Network Security - ISA 656
Email Security

Angelos Stavrou

November 13, 2007
The Usual Questions

■ What are we trying to protect?
■ Against whom?
Assets

- Confidentiality — people often discuss sensitive things via email
- Authenticity — who really sent the email?
- Anti-spam?
- Phishing?
- Authenticity has many motivations here
General Strategy

- Basic scheme is pretty straightforward
- Encrypt the message body with a symmetric cipher, using a randomly-generated traffic key
- Use public key cryptography to encrypt the traffic key to all recipients
- Digitally sign a hash of the message
- But there are many details
Some Details

- Obvious ones: which symmetric, public key, and hash algorithms to use?
- More subtle: which algorithms do the recipients understand?
- Where do certificates come from?
- Do you sign the plaintext or the ciphertext?
- How do you handle BCC?
- Will the ciphertext survive transit intact?
- How are header lines protected?
- What about attachments?
- Many possible answers to all of these questions
Transit

- Not all mail systems accept all characters
- Cryptographic transforms won’t survive even minor changes
- Very few are 8-bit clean
- EBCDIC vs. ASCII? Unicode? Tabs versus blanks?

- Solution: encode all email in base 64, using characters all systems accept: A-Za-z0-9+/
- Use 4 bytes to represent 3; overhead is 33%
- Only those characters matter; everything else is deleted on receipt, including white space
Signing

- If you sign the plaintext and then encrypt, the sender’s identity is hidden from all except the proper recipients.

- If you sign the ciphertext, a gateway can verify signatures and present mail accordingly — perhaps better for anti-spam and anti-phishing.
Headers

- Headers change in transit
- Obvious example: Received: lines are added
- Less-obvious example: Email addresses are often rewritten to hide internal machines, and present clearer addresses to the outside:
 \[-\text{astavrou-@gmu.edu} \rightarrow \text{-Angelos.Stavrou-@gmu.edu}\]
- Consequence: headers are not protected by secure email schemes
General Flow

- Collect input message
- Put in canonical form
- Encrypt and sign, or sign and encrypt
- Add metadata: encrypted traffic key, your certificate, algorithm identifiers, etc.
- Convert to transit form
- Embed in email message
Eavesdropping

- Most obvious way to read email: eavesdropping
- The bad guy “simply” listens to the network
- Harder than it sounds, except for some wireless nets
- Frequently used by police and intelligence agencies, i.e., the FBI’s *Carnivore* device
Password Theft

- Most email is retrieved by login and password
- Anyone who gets your password can read your email
- It’s much easier for an eavesdropper to pick those up — passwords are usually sent each time someone polls for new email
Hacking

- The real threat to email is while it’s in storage
- This can be temporary storage, waiting for you to pick it up
- It can also be your personal machine, for email you’ve sent or received
- What if your laptop is stolen? Does it have plaintext copies of all the secure email you’ve sent and received?
Screen Dumps

- Connect via X11
- Use some other Trojan horse software to dump user’s screen periodically
- Reflection off the back wall...
Subpoena Attacks

■ What if you records are subpoenaed?
■ This is a legal issue; technical wiggling won’t help!
Rubber Hose Cryptanalysis

- What if the local secret police want to know what some intercepted email says?
- Protecting human rights workers was one of the original goals for PGP!
- It's public key-encrypted — you can't read it
- If the signature is encrypted, they can't even prove you sent it
- Of course, people like that don't care much about proof, and they don't like to take “no” for an answer...
Spoofing

- Ordinary email is trivial to spoof
- On timesharing machines and web mailers, the systems can tack on the userid
- On PCs, individuals set their own addresses
- *No security* — if you need to authenticate email, you have to use crypto
Systems Issues

- Only read email on secure machines
- Only connect to them securely
- Watch out for buggy mailers and systems
- But if the process of reading secure email is too cumbersome, your email will be insecure, because you’ll never use the secure version
- Finding the right tradeoff is a difficult engineering choice
Approaches

- Two major standards, PGP and S/MIME
- Many minor syntactic differences
- Major split by audience: computer scientists like PGP; mainstream users use S/MIME
- Biggest technical difference: how certificates are signed
■ S/MIME uses standard X.509 certificate format

■ More importantly, X.509 certificates form a traditional PKI, with a root and a hierarchical structure

■ Works well within an organization

■ Between organizations, can work if it’s easy to find that organization’s root

■ CU has no PKI — what is the PKI under which you’d find my cert? Why should you trust its root?
Web of Trust

- PGP use a “web of trust”
- *Anyone* can sign a certificate
- Most people have more than one signature — I have 65 signatures on my primary PGP key
- Do you know and trust any of my signers?
- See my key at http://ise.gmu.edu/~astavrou/angel_at_cs_key.pub
Does the Web of Trust Work?

- Number of signatures alone is meaningless; I can create lots of identities if I want

- I can even forge names — is the “Duminda Wijesekera” who signed my key the same one who’s a professor here? How do you know?

- There are at least six PGP keys purporting to belong to “George W. Bush”. One is signed by “Yes, it’s really Bush!”

- You have to define your own set of trust anchors, as well as policies on how long a signature chain is too long
Finding Public Keys

- Many mailers cache received certificates
- Some organizations list people’s certificates in an LDAP database
- Some people have them on their web site
- For PGP, there are public key servers — anyone can upload keys
- Is that safe? Sure — the security of a certificate derives from the signature, not from where you found it
Which Style is Better?

- PGP was easier to start — it doesn’t need an infrastructure
- Many security and network conferences have “PGP key-signing parties”
- S/MIME is better for official use — it makes it clearer when someone is speaking in an organizational role, since the organization issued the certificate.
- Both have usability issues, though PGP is probably worse
What is Phishing?

- Spoofed emails, purportedly from a financial institution
- Ask you to login to “reset” or “revalidate” your account
- Often claim that your account has been suspended
A Phish

From: no-reply@flagstarbanking2.com
To: undisclosed-recipients:;
Subject: YOUR ACCOUNT HAS BEEN SUSPENDED !!!
Date: Fri, 29 Sep 2006 09:29:25 -0500

If you fail to provide information about your account you’ll discover that your account has been automatically deleted from Flagstar Bank database.

Please click on the link below to start the update process:

https://www.flagstar.com/Signon.cgi?update
Flagstar Bank
What’s Wrong?

- **The URL is a booby trap:**

 ![Fake URL warning](image)

 Open it anyway?

- When I clicked on it, I was actually redirected to a site in Colombia, via yet another indirection...

- The login page appears identical to the real one

- (One of the web sites I visited seemed to have several variant “bank” pages)
The Login Box

Welcome to Flagstar Bank's Internet Banking

Registered Users, Please Enter Your User ID and Password. First time users, please click here to register.

Forgot your Internet Banking Password? Click here to reset it yourself - OR - Click here to have Flagstar Bank reset it for you.

User ID:
Password: Login
The URL Bar

Welcome to Flagstar Bank's Internet Banking

Registered Users, Please Enter Your User ID and Password. First time users, please click here to register.

Forgot your Internet Banking Password? Click here to reset it yourself - OR - Click here to have Flagstar Bank reset it for you.

User ID:
Password:
Login
They Want Data...

Email Security
Secure Email
Threats
PGP and S/MIME
Phishing
What is Phishing?
A Phish
What’s Wrong?
The Login Box
The URL Bar
They Want Data...
Some Mail Headers
Other Issues
Tricks with URLs
Final Thoughts on Phishing

Please complete the fields below to recover account.

Required fields are in red.
First Name
Last Name
Card Number
Expiration Date
Electronic Signature (ATM PIN)
Social Security Number (SSN)
Home Phone #
Email Address

☐ Click here if you want to receive confirmation email.
☐ Click here if you do not want to receive confirmation email.

Note: You will receive the confirmation email within 48 hours.

Continue
Some Mail Headers

Received: from plesk.salesforcefoundation.org ([198.87.81.9])
 by cs.columbia.edu (8.12.10/8.12.10)
 (version=TLSv1/SSLv3 cipher=DHE-RSA-AES256-SHA
 bits=256 verify=NOT) for <-astavrou-@gmu.edu>

Received: from
adsl-68-20-44-198.dsl.chcgil.ameritech.net
 (68.20.44.198) by 198.87.81.11

Where does plesk.salesforcefoundation.org come from? It is *asserted* by the far side. The 198.87.81.9 is derived from the IP header, and is hard to forge (but stay tuned for routing attacks, in a few weeks). A DNS lookup on 198.87.81.9 isn’t very helpful; the mapping is controlled by the address owner, not the name owner.
Other Issues

- Why is the email from flagstarbanking2.com?
- The domain for the bank is flagstar.com — no “ing” and no “2”.
- *That’s legit!* — the real web site for their online service is flagstarbanking2.com
- We have trained users to accept weird, seemingly gratuitous differences; it can make life easier for the phisher.
Tricks with URLs

- http://cnn.com@some.other.site/foo
 cnn.com is a userid

- http://rds.yahoo.com/[…]wiki.freebsd.org/ZFS
 So the search engine knows what you clicked on
Final Thoughts on Phishing

- We have the basic technical mechanisms to authenticate email and web sites
- Human interaction with these mechanisms remains a very challenging problem
- Security is a *systems problem*