Course Mechanics

Course URL:
- http://cs.gmu.edu/~astavrou/isa564_F16.html

Instructor – Angelos Stavrou
- Email: astavrou@gmu.edu
- Office: Research I, Rm 437
- Office Phone: (703) 993-1659 & 3772
- Office Hours: Tuesday 4:30pm – 6:30pm, and by appointment
Course Mechanics

- Course URL: http://cs.gmu.edu/~astavrou/isa564_F16.html

- TA – Maofei Chen
 - Email: mchen18(_)gmue.edu
 - Office: ENGR 4456
 - Office Hours: Monday: 3:30 - 5:00pm & Wednesday: 2:50 - 4:20pm
Course Mechanics

- **Course Content:**
 - Forms on Blackboard
 - Assignments:
 - git.gmu.edu/isa564F16/

- **Instructor – Angelos Stavrou**
 - astavrou@gmu.edu
 - http://www.cs.gmu.edu/~astavrou/isa564_F16_syllabus.html
 - http://www.cs.gmu.edu/~astavrou
Course Overview

- Real world vulnerabilities, exploits, and defense
- First hand experience with security experiments
 - Network/host attacks, defenses, forensics, diag
 - Install and test defenses including Intrusion and anomaly Detection Systems (IDS)
 - Examine the functionality of Botnets, Malware, antivirus, anti-spyware
- Obtain a deep enough understanding of existing tools (and the security concepts they implement) to not be a script kiddie
Prerequisites

- **Courses**
 - C or better in CS 310 Data Structures and CS 367 Computer Systems & Programming or Equivalent

- **Skills**
 - Familiar or comfortable with Linux
 - C and ASM knowledge is a plus
 - Willingness to spend time in the lab learning about exploits, defenses, and tools.
 - Being able to install programs and work in Unix and Windows environment
Skills Survey

- Take a minute to fill out skills survey
Course Topics (tentative)

- **Introduction**
 - Lab Environment
 - Wireshark & Metasploit
 - Setup your environment

- **Software Vulnerabilities**

- **Crafting Malware**

- **Remote Exploits & Elevation**

- **Defenses: Firewalls / IDSes**

- **Wireless Attacks**

- **Other “Hot” Topics**
 - Emerging infection vectors
 - Advanced malware (e.g., rootkits, botnets)

Labs

- Lab 1: Buffer Overflows
- Lab 2: Malware & Shellcode
- Lab 3: Network Attacks & Remote Exploitation
- Lab 4: Firewalls & Intrusion Detection
- Lab 5: Wireless Exploitation
- Lab 6: Web Vulnerabilities
Course Topics (tentative)

- Introduction
 - Lab Environment, be able to run experiments at home

- Software Vulnerabilities
 - What are the popular attack targets?

- Malware Design & Economics
 - How, What, Why?

- Network Attacks (Wireless)
 - Effectiveness, ease of deployment, traceability
Course Topics (tentative)

- Defenses I: Intrusion and Firewalls
 - Capabilities, Ease of use, Limitations

- Defenses II: Traffic Analysis & Adaptive Firewalls
 - Can we characterize traffic inside an organization?

- Defenses III: Host-based Defenses
 - Host-based Containment architectures
 - Full Virtualization vs para-virtualization vs Lightweight Process Containers

- Other “Hot” Topics
 - Emerging infection vectors
 - Virtualization (OpenVZ, Linux Vservers)
 - Advanced malware (e.g., rootkits, botnets)
Course Grading

<table>
<thead>
<tr>
<th>Topics</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation</td>
<td>10%</td>
</tr>
<tr>
<td>Labs 5 - 6</td>
<td>50%</td>
</tr>
<tr>
<td>Midterm</td>
<td>15%</td>
</tr>
<tr>
<td>Final or Team Project</td>
<td>25%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Course Policies

- ** Academic integrity
 - Read the GMU honor code
 - I want you to collaborate and ask questions, however…

- Unless otherwise noted, work turned in should reflect your independent capabilities
 - If unsure, note / cite sources and help

- Usually, no late submissions will be accepted
 - You will be given two weeks to submit your work
 - No penalty for documented emergency (e.g., medical) or by prior arrangement in special circumstances
Warning

- Policy on security experiments:
 - you may **not** break into machines that are not your own
 - you may **not** attempt to attack or subvert system security on machines not owned by you
 - you can collaborate but **not copy or outsource your work**
Introduction
Lab Environment

- VMware-based VM images
 - VM1: Kali Linux
 - VM2: Metasploitable

- Make sure VMware is installed
 - You may choose to install VMware Server in your own machine
Intro - Wireshark & Metasploit

Attacker

Victim

Windows/Linux

Server or Desktop or Mobile

1: Target Probing

2: Vulnerability Exploitation

Fixed Target

Remote Shell Creation

3: Payload

Browser/Flash/others
Intro - Wireshark & Metasploit

1: Target Probing
2: Vulnerability Exploitation
3: Payload

Attacker

Windows/Linux

Wireshark

Victim

Server or Desktop or Mobile
Lab 1 - Shellcode

1: Target Probing
2: Vulnerability Exploitation
3: Payload

Attacker

Victim

Windows/Linux

Server or Desktop or Mobile
Lab 1 – Buffer Overflow

1: Target Analysis

2: Vulnerability Exploitation

3: Exploit

Software Target

An Example Buffer Overflow

Attacker

Windows/Linux

Victim

Server or Desktop or Mobile
Lab 2 – Malware & Shellcode

1: Target Probing
2: Vulnerability Exploitation
3: Infect & Download Malware

Attacker

Victim

Windows/Linux Server or Desktop or Mobile
Lab 3 – Network Attacks & Exploitation

1: Target Probing
2: Vulnerability Exploitation
3: Target Service

- Identify Target
- Deny Service, Manipulate Service

Denial of Service & Session Hijacking

Attacker
Victim

Linux
Linux
Lab 4 – Firewalls and IDSES
Lab 4 – Firewalls and IDSes

1: Target Probing
2: Vulnerability Exploitation
3: Payload

Windows/Linux

Attacker

Snort

Victim

Server or Desktop or Mobile
Lab 5 – Wireless Exploitation

1: Wireless Target Probing
2: Protocol Vulnerability Exploitation
3: Spoof Traffic

Attacker

Windows/Linux

Victim

Server or Desktop or Mobile

Sniff/Attack
Lab 6 – Web Vulnerabilities

1: Target Probing
2: Vulnerability Exploitation
3: Payload

Attacker
Fedora Core 5
Linux

Fixed Target
XSS/SQL Injection
Cookie Stealing, and Others ...

Victim
Windows 2000
Lab Environment

- Make sure VMware is installed
 - You may choose to install VMware Workstation in your own machine
 - License through school (free): http://labs.vse.gmu.edu/index.php/FAQ/VMWare

- GMU Internal Gitlab instance
 - Login at git.gmu.edu,
 - If does not show in your projects, then contact me
 - Upload public key: Profile, SSH Key, Add SSH Key, copy contents of ~/.ssh/id_rsa.pub
 - For Windows, install clients from git-scm.com/download
 - git clone git@git.gmu.edu:astavrou/isa564F16.git

- Work with VMware
 - Example VM Images, Download:
 - Kali Linux: https://www.kali.org/downloads/

- Next Lecture
 - Introduction to Buffer Overflows
 - Be prepared!