Lecture: Analysis of Algorithms (CS583 - 002)1

Amarda Shehu

Fall 2017

1Some material adapted from Kevin Wayne’s Algorithm Class © Princeton
1 Maximum Flow and Minimum Cut Problem
- Flow Networks
- Minimum Cut
- Of Cuts and Flows
- Maximum Flow
- Weak Duality
- Strong Duality
- Maximum Flow Algorithm: Ford-Fulkerson
- Improving Ford-Fulkerson: Capacity Scaling

2 Graph Applications
- Bipartite Matching: Max Flow Application
- Clustering: MST Application
- Motion Planning: Shortest Path Application
Max Flow and Min Cut

Exhibition:

- Very rich algorithmic problems
- Cornerstones in combinatorial optimization
- Exhibit mathematical duality

Applications

- Data mining
- Project selection
- Airline scheduling
- Bipartite matching
- Baseball elimination
- Image segmentation
- Network connectivity
- Threading hydrophobic/hydrophilic residues in a protein 3D conformation
- Network reliability
- Distributed computing
- Egalitarian stable matching
- Security of statistical data
- Network intrusion detection
- Multi-camera scene reconstruction
Some History: Soviet Rail Network, 1955

Figure: On the history of transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91:3, 2002
Flow Networks

- Network flow is an advanced branch of graph theory
- A weighted directed graph with two special vertices
- The **source** vertex, which has no incoming edges
- The **sink** vertex, which has no outgoing edges
- These are respectively labeled s and t

![Flow Network Diagram]

```
Network flow is an advanced branch of graph theory
A weighted directed graph with two special vertices
The source vertex, which has no incoming edges
The sink vertex, which has no outgoing edges
These are respectively labeled s and t
```

Flow Networks

- Maximum Flow and Minimum Cut Problem
- Graph Applications
- Flow Networks
- Minimum Cut
- Of Cuts and Flows
- Maximum Flow
- Weak Duality
- Strong Duality
- Maximum Flow Algorithm: Ford-Fulkerson
- Improving Ford-Fulkerson: Capacity Scaling
Flow Networks

Flow network:
- $G = (V, E)$ is a directed graph with no parallel edges
- Nodes are junctions and edges are pipes
- A pipe allows water/material to flow only one way
- $c(e)$ is the capacity associated with an edge e
Finding Maximum Flow in a Flow Network

- Pour an infinite amount of water/material in source
- Goal: find maximum flow, the maximum amount of material/water that will reach the sink
- Max flow and min cut are dual concepts
- Setup for Ford-Fulkerson method to find max flow

```
source  s
      ↓  5
      ↓  4
      3
      ↓  4
      4
      ↓  15
      30
      ↓  15
      6
      ↓  15
      10
      6
      ↓  10
      10
      7
      ↓  15
      15
      5
      9
      5
      2
      4
      1
      sink
```

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)
Talking About Cuts

Definition: An $s-t$ cut is a partition (A, B) of V with $s \in A$ and $t \in B$

Definition: The capacity $\text{cap}(A, B) = \sum_{\{e=(u,v):u \in A, v \in B\}} c(e)$

![Flow Network Diagram]

Capacity = $10 + 5 + 15 = 30$
Another Valid $s - t$ Cut

Definition: An $s - t$ cut is a partition (A, B) of V with $s \in A$ and $t \in B$

Definition: The capacity $\text{cap}(A, B) = \sum_{\{e=(u,v): u \in A, v \in B\}} c(e)$

![Diagram of flow network with labels and capacities]
The Minimum Cut Problem

Min $s - t$ Cut Problem: Find an $s - t$ cut of minimum capacity

![Graph Diagram]

Capacity = 10 + 8 + 10 = 28
From an \(s - t \) Cut to an \(s - t \) Flow

Definition: An \(s - t \) flow is a function \(f : E \rightarrow \mathcal{R} \) that satisfies:

1. \(\forall e \in E: 0 \leq f(e) \leq c(e) \) [flow cannot exceed capacity]
2. \(\forall v \in V - \{s, t\}: \sum_{e=(*,v)} f(e) = \sum_{e=(v,*)} f(e) \) [conservation]

Definition: The value of a flow \(f \) is: \(\nu(f) = \sum_{e=(s,*)} f(e) \)
From an $s - t$ Cut to an $s - t$ Flow

Definition: An $s - t$ flow is a function $f : E \rightarrow \mathcal{R}$ that satisfies:

- $\forall e \in E: 0 \leq f(e) \leq c(e)$ [flow cannot exceed capacity]
- $\forall v \in V - \{s, t\}: \sum_{e=(*, v)} f(e) = \sum_{e=(v, *)} f(e)$ [conservation]

Definition: The value of a flow f is: $\nu(f) = \sum_{e=(s, *)} f(e)$

![Flow Network Diagram]

Value = 24
The Maximum Flow Problem

Max Flow Problem: Find $s - t$ flow f of maximum flow value $\nu(f)$
Net Flow Across a Cut

Let \((A, B)\) be any \(s - t\) cut. The net flow sent across the cut is:

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]
Flow and Cut Duality

Flow value lemma: Let f be any $s - t$ flow, and let (A, B) be any $s - t$ cut. Then, the net flow sent across the cut is equal the amount $\nu(f)$ leaving s:

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)$$
Flow and Cut Duality

Flow value lemma: Let f be any $s - t$ flow, and let (A, B) be any $s - t$ cut. Then, the net flow sent across the cut is equal the amount $\nu(f)$ leaving s:

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)$$
Flow value lemma: Let f be any $s - t$ flow, and let (A, B) be any $s - t$ cut. Then, the net flow sent across the cut is equal the amount $\nu(f)$ leaving s:

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)$$
Proof of Flow Cut Duality

Flow value lemma: Let f be any $s - t$ flow, and let (A, B) be any $s - t$ cut. Then, the net flow sent across the cut is equal the amount $\nu(f)$ leaving s:

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)$$

Proof: Due to flow conservation, $\sum\{e=(v,*)\} f(e) = \sum\{e=(*,v)\} f(e)$ for all vertices $v \in V - \{s, t\}$. So:

$$\sum_{v \in V - \{s,t\}} \left[\sum_{e=(v,*)} f(e) - \sum_{e=(*,v)} f(e) \right] = 0$$

By definition, $\nu(f) = \sum_{e=(s,*)} f(e)$. Adding 0 to both sides yields:

$$\nu(f) = \sum_{e=(s,*)} f(e) + 0 = \sum_{e=(s,*)} f(e) + \sum_{v \in V - \{s,t\}} \left[\sum_{e=(v,*)} f(e) - \sum_{e=(*,v)} f(e) \right]$$
Proof of Flow Cut Duality Continued

So, at this point we are summing up the net flow of vertices \(v \in V - \{t\} \).

\[
\sum_{e=(s,*)} f(e) + \sum_{v \in V - \{s,t\}} \left[\sum_{\{e=(v,*)\}} f(e) - \sum_{\{e=(*,v)\}} f(e) \right]
\]

Let’s define an arbitrary cut \((A, B)\). The vertices \(v \in V - \{t\} \) will be split into those with both in and out edges either complete inside \(A \) or completely inside \(B \), and those with edges connecting \(A \) to \(B \).

Due to flow of conservation, summing up the net flow over vertices with both in and out edges completely in \(A \) or completely in \(B \) will give 0.

So, in the above equation we are left with summing up only the net flow over vertices that have edges connecting \(A \) to \(B \):

\[
\nu(f) = \sum_{e=(s,*)} f(e) + \sum_{v \in V - \{s,t\}} \left[\sum_{\{e=(v,*)\}} f(e) - \sum_{\{e=(*,v)\}} f(e) \right]
= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]
Reflecting on the Implications of the Flow Cut Duality

- The previous proof says: Given *any valid* flow and *any valid* cut, the flow value is equal to the net flow sent across the cut.
- So, over all possible flows \(f \) and all possible cuts \((A, B)\)
 \[
 \nu(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
 \]
- What is the maximum flow value that can be achieved?
- There is a cut (among all possible valid cuts that can be defined) that limits the maximum flow
Weak Duality: Let f be any $s - t$ flow, and let (A, B) be any $s - t$ cut. Then the value $\nu(f)$ of the flow is at most the capacity $\text{cap}(A, B)$ of the cut:

$$\text{Cut capacity} = 30 \implies \text{Flow value} \leq 30$$
Weak Duality: Let \(f \) be any \(s-t \) flow. For any \(s-t \) cut \((A, B)\), \(\nu(f) \leq \text{cap}(A, B) \)

Proof:
\[
\nu(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]

\[
\leq \sum_{e \text{ out of } A} f(e)
\]

\[
\leq \sum_{e \text{ out of } A} c(e)
\]

\[
= \text{cap}(A, B)
\]

Implications: Max flow is the dual of the min cut problem.
Certificate of Optimality

Corollary: Let f be any $s - t$ flow, and let (A, B) be any cut. If $\nu(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \Rightarrow Flow value \leq 28
Outline of Today’s Class

Maximum Flow and Minimum Cut Problem

Graph Applications

Designing a Max Flow Algorithm

Greedy Algorithm

- Start with \(f(e) = 0 \) for every edge \(e \in E \)
- Find an \(s - t \) path \(P \) where each edge has \(f(e) < c(e) \)
- Augment flow along path \(P \)
- Repeat until stuck

![Flow Network Diagram]

Flow value = 0
Designing a Max Flow Algorithm

Greedy Algorithm

- Start with $f(e) = 0$ for every edge $e \in E$
- Find an $s - t$ path P where each edge has $f(e) < c(e)$
- Augment flow along path P
- Repeat until stuck
Designing a Max Flow Algorithm

Greedy Algorithm

- Start with $f(e) = 0$ for every edge $e \in E$
- Find an $s - t$ path P where each edge has $f(e) < c(e)$
- Augment flow along path P
- Repeat until stuck \(\text{(locally optimal is not globally optimal)}\)
Order of Paths is Important

- We cannot guarantee which path we will find first
- If we pick wrong path first, whole algorithm goes wrong
- Key now is idea of pushing back flow
- If we have \(x \) units of water flowing in the pipe \((u, v)\), then we can pretend there is a pipe \((v, u)\) with capacity \(x\) when we are trying to find a path from \(s\) to \(t\)
- This is maintained through a residual graph
Residual Graph

- A residual graph G_f allows to keep track of which paths remain from s to t along which one can push more flow.
- The idea of “can push more flow” is kept through residual capacities in G_f.
- G_f in the beginning is a copy of the given input graph $G = (V, E)$
- When a flow $f(e)$ is pushed along $e = (u, v)$, G_f contains two edges:
 - (u, v) with residual capacity $c(e) - f(e)$
 - (v, u) with residual capacity $f(e)$
Residual Graph

Residual graph: \(G_f = (V, E_f) \)

- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : f(e) > 0 \} \)
- Associate residual capacity \(c_f(e) > 0 \)
- \(\forall e = (u, v) \in E(G) \) with \(c(e), f(e) \):
 \[
 \begin{cases}
 e, c_f(e) = c(e) - f(e) & \text{if } f(e) < c(e) \\
 e^R, c_f(e) = f(e) & \text{else}
 \end{cases}
 \]

- \(G_f \) tracks edges of \(G \) can admit more flow
- A path \(P = s \leadsto t \) in \(G_f \) is an augmenting path in \(G \) with respect to \(f \)
- \(\nu(f) \) can be increased by \(c_f(P) = \min_{e \in P} c_f(e) \) [\(c_f(P) \) is bottleneck of \(P \)]
Outline of Today’s Class

Maximum Flow and Minimum Cut Problem
Graph Applications

Ford-Fulkerson: An Augmenting Path Algorithm

```c
Augment(f, c, P) {
    b ← bottleneck(P)
    foreach e ∈ P {
        if (e ∈ E) f(e) ← f(e) + b
        else f(e^r) ← f(e^r) − b
    }
    return f
}
```

```c
Ford-Fulkerson(G, s, t, c) {
    foreach e ∈ E  f(e) ← 0
    G_f ← residual graph

    while (there exists augmenting path P) {
        f ← Augment(f, c, P)
        update G_f
    }
    return f
}
```
Ford-Fulkerson: Trace
Outline of Today's Class

Maximum Flow and Minimum Cut Problem
Graph Applications

Ford-Fulkerson: Trace
Outline of Today's Class
Maximum Flow and Minimum Cut Problem
Graph Applications

Maximum Flow and Minimum Cut Problem
Graph Applications

Ford-Fulkerson: Trace

Ford-Fulkerson: Trace

Amarda Shehu
Lecture: Analysis of Algorithms (CS583 - 002)
Ford-Fulkerson: Trace
Outline of Today’s Class
Maximum Flow and Minimum Cut Problem
Graph Applications

Ford-Fulkerson: Trace
Outline of Today’s Class
- Maximum Flow and Minimum Cut Problem
- Graph Applications

Ford-Fulkerson: Trace

1. Maximum Flow and Minimum Cut Problem
2. Graph Applications
3. Flow Networks
4. Minimum Cut
5. Of Cuts and Flows
6. Maximum Flow
7. Weak Duality
8. Strong Duality
10. Improving Ford-Fulkerson: Capacity Scaling
Outline of Today's Class
Maximum Flow and Minimum Cut Problem
Graph Applications

Ford-Fulkerson: Trace
Augmenting Path Theorem: f is a max flow iff there are no augmenting paths

Max-flow Min-cut Theorem: The value of the max flow is equal to the value of the min cut [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

Proof: Both simultaneously by showing:

(i) There exists a cut (A, B) such that $\nu(f) = \text{cap}(A, B)$
(ii) Flow f is a max flow
(iii) There is no augmenting path relative to f

(i) \Rightarrow (ii): From weak duality lemma

(ii) \Rightarrow (iii): Let f be a flow. If there is an augmenting path, then f can be improved by sending flow along path.
Max-Flow Min-Cut Theorem (Continued)

(iii) ⇒ (i):

- Let \(f \) be a flow with no augmenting paths
- Let \(A \) be set of vertices reachable from \(s \) in residual graph
- \(s \in A \) by definition of \(A \)
- \(t \notin A \), otherwise \(t \) would be reachable from \(s \) in \(G_f \)

Since there are no augmenting paths in \(G_f \), the residual capacities \(c_f(e) = 0 \) for all edges out of \(A \).

That is, \(\forall e \text{ out of } A, f(e) = c(e) \).

Since the flow of each edge out of \(A \) is the capacity of that edge, then \(\nu(f) = \text{cap}(A, B) \)
Assumption: All capacities are integers between 1 and C

Invariant: Every $f(e)$ and $c_f(e)$ remains an integer throughout the execution

Theorem: The algorithm runs in $O(|E| \cdot f^*)$, where f^* is the maximum flow

Proof: Since each augmentation increases value by at least 1, the algorithm iterates over at most f^* augmentations. At each augmentation, the flow is pushed over at most $|E|$ edges ($|E_f| \leq 2 \cdot |E|$).

Integrality Theorem: If all capacities are integers, then there exists a max flow for which every flow value $f(e)$ is an integer

Proof: Follows from invariant, given that the algorithm terminates
Ford-Fulkerson: Correctness and Analysis

If maximum capacity is C, the algorithm takes C iterations in the worst case.
Choosing Good Augmenting Paths

Choose good augmenting paths

- Some choices lead to exponential algorithms
- Clever choices lead to polynomial algorithms
- If capacities are irrational, algorithm not guaranteed to terminate

Choose augmenting paths that:

- Can be found efficiently
- Result in few iterations

Such paths have: [Edmunds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity
- Sufficiently large bottleneck capacity
- Fewest number of edges
Edmunds-Karp

- Ford-Fulkerson is more of a template than an algorithm
- When capacities are integers, Ford-Fulkerson guaranteed to terminate in \(O(|E| \cdot f)\) time, where \(f\) is max flow value
- With irrational flow values, algorithm may never terminate
- Edmunds-Karp: a variation of the Ford-Fulkerson’s algorithm with guaranteed termination and a \(O(|V| \cdot |E|^2)\) runtime independent of the maximum flow value
Bipartite Matching

- Matching a set of machines L with a set of tasks R that need to be performed simultaneously
- An edge (u, v) denotes machine u can execute task v
- Goal is to maximize number of tasks
Bipartite Matching

- Given a bipartite graph \(G = (L \cup R, E) \), find a maximal matching, a subset of the edges, no two of which share an endpoint
 - Dating agency, matching women \(L \) with men \(R \)
 - An edge \((u, v)\) indicates \(u \) is compatible with \(v \)
 - Goal is to maximize number of matches
Bipartite Matching Reduces to Maximum Flow

- Add a source s, edges (s, l) for $l \in L$, capacity 1
- Add a sink t, edges (r, t) for $r \in R$, capacity 1
- Direct edges in G from L to R, capacity 1
- Integral flows correspond to matchings
- Ford-Fulkerson takes time $O(|V| \cdot |E|)$ since $f \leq |V|$
Clustering: Given a set U of n objects labeled p_1, p_2, \ldots, p_n, classify them into coherent groups (objects are photos, documents, micro-organisms, gene expression data, events, etc.)

Distance function: Measures “closeness” of two objects

Figure: Outbreak of cholera deaths in London in 1850s (HP Labs)
k-clustering: divide objects into k non-empty groups

Distance function: satisfies some properties (metric)

- $d(p_i, p_j) = 0$ iff $p_i = p_j$ (identity)
- $d(p_i, p_j) \geq 0$ (non-negative)
- $d(p_i, p_j) = d(p_j, p_i)$ (symmetry)
K-Clustering of Maximum Spacing

Spacing: min distance between any pair of points in different clusters

Clustering of maximum spacing: Given an integer k, find a k-clustering of maximum spacing
Kruskal-like Algorithm

Single-link k-clustering algorithm

- Form a graph $G = (U, \emptyset)$ corresponding to $|U| = n$ clusters
- Find closest pair of objects s.t. each object is in a different cluster, and add an edge between them
- Repeat $n - k$ times until there are exactly k clusters

Key observation: Kruskal-like, except that it stops when there are k connected components

Remark: equivalent to finding an MST and deleting its $k - 1$ most expensive edges
Motion Planning: Dijkstra’s Application

- Goal: plan motions of a robot in a cluttered workspace
- Build roadmap/graph of free configuration space of the robot
- Query roadmap for shortest, smoothest paths that allow a robot to get from a start to a goal configuration

Figure: Erion Plaku at Catholic University is developing algorithms that plan paths for car-like robots in cluttered environments. ©E. Plaku.