Lecture: Analysis of Algorithms (CS583 - 002)\(^1\)

Amarda Shehu

Fall 2017

\(^1\)Some material adapted from Kevin Wayne’s Algorithm Class © Princeton
1 Classic Applications of DSF
 - Topological Sort
 - Strongly Connected Components

2 Finding Minimum Spanning Trees
 - Enumerating Spanning Trees
 - Minimum Spanning Trees
 - Kruskal’s Algorithm
 - Prim’s Algorithm

3 Finding Shortest Paths in Graphs
The pirates of a ship in the Mediterranean just looted a small island off the Adriatic coast. They got away with a bag of N items. Realizing that some items are more precious than others, they are trying to come up with a fair scheme to distribute them.

Surprisingly, these pirates are fair and sensitive to bullying. They think the rule should be simple: if pirate A has ever bullied pirate B, B gets to choose before A.

Can you help them out?
Problem Statement: Given a directed acyclic graph (DAG) \(G = (V, E) \), obtain a linear ordering of \(V \) such that if \((u, v) \in E \), then \(u \) appears before \(v \) in the ordering.

Applications: First in context of PERT technique for scheduling in project management (Jarnagin 1960). Typical applications: instruction scheduling, order of compilation tasks in makefiles, resolving symbol dependencies in linkers, and task scheduling.
A Solution to Topological Sort

Observations:
- Consider the in-degree of vertices
- The first vertex in a topological sort must have in-degree 0
- There is such a vertex in every DAG

A Solution:
- Repeat the following steps until the graph is empty:
 1. Select a vertex v that has in-degree 0
 2. Print or store v in some list at index i, then increment i
 3. Remove v and all edges emanating from v from graph

Questions:
- Why is this solution correct?
- What is the running time of this solution?
A DFS-based Solution to Topological Sort

- A topological sort is a linear sort on finishing times.
- The finishing time of a vertex records when DFS has found everything reachable from it.
- If there is an edge \((u, v)\) in a DAG, then \(f[u] \geq f[v]\).
- The ordering in topological sort requires that vertices with higher finishing times be printed first.

Strategy:

1. As a vertex is finished, place it to front of a linked list.

Questions: Correctness, Running Time
A strongly connected component (SCC) of a directed graph \(G = (V, E) \) is a maximal set of vertices \(C \subseteq V \) such that for every pair of vertices \(u, v \) in \(C \), both \(u \) and \(v \) are reachable from one another.

Problem Statement: Find SCCs of \(G \)

Applications: Computer vision, image segmentation, labeling, decomposing social networks

Key observation: If each SCC is contracted to a single vertex, the resulting graph is a dag.
Important Observations

1. One DFS run on a graph will reveal one connected component.
2. DFS started at a node u will get stuck and needs to be restarted when all nodes reachable from u have been visited.
3. Define a sink SCC as an SCC with no edges leaving it. Find one such SCC in the graph below. What does it correspond to in the dag on the right? What about the transpose of the dag?
4. What happens if DFS is started from a node in a sink SCC?
5. Does this give you an idea for how to find SCCs?
Important Observations

1. Identify a node in a sink SCC. Run DFS on that node and output the nodes visited. They will be all the nodes in that sink SCC and nothing else. Why?

2. Remove the sink SCC and all connections involving it.

3. You will now have a new sink SCC (why?). Go to step 1.

An important question remains: How to identify a node in a sink SCC? **Note:** G^T and G have exactly the same SCCs

Given graph $G = (V, E)$

Transpose graph $G^T = (V, E^T)$
How to Identify a Node in a Sink SCC?

- G^T and G have exactly the same SCCs
- A sink SCC in G is a source SCC in G^T (a source SCC has no edges coming to it)
- Node with highest DFS finish time in G^T belongs to a source SCC in G^T (which is a sink SCC in G)
- This node is a sink node SCC in G on which we can start our algorithm
- Moral: Run DFS on G^T to obtain the node with the highest finish time. Run DFS on G starting from this node to get its SCC. Remove this SCC. Run DFS on modified G from highest finish time node among remaining nodes.
Putting it All Together: Finding SCCs

Given graph \(G = (V, E) \)

Transpose graph \(G^T = (V, E^T) \) (arrows reversed)

Summary:

Step 0: Construct \(G^T \) from \(G \)
Step 1: DFS on \(G^T \) can give finishing times \(f[u] \) for \(u \in V \)
Step 2: Run DFS on \(G \) starting from vertices with highest \(f[u] \) value
Step 3: Remove SCC outputted by the DFS in step 2
Step 4: Go to step 2 on modified \(G \)

Running time is similar to DFS, adding the time it takes to construct \(G^T \). Time to create \(G^T \) from \(G \) is \(O(|V| + |E|) \). Why?
Uninformed graph search (for finding paths)
- Depth-first Search (DFS) ✓
- Breadth-first Search (BFS) ✓
- Depth-limited search (DLS) ✓
- Iterative Deepening Search (IDS) ✓

Informed graph search (for finding minimum spanning trees)
- Boruvka [Otakar Boruvka 1926]
- Jarnik [V. Jarnik 1930]
- Kruskal [Joseph B. Kruskal 1956]
- Prim [Run C. Prim 1957]
- Chazelle [Bernard Chazelle 2000]

Informed graph search (for finding shortest paths - next class)
- Dijkstra [Edsger Dijkstra 1959]
- B* [Hans Berliner 1979]
- Best-First Search [Judea Pearl 1984]
What is the Spanning Tree of a Graph?

If $G = (V, E)$ is a graph, then any subgraph of G that (i) contains all vertices V of G and (ii) is a tree is a **spanning tree** of G.

Figure: Graph $G = (V, E)$

Figure: Spanning tree $T = (V, E')$ of graph G

Figure: Another spanning tree of graph G
Some Spanning Trees are Better than Others

- A weighted (connected) undirected graph $G = (V, E)$
- Weight function $w : E \rightarrow R$ associates a weight with an edge
- The weight $w(T)$ of a tree T is $\sum_{(u,v) \in T} w(u, v)$
- A minimum spanning tree (MST) has the minimum $w(T)$ over all spanning trees T of a graph G
Finding MSTs is Useful in Diverse Applications

- Network design
 - Phone, electric, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems
 - Traveling Salesman Problem, Steiner trees
- Other (indirect) applications
 - Maximum bottleneck paths
 - LDPC codes for error correction
 - Image registration with Renyi entropy
 - Learn features for real-time face verification
 - Reduce data storage in sequencing amino acids in a protein
 - Model locality of particle interactions in turbulent fluid flows
 - Autoconfig protocol for Ethernet bridging to avoid cycles
Problem: Given a weighted (connected) undirected graph $G = (V, E)$, find an MST of G.

Input: A connected, undirected graph $G = (V, E)$ with weight function $w : E \rightarrow R$

Output: A spanning tree T of G that is of minimum weight $w(T) = \sum_{(u,v) \in T} w(u, v)$
Algorithms to Find MSTs

There's the history:

- **Boruvka** [Otakar Boruvka 1926]
 - Wanted to minimize the cost of electric coverage of Moravia
- **Jarnik** [V. Jarnik 1930]
- **Kruskal** [Joseph B. Kruskal 1956]
- **Prim** [Run C. Prim 1957]
- **Chazelle** [Bernard Chazelle 2000]

And then there's us:

- Brute-force approach
- Something smarter?
Enumerating spanning trees of a graph

- Denote the number of spanning trees of a graph G by $t(G)$
- $t(G)$ is easy to compute for special graphs
- Cayley’s formula gives $t(G)$ for a complete graph on n vertices: $t(G) = n^{n-2}$ for $n > 1$
- Example: in a complete graph on 4 vertices, $t(G) = 16$
- For any graph G, $t(G)$ can be computed with Kirchhoff’s matrix-free theorem: $t(G) = \frac{1}{n} \lambda_1 \cdot \ldots \cdot \lambda_{n-1}$, where λ_i are the non-zero eigenvalues of the Laplacian matrix of G
- Bottom line: Too many spanning trees to enumerate to find MST through a brute-force approach
Brute-force Approach: terribly inefficient

Greedy Approach:
- Find a key property of the MST to help determine whether an edge of G is part of the MST
- Then build up the MST one step (edge/vertex) at a time
Greedy Algorithms to Find the MST of a Graph

- **Kruskal’s Algorithm**

 Heuristic: Select best edge for insertion
 Approach: (i) Start with $T = \emptyset$. (ii) Consider edges in ascending order of weight/cost. (iii) Insert edge e in T unless doing so creates a cycle.

- **Reverse-Delete Algorithm**

 Heuristic: Select worst edge for deletion
 Approach: (i) Start with $T = E$. (ii) Consider edges in descending order of weight/cost. (iii) Delete edge e from T unless doing so disconnects T

- **Prim’s Algorithm**

 Heuristic: Select best vertex
 Approach: (i) Start with some vertex s as root node. (ii) Greedily grow T from s outward. (iii) At each step, add cheapest edge e to T that has exactly one endpoint in T.
A Generic Algorithmic Template for Finding MSTs

Generic-MST\((G, w) \)

1. \(T \leftarrow \{ \} \)
2. **while** \(T \) does not form a spanning tree **do**
3. \(\text{find an edge in } E \text{ that is safe for } T \)
4. \(T \leftarrow T \cup \{ u, v \} \)
5. **return** \(T \)

Taking care of some implementation and correctness details:

- line 2: when do we know \(T \) forms a spanning tree?
- line 3: what does it mean to add a safe edge to \(T \)?
- lines 3-4: safeness has to address both low cost and no cycles
Cycles and Cuts

Cycle: Set of edges \(\{(v_1, v_2), \ldots, (v_k, v_1)\} \)

Cut: A subset \(S \) of vertices \(V \)

Cutset: Subset \(D \) of edges with exactly one endpoint in \(S \)

Figure: Cycle \(C = \{(1, 2), \ldots, (6, 1)\} \)

Figure: Cut \(S = \{4, 5, 8\} \). Cutset \(D = \{(5, 6), \ldots, (7, 8)\} \)
Greedy Algorithms for MSTs Exploit Certain Properties

- **Simplifying assumption**: All edge costs/weights are distinct
- **Cut property**: Let S be any subset of vertices V in the graph $G = (V, E)$. Let $e \in E$ be the minimum weight edge with exactly one endpoint in S. Then, the MST of G contains e.
- **Cycle property**: Let C be any cycle, and let f be the maximum weight edge in C. Then, the MST does not contain f.

Figure: e is in the MST

Figure: f is not in the MST
Cycle-Cut Intersection

Lemma: A cycle and a cutset intersect in an even number of edges

Cycle \(C = \{(1, 2), (2, 3), \ldots, (6, 1)\} \)

Cutset \(D = \{(3, 4), (3, 5), \ldots, (7, 8)\} \)

Intersection \(I = \{(3, 4), (5, 6)\} \)

Proof: Argument built from picture below
Cut Property: Proof

Cut Property Lemma: Let \(S \) be any subset of vertices \(V \) of \(G = (V, E) \). Let \(e \in E \) be the minimum weight edge with exactly one endpoint in \(S \). Then, the MST \(T^* \) of \(G \) contains \(e \).

Proof: (cut-and-paste argument)

- Suppose \(e \not\in E(T^*) \). We are given that \(e = (u, v) \), where \(u \in S \) and \(v \in V - S \). So, \(e \in D \), the cutset corresponding to \(S \).
- As a spanning tree, \(T^* \) contains a unique path from \(u \) to \(v \) without \(e \) in it.
- Adding \(e \) to \(T^* \) would create a cycle \(C \) in \(T^* \). So, \(e \in C \cap D \).
- Since \(C \cap D \) contains an even number of edges, \(\exists f \in C \cap D \).
- Create \(T' = T^* \cup \{e\} - \{f\} \). Since \(w(e) < w(f) \Rightarrow w(T') < w(T^*) \)
- \(T' \) is more optimal than \(T^* \Rightarrow \) proof achieved by contradiction.
Outline of Today’s Class
Classic Applications of DSF
Finding Minimum Spanning Trees
Finding Shortest Paths in Graphs

Cycle Property: Proof

Cycle Property Lemma: Let C be any cycle in $G = (V, E)$. Let f be the maximum weight edge in C. Then, the MST T^* of G does not contain f.

Proof: (cut-and-paste argument)

1. Suppose $f \in E(T^*)$. Deleting f from T^* creates a cut S in T^*. So $f \in D$, the cutset corresponding to S.
2. Edge $f \in C$ as well, so $f \in C \cap D$.
3. Since $C \cap D$ contains an even number of edges, $\exists e \in C \cap D$.
4. Create $T' = T^* \cup \{e\} - \{f\}$. Since $w(e) < w(f) \Rightarrow w(T') < w(T^*)$.
5. T' is more optimal than $T^* \Rightarrow$ proof achieved by contradiction.
Kruskal’s Algorithm [Kruskal, 1956]

- Start with $E(T) \leftarrow \emptyset$
- Consider edges in $E(G)$ in ascending order of weight
- Case 1: If adding e to $E(T)$ creates a cycle, discard e (cycle property)
- Case 2: Else, insert $e = (u, v)$ in $E(T)$, where S is the set of vertices in u’s connected component (cut property)
Kruskal’s Algorithm: Implementation and Analysis

Kruskal-MST\((G = (V, E), w)\)

1: sort the edges of \(G\) in ascending order of weights
2: \(V(T) \leftarrow V(G), E(T) \leftarrow \emptyset\)
3: for each edge \(e = (u, v) \in E\) in sorted order do
4: \hspace{1em} if \(u\) and \(v\) are in different connected components then
5: \hspace{2em} \(E(T) \leftarrow E(T) \cup \{e\}\)
6: \hspace{1em} return \(T\)

Analysis:

- Sorting \(\Rightarrow O(|E| \cdot \lg(|E|))\) time in the worst-case
- For loop iterates over all \(|E|\) edges in sorted order
- Potentially, line 4 could be slow. How can one find quickly whether the endpoints of \(e\) are disconnected in \(S\)?
- Line 4 can be performed in \(O(1)\) time through the union-find operation on a disjoint-set data structure
- Short detour...
Disjoint-set Data Structure

- Maintains a collection of disjoint dynamic sets \(\{S_1, \ldots, S_k\} \)
- Each \(S_i \) can be represented as a linked list or tree
- The unique “key” of a set can be stored at root

Operations:

- Make-Set(\(x \)): create \(\{x\} \)
- Find-Set(\(x \)): find set that contains \(x \)
- Union(\(x, y \)): merge sets that contain \(x \) and \(y \)

A sequence of \(O(m) \) Union and Find-Set operations on \(m \) elements can be performed in \(O(m \cdot \lg m) \) time.
Kruskal-MST(G, w)

1: \(S \leftarrow \{ \} \)
2: for each vertex \(v \in V(G) \) do
3: Make-Set(\(v \))
4: sort the edges of \(G \) in ascending order of weights
5: for each edge \(e = (u, v) \) in sorted order do
6: if Find-Set(\(u \)) \neq \text{Find-Set}(v) \) then
7: \(S \leftarrow S \cup \{(u, v)\} \)
8: Union(\(u,v \))
9: return \(S \)

Analysis: Lines 5-8 contain \(O(E) \) Find-Set and Union operations. Along with \(|V| \) Make-Set, these take \(O((V + E) \cdot \alpha(V)) \), where \(\alpha \) is a slowly growing function. Total running time is \(O(E \cdot \lg(E)) \), since \(E \geq |V| - 1 \) in a connected graph (equiv. \(O(E \cdot \lg(V)) \)).
Kruskal’s Algorithm in Action
Kruskal's Algorithm in Action

Graph with edges and weights:

- A to B: 7
- B to C: 8
- B to F: 6
- F to G: 9
- G to E: 5

The highlighted edge is the one added in the first step of Kruskal's Algorithm.
Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action

A - B - C
A - D - E - G
A - F - G

Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action
Kruskal’s Algorithm in Action

A — 7 — B
5
D — 9 — B — 7 — E
6
F — 8 — E
15
G — 9 — E
11
Kruskal’s Algorithm in Action

A graph with nodes A, B, C, D, E, F, G and edges with weights as shown.

Weights: 7, 5, 9, 6, 15, 8, 11, 9, 5.
Prim’s Algorithm [Jarnik 1930, Dijkstra 1957, Prim 1959]

- Initialize S to be any vertex of G
- Apply cut property to S
- Add minimum weight edge $e = (u, v)$ in cutset D corresponding to S to the growing MST and add new v to S
Prim’s Algorithm

Prim-MST(G, w)

1: let T contain first an arbitrary vertex $s \in V$
2: while T has fewer than $|V|$ vertices do
3: find the lightest edge connecting T to $G - T$
4: add it to T
5: return T

- Maintain set of explored vertices (that are already nodes in the tree) in S
- For each unexplored vertex $v \in V - S$, maintain the attachment cost $d[v] = \text{weight of lightest edge connecting } v \text{ to a node in } S$
- Key to a fast implementation: maintain $V - S$ as a priority queue, where the key of each unexplored vertex is the attachment cost, the weight of the lightest edge connecting v to S
Implementing Prim’s Algorithm

Remember: Maintain $V - S$ as a priority queue Q. The key of each vertex v in Q is the weight of the lightest edge connecting v to S.

Prim-MST(G, w)

1. $Q \leftarrow V$
2. $\text{key}[v] \leftarrow \infty$ and $\pi[v] \leftarrow \infty$ for all $v \in V$
3. $\text{key}[s] \leftarrow 0$ for an arbitrary $s \in V$
4. **while** $Q \neq \emptyset$ **do**
 5. $u \leftarrow \text{Extract-Min}(Q)$
 6. **for** each $v \in \text{Adj}(u)$ **do**
 7. **if** $v \in Q$ and $w(u, v) < \text{key}[v]$ **then**
 8. $\text{key}[v] \leftarrow w(u, v)$
 9. $\pi(v) \leftarrow u$
 10. **return** $(v, \pi(v))$ as the MST in the end
Outline of Today’s Class
Classic Applications of DSF
Finding Minimum Spanning Trees
Finding Shortest Paths in Graphs

Prim’s Algorithm in Action [explored vertices in A]

$\in A$
$\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Outline of Today’s Class
Classic Applications of DSF
Finding Minimum Spanning Trees
Finding Shortest Paths in Graphs

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]
Prim’s Algorithm in Action [explored vertices in A]

$\in A$

$\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

$\in A$

$\in V - A$
Outline of Today’s Class
Classic Applications of DSF
Finding Minimum Spanning Trees
Finding Shortest Paths in Graphs

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

$\in A$
$\in V - A$
Outline of Today’s Class
Classic Applications of DSF
Finding Minimum Spanning Trees
Finding Shortest Paths in Graphs

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

$\in A$
$\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

$\in A$

$\in V - A$
Prim’s Algorithm in Action \([\text{explored vertices in } A]\)

\[
\begin{align*}
\in A & \quad \in V - A
\end{align*}
\]
Prim’s Algorithm in Action [explored vertices in A]
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\in V - A$
Prim’s Algorithm in Action [explored vertices in A]

- $\in A$
- $\notin V - A$
Analysis of Prim’s Algorithm

\[Q \leftarrow V \]
\[\text{key}[v] \leftarrow \infty \text{ for all } v \in V \]
\[\text{key}[s] \leftarrow 0 \text{ for some arbitrary } s \in V \]
\[\text{while } Q \neq \emptyset \]
\[\begin{aligned}
&\text{do } u \leftarrow \text{EXTRACT-MIN}(Q) \\
&\text{for each } v \in \text{Adj}[u] \\
&\begin{aligned}
&\text{do if } v \in Q \text{ and } w(u, v) < \text{key}[v] \\
&\text{then } \text{key}[v] \leftarrow w(u, v) \\
&\pi[v] \leftarrow u
\end{aligned}
\end{aligned} \]
Analysis of Prim’s Algorithm

Time = \(\theta(V) \cdot T(\text{Extract Min}) + \theta(E) \cdot T(\text{Decrease Key}) \)

<table>
<thead>
<tr>
<th>Q</th>
<th>(T(\text{Extract-Min}))</th>
<th>(T(\text{Decrease-Key}))</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>(O(V))</td>
<td>(O(1))</td>
<td>(O(V^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(1))</td>
<td>(O(lgV))</td>
<td>(O(E \cdot lgV))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(lgV))</td>
<td>(O(1))</td>
<td>(O(E + V \cdot lgV))</td>
</tr>
</tbody>
</table>
Shortest Paths Problems

- Single-source shortest path: Shortest path from a given vertex to any other vertex in V
 - BFS on unweighted graphs
 - Dijkstra’s algorithm on graphs with nonnegative weights
 - Bellman-Ford’s algorithm on graphs with nonnegative cycles
- Single-destination shortest path: Shortest path from any vertex in V to a given destination vertex
 - Reversing edges, this is same as single-source shortest path
- Single-pair shortest path: Shortest path from u to v
 - A particular instance of the single-source shortest path
- All-pairs shortest path: Shortest-paths between any pair
 - Can run single-source shortest path problem on every vertex
 - Solved faster with the Floyd-Warshall’s algorithm

More next class...