Network Security - ISA 656
IPsec
IPsec Key Management (IKE)

Angelos Stavrou

October 1, 2007

What is IPsec, and Why?

- Network-layer security protocol for the Internet.
- Completely transparent to applications.
- TCP- or application-level retransmissions handle deleted or damaged packets.
- Generally must modify protocol stack or kernel; out of reach of application writers or users.

IPsec Structure

- Nested headers: IP, ESP, AH, maybe another IP, TCP or UDP, then data.
- Cryptographic protection can be host to host, host to firewall, or firewall to firewall.
- Option for user-granularity keying.
- Works with IPv4 and IPv6.

History

SP3 Layer 3 security protocol for SDNS.
NLSP OSIified version of SP3, with an incomprehensible spec.
swIPe UNIX implementation by Ioannidis and Blaze.

IPsec Structure

- Nested headers: IP, ESP, AH, maybe another IP, TCP or UDP, then data.
- Cryptographic protection can be host to host, host to firewall, or firewall to firewall.
- Option for user-granularity keying.
- Works with IPv4 and IPv6.

Internet Key Exchange (IKE)

Key Management
Requirements

Some Attacks
Authentication Header (AH)

- Based on keyed cryptographic hash function.
- Covers payload and portion of preceding IP header.
- Uses Security Parameter Index (SPI) to identify security association, and hence key, algorithm, etc.

Encapsulating Security Payload (ESP)

- Carries encrypted packet.
- An SPI is used, as with AH.
- Standard use of ESP is for DES in CBC mode.

AH Layout

<table>
<thead>
<tr>
<th>proto</th>
<th>length</th>
<th>reserved</th>
<th>SPI</th>
<th>Sequence Number</th>
<th>digest (variable length)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packet Layout

Transport Mode

- IP
- ESP
- TCP
- user data

Tunnel Mode

- IP
- ESP
- IP
- TCP
- user data

Encapsulation Security Payload (ESP)

- Carries encrypted packet.
- An SPI is used, as with AH.
- Standard use of ESP is for DES in CBC mode.
ESP Layout

- SPI
- SPI Sequence Number
- Data
- Padding
- padding
- padlen
- payload

Digest range

- digest
- digest

Path Layout

- Uses for IPsec
- IPsec and Firewalls
- IPsec and the DNS
- Implementation issues
- Key Management Requirements
- Internet Key Exchange (IKE)
- Some Attacks

Topologies

- IPsec Structure
- Packet Layout
- Authentication Header (AH)
- ESP Layout
- Internet Key Exchange (IKE)
- Some Attacks

Paths

- A1 to F1, F2:
 - Encryptors E_1, E_5
- B1, B2, D1, D2 to F1, F2:
 - Encryptors E_3, E_5
- A2 to C:
 - Encryptors E_2, E_4

Uses for IPsec

- Virtual Private Networks.
- “Phone home” for laptops, telecommuters.
- General Internet security.
IPsec and Firewalls

- Encryption is not authentication.
- Access controls may need to be applied to encrypted traffic, depending on the source.
- The source IP address is only authenticated if it is somehow bound to the certificate.
- Encrypted traffic can use a different firewall; however, co-ordination of policies may be needed.

Implementation Issues

- How do applications request cryptographic protection? How do they verify its existence?
- How do administrators mandate cryptography between host or network pairs?
- We need to resolve authorization issues.

IPsec and the DNS

- IPsec often relies on the DNS.
 - Users specify hostnames.
 - IPsec operates at the IP layer, where IP addresses are used.
 - An attacker could try to subvert the mapping.
- DNSSEC may not meet some organizational security standards.
- DNSSEC — which isn’t deployed yet, either — uses its own certificates, not X.509.

Key Management Requirements

- Why Key Management?
- Static Keys
- Replay Protection
- SA Management
- Other Issues
- Internet Key Exchange (IKE)
- Some Attacks
Why Key Management?

- Where do IPsec keys come from?
- Could we use static keys?
- What are the other requirements for key management?

Static Keys

- In theory, static keys can be used; in practice, they have several disadvantages
 - Primary disadvantage: they almost certainly will not be random enough
 - (If they’re passwords, attackers can launch a password guessing attack)
 - History (and theory) suggest that it’s a bad idea to encrypt too much plaintext with a single key
 - You can’t use replay protection with static keys

Replay Protection

- The first packet transmitted on an SA must be numbered 1
- Any time a machine reboots and loses knowledge of its sequence number status, it will restart from 1
- Besides, 2^{32} packets isn’t that many; it will wrap around at some point
- Replays can be used to attack confidentiality

SA Management

- We spoke of the SADB
- How does it get populated?
- We must negotiate it!
Other Issues
- SA lifetime
- Dead peer detection
- SA tear-down
- Algorithm negotiation
- Other negotiations

Internet Key Exchange (IKE)

Basic Philosophy
- Two parties, Initiator and Responder
- First set up a control SA (known in IKEv1 as a Phase 1 SA)
- Use the control SA to create child SAs (known as Phase 2 SAs)
- Actual IPsec data is protected via child SAs
- Other control traffic can use the control SA

IKE
- Very complex protocol
- Does a lot, probably too much
- We'll just skim the surface, and we'll discuss IKEv2, which is simpler
- I'll be simplifying it, too...
Initial Exchange

- (Each message includes a random SPI, to distinguish between different IKE sessions.)
- Negotiate cryptographic algorithms
- Do a Diffie-Hellman exchange

\[I \rightarrow R : \text{SA}_i, KE_i, N_i \]
\[R \rightarrow I : \text{SA}_r, KE_r, N_r, \text{[Certreq]} \]

<table>
<thead>
<tr>
<th>SA</th>
<th>Crypto algorithm proposals and answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE</td>
<td>Diffie-Hellman exponential</td>
</tr>
<tr>
<td>N</td>
<td>Nonce (random number)</td>
</tr>
<tr>
<td>Certreq</td>
<td>List of trust anchors (CAs)</td>
</tr>
</tbody>
</table>

Some Attacks

What Do We Have?

- I has proposed several algorithms; R has accepted one of each category
- The two sides have a Diffie-Hellman shared secret. The Diffie-Hellman shared secret is combined with the two nonces to produce seed keying material. Any message \(M \) protected by keying material derived from this will be written \(\boxed{M} \)
- Different keys are used in each direction
- I knows what CAs R trusts
- Neither side knows the other’s identity yet

Authentication

\[I \rightarrow R : \text{ID}_i, \text{SA}_i2, \text{TS}_i, \text{TS}_r, \text{[Cert]}, \text{Auth} \]
\[R \rightarrow I : \text{ID}_r, \text{SA}_r2, \text{TS}_i, \text{TS}_r, \text{Auth} \]

Both sides send their own identities, the SA data for subsequent exchanges, traffic selectors, and an authenticator.

The authenticator is either an HMAC or a digital signature of the message (including the SPI) concatenated with the current sender’s identity and the other party’s nonce. There are various other optional payloads for certificates, CAs, etc.

What Do We Have?

- Both sides know the other’s identity
- Both sides have authenticated the other
- Both sides have shared seed key material
- I has proposed a traffic selector; R has accepted a possibly-narrower one
Traffic Selectors

- A traffic selector is a list of IP addresses and port numbers that are to be protected by the SA.
- TS\(_i\) specifies source addresses and ports; TS\(_r\) specifies destination addresses and ports.
- I proposes a certain range of traffic it wishes to protect.
- R may agree to a narrower range.
- This lets I — possibly a laptop — have a simple, “protect everything” configuration; the central gateway can narrow the scope of protection if desired.

Child SAs

- The control SA can now be used to create child SAs for actual user traffic.

\[I \rightarrow R : [SA, N_i, [KE_i], [TS_i, TS_r]] \]

\[R \rightarrow I : [SA, N_r, [KE_r], [TS_i, TS_r]] \]

- Send new nonces for use in calculating keying material. For greater forward secrecy, send an optional new Diffie-Hellman exponential.
- Optionally negotiate new traffic selectors.

Rekeying

- Any SA can be rekeyed.
- To rekey an SA, send a Rekey message with an SA identifier, new nonces, and perhaps new Diffie-Hellman exponentials.
- Omit traffic selectors.

SA Lifetime

- SAs do not have negotiated lifetimes.
- When either side thinks an SA has been around for long enough, it negotiates a new SA.
- Net effect: SA lifetime is the shorter of the two sides’ preferences.
- After the new one is set up, delete the old SA.
Other Control Messages

- IKE “ping” — see if the other side is still alive
- Delete SA
- Obtain a remote IP address
- Check version information
- Error messages

Denial of Service

- What if an attacker attempts to exhaust R’s CPU time or memory?
- CPU time: force it to calculate many D-H exponentials
- Memory: create initial SAs; don’t authenticate them

Timeouts

- IKE runs over UDP
- Each side must therefore implement its own timers and retransmissions
- It’s reasonable to keep a cache of recently-received and transmitted messages — when a duplicate request arrives, retransmit the cached copy

Defenses

- To prevent CPU time attacks, it’s permissible to reuse D-H exponentials for a short while (though it hurts perfect forward secrecy)
- To prevent memory attacks, watch for too many incomplete SAs
- When these start to occur, reject new requests and send a cookie instead
- These are stateless, cryptographically sealed messages bound to the sender’s IP address
- Require that such a cookie be returned with the actual first message
- Guards against spoofed IP address attacks
Using IKE

- A host is configured with an initial protection SPD
- When a packet is to be sent that matches the SPD, IPsec searches for an existing SA
- If there is none, a request is sent to the local IKE daemon
- The IKE daemon attempts to create an SA, and updates the SAD
- (On some systems, this may result in updating the SPD)
- The packet is then transmitted

Attacks!

- I keep talking about subtle attacks
- Let's look at some old ones...

Splicing Attack

- Suppose that (a) ESP is being used with no authentication, (b) no sequence numbers, and (c) the good guy and the bad guy can send traffic on the same SA
- The bad guy intercepts a good guy's packet, sends a UDP packet with checksums turned off, and intercepts it, too
- The attacker then uses CBC splicing to replace the end of the UDP packet with the good guy's packet, and reinjects it
- The receiving IPsec sees this packet, decrypts it, and passes it to the bad guy's UDP listener
Defenses

- Use ESP authentication
- Use ESP sequence numbers, to prevent reinjection of the UDP packet (though there are other variants that make that less useful)
- Use a separate SA for each connection

Probable Plaintext Attacks

- How does a cryptanalyst know if a guess at the key was correct?
- What should the packet look like?
- Compare certain fields from two packets for the same connection — they should match
- Source and destination IP address must match exactly
- Probabilistically, most bits of counters (such as TCP sequence numbers) will match: if you add 512 to a 32-bit number, probability is \(.97 \) that the high-order 18 bits remain unchanged, and the low-order 9 bits are always unchanged
- Other fields can be matched as well

Using a Separate SA?

- If you use separate SAs for each connection, it makes life easier for traffic analysts
- It can also aid cryptanalysts

Defenses

- Not easy!
- Try avoiding per-connection SAs
- Don’t use ciphers that are weak enough that this is a useful attack...