \(x_i \in \{0, 1\} \) for \(i \in \{1, 2, \ldots, n\} \)
Define $f_i(y)$ to be the optimal solution to the subproblem:

$$\text{MAXIMIZE } p_1 \cdot x_1 + p_2 \cdot x_2 \cdots p_i \cdot x_i$$

such that $w_1 \cdot x_1 + w_2 \cdot x_2 + \cdots w_i \cdot x_i \leq y$

where $x_j \in \{0, 1\}$ for $j \in \{1, 2, \ldots, i\}$

Then we see the optimal substructure of the solution:

$$f_i(y) = \begin{cases}
\max\{f_{i-1}(y), p_i + f_{i-1}(y - w_i)\} & \text{if } y \geq w_i \\
 f_{i-1}(y) & \text{if } y < w_i
\end{cases}$$
Seeing the Optimal Substructure

- \[f_1(y) = \text{the maximum profit for capacity } y \text{ considering only object 1}, \text{ where } x_1 \in \{0,1\} \]
- \[f_2(y) = \text{the maximum profit for capacity } y \text{ considering only objects 1 and 2}, \text{ where } x_1, x_2 \in \{0,1\} \]
- Consider what happens when we consider object 3:
 - If \(x_3 = 0 \), this means we do not choose to include object 3 in the knapsack. So, maximum profit is what it used to be using objects 1, 2: \(f_3(y) = f_2(y) \)
 - Else, we choose to include, which means we only have \(y - w_3 \) capacity for objects 1, 2:
 - We do not know a priori whether \(x_3 \) should be 0 or 1
 - The only criterion is that \(f_3(y) = \max\{f_2(y), f_2(y - w_3)\} \)
Computing $f_i(y)$

The optimal substructure dictates that we compute $f_{i-1}(y)$ for all capacities $y \in \{0, 1, \ldots, M\}$

The recursion shows it is only necessary to save $f_i(y)$ and $f_{i-1}(y)$ for all possible values of y

Basic Idea:

- Set $f_0(y) = 0 \ \forall y \in \{0, 1, \ldots, M\}$
- Compute $f_1(y) \ \forall y \in \{0, 1, \ldots, M\}$
- ...
- Compute $f_n(y) \ \forall y \in \{0, 1, \ldots, M\}$

Question: How big is the matrix that stores solutions to subproblems?
Let $p = (7, 6, 12, 3, 12, 16)$, $w = (2, 8, 10, 4, 14, 5)$, and $M = 20$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>10</th>
<th>...</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>f_1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>...</td>
<td>7</td>
<td>...</td>
<td>7</td>
</tr>
<tr>
<td>f_2</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>...</td>
<td>13</td>
<td>...</td>
<td>13</td>
</tr>
<tr>
<td>f_3</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>...</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Greedy Approach for the Knapsack Problem

Reorder the objects by increasing weight (focus on feasible solutions):

<table>
<thead>
<tr>
<th>Object</th>
<th>Profit (p_i)</th>
<th>Weight (w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>7 3 16 6 12 12</td>
<td>2 4 5 8 10 14</td>
</tr>
</tbody>
</table>

A potential greedy solution:
- Put object with smallest weight in knapsack first
- Add objects (according to sorted order of weights) into knapsack as long as there is capacity
- What is the resulting greedy solution when \(M = 20 \)?
- What is the time complexity of this approach?
Another Greedy Approach

- Instead, sort the items by descending p_i/w_i ratios (focusing on maximizing profit while minimizing weight)
- Examine each object $i \in \{1, \ldots, n\}$ in this order
- If object fits in knapsack, take it
- What is the time complexity now?
- Does this greedy approach find the optimal solution to the 0/1 Integer Knapsack Problem?
The 0/1 Knapsack problem can be solved optimally by Dynamic Programming, as illustrated.

The problem cannot be solved optimally by the Greedy Approach.

Why? Because the 0/1 knapsack problem does not have the greedy-choice property.

To show that the greedy approach does not work, we have to provide a counterexample.
Greedy Approach: Not Optimal for 0/1 Knapsack Problem

Say knapsack has capacity $M = 5$ and there are $n = 3$ items:

<table>
<thead>
<tr>
<th>Object</th>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit</td>
<td>p_i</td>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Weight</td>
<td>w_i</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Profit/Weight</td>
<td>p_i/w_i</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- A greedy algorithm that chooses by highest profit/weight chooses items 1 and 2 for a total profit of 16.
- Optimal solution: items 2 and 3 for a total value of 22.
- Hence, greedy algorithm does not give optimal solution.
- However, the greedy approach gives an optimal solution to the fractional knapsack problem.
The Fractional Knapsack Problem

- Given n objects
- Each object has an integer profit p_i
- Each object has a fractional weight w_i
- You can take fractions of an object
- You have a knapsack with weight capacity M, where M is not necessarily an integer
- Problem: Fit objects (taking even fractions of them) that give the maximum total profit
An Optimal Greedy Solution to the Fractional Knapsack Problem

- Sort the items by descending p_i/w_i ratios (focusing on maximizing profit while minimizing weight)
- Examine each object $i \in \{1, \ldots, n\}$ in this order
- If object fits in knapsack, take it
- What is the time complexity?
- Why does this greedy approach find the optimal solution to the Fractional Knapsack Problem?
Proof of Correctness

Let $X \in \{1, 2, \ldots, k\}$ be the optimal items taken

- Consider item j with associated (p_j, w_j) that has the highest p_j/w_j ratio
- If j is not used in X, then X is not optimal: We can remove portions of items with a total weight of w_j from X and add j instead.
- Repeating this process, you see that the greedy approach changes X considering all items without decreasing the total value of X.
Consider a message consisting of \(k \) characters (with known frequencies).

We want to encode this message using a binary cipher.

That is, we want to assign \(d \) bits to each letter:

<table>
<thead>
<tr>
<th>Letter</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (\times 10^3)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length encoding</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
</tbody>
</table>

A message consisting of 100,000 \(a-f \) characters would require 300,000 bits of storage!!!
How about Variable-length Encoding?

- We could assign a variable-length encoding instead:

<table>
<thead>
<tr>
<th>Letter</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (\times 10^3)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length encoding</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length encoding</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

- A message like 001011101 parses uniquely
 - That is to say that one can decode this cipher uniquely
 - This result is based on the fact that no code is a prefix of another for the encoded characters

- Only 9 bits are used instead.
Optimum Source Coding Problem

Problem: Given an alphabet \(A = \{a_1, \ldots, a_n\} \) with frequency distribution \(f(a_i) \), find a binary prefix code \(C \) for \(A \) that minimizes the number of bits

\[
B(C) = \sum_{i=1}^{n} f(a_i) \cdot L(c(a_i))
\]

needed to encode a message of \(\sum_{i=1}^{n} f(a_i) \) characters, where \(c(a_i) \) is the codeword/code for encoding \(a_i \), and \(L(c(a_i)) \) is the length of this code.

Solution: Huffman developed a greedy algorithm for producing a minimum-cost prefix code. The code that is produced is called a *Huffman Code*.
Basic Idea Behind Huffman Coding

- A binary tree constructs codes
- 1-1 correspondence between the leaves and the characters
- The label of each leaf is the frequency of each character
- Left edges are labeled 0, right edges are labeled 1
- Path from root to leaf is the code associated with the character at that leaf

\{a = 000, b = 001, c = 010, d = 011, e = 1\}
Basic Idea Behind Huffman Coding

Step 1. Pick two letters x, y from alphabet A with the smallest frequencies and create a subtree that has these two characters as leaves. This is the greedy idea. Label the root of this subtree as z.

Step 2. Set frequency $f(z) = f(x) + f(y)$. Remove x and y and add z, creating a new alphabet $A' = A \cup z - \{x, y\}$. Note that $|A'| = |A| - 1$.

Repeat this procedure, called *merge*, creating new alphabet A' until only one symbol is left. The resulting tree is the **Huffman Code**.
Huffman Code Algorithm

HuffmanCoding(C)
1: $n \leftarrow |A|$
2: $Q \leftarrow A$
3: for all $i = 1$ to $n - 1$ do
4: allocate a new node z
5: left[z] $\leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)$
6: right[z] $\leftarrow y \leftarrow \text{EXTRACT-MIN}(Q)$
7: $f[z] \leftarrow f[x] + f[y]$
8: INSERT(Q, z)
9: return EXTRACT-MIN(Q)

Can you see why the time complexity of this algorithm is $O(n \cdot \log n)$?