Network Security - ISA 656
Routing Security

Angelos Stavrou

October 11, 2008
What is Routing Security?

- Bad guys play games with routing protocols.
- Traffic is diverted.
 - Enemy can see the traffic.
 - Enemy can easily modify the traffic.
 - Enemy can drop the traffic.
- Cryptography can mitigate the effects, but not stop them.
History of Routing Security

- Bellovin’s “Security Problems in the TCP/IP Protocol Suite”.
- More work starting around 1996.
- Kent et al., 2000 (two papers).
Why So Little Work?

- It’s a really hard problem.
- Actually, getting routing to work well is hard enough.
- It’s outside the scope of traditional communications security.
How is it Different?

- Most communications security failures happen because of buggy code or broken protocols.
- Routing security failures happen despite good code and functioning protocols. The problem is a dishonest participant.
- Hop-by-hop authentication isn’t sufficient.
The Enemy’s Goal?

Routing Security
What is Routing Security?
History of Routing Security
Why So Little Work?
How is it Different?

The Enemy’s Goal?
Routing Protocols
Routing in the Internet
Inter-ISP Routing
Link-Cutting Attack (Bellovin and Gansner)
Defenses
Conclusions

But how can this happen?
Routing Protocols

- Routers speak to each other.
- They exchange topology information and cost information.
- Each router calculates the shortest path to each destination.
- Routers forward packets along locally shortest path.
- Attacker can lie to other routers.
Normal Behavior

Routing Security
Routing Protocols
Routing Protocols
Normal Behavior
But Z Can Lie Using a Tunnel for Packet Re-injection Why is the Problem Hard?
Routing in the Internet
Inter-ISP Routing
Link-Cutting Attack (Bellovin and Gansner)
Defenses
Conclusions

![Diagram](attachment:image.png)

- Y→X, Y→Z: B(10)
- Z→X: Y(5), B(15)
- X→A: Z(5), Y(5), B(15)
But Z Can Lie

Routing in the Internet

Inter-ISP Routing

Link-Cutting Attack (Bellovin and Gansner)

Defenses

Conclusions

Routing Security

Routing Protocols

Routing Protocols

Normal Behavior

But Z Can Lie

Using a Tunnel for Packet Re-injection

Why is the Problem Hard?

Note that X is telling the truth as it knows it.
Using a Tunnel for Packet Re-injection

Routing Security
Routing Protocols
Routing Protocols
Normal Behavior
But Z Can Lie
Using a Tunnel for Packet Re-injection
Why is the Problem Hard?
Routing in the Internet
Inter-ISP Routing
Link-Cutting Attack (Bellovin and Gansner)
Defenses
Conclusions
Why is the Problem Hard?

- X has no knowledge of Z’s real connectivity.
- Even Y has no such knowledge.
- The problem isn’t the link from X to Z; the problem is the information being sent. (Note that Z might be deceived by some other neighbor Q.)
Routing in the Internet

- Two types, internal and external routing.
- **Internal** (within ISP, company): primarily OSPF.
- **External** (between ISPs, and some customers): BGP.
- Topology matters.
OSPF (Open Shortest Path First)

- Each node announces its own connectivity. Announcement includes link cost.
- Each node re-announces all information received from peers.
- Every node learns the full map of the network.
- Each node calculates the shortest path to all destinations.
- Note: limited to a few thousand nodes at most.
Characteristics of Internal Networks

- Common management.
- Common agreement on cost metrics.
- Companies have less rich topologies, but less controlled networks.
- ISPs have very rich—but very specialized—topologies, but well-controlled networks.
- Often based on Ethernet and its descendants.
How Do You Secure OSPF?

- Simple link security is hard: multiple-access net.
- Shared secrets guard against new machines being plugged in, but not against an authorized party being dishonest.
- Solution: digitally sign each routing update (expensive!). List **authorizations** in certificate.
- Experimental RFC by Murphy et al., 1997.
- Note: everyone sees the whole map; monitoring station can note discrepancies from reality. (But bad guys can send out different announcements in different directions.)
Address Authorization Certificate

- Each router has certain interfaces and hence direct network reachability
- Each router therefore has a certificate binding its public key to its valid addresses
- Note well: the CA has to know the proper addresses for each router
- But that’s the norm in OSPF environments
External Routing via BGP

- No common management (hence no metrics beyond hop count).
- No shared trust.
- Policy considerations: by intent, not all paths are actually usable.
POP Topology

Routing Security
Routing Protocols
Routing in the Internet
OSPF (Open Shortest Path First)
Characteristics of Internal Networks
How Do You Secure OSPF?
Address Authorization
Certificate
External Routing via BGP

Inter-ISP Routing
Link-Cutting Attack (Bellovin and Gansner)
Defenses
Conclusions
Noteworthy Points

- A lot of attention to redundancy.
- Rarely-used links (i.e., R1 → R2)
 Link cost must be carefully chosen to avoid external hops.
- May have intermediate level of routers to handle fan-out.
InterISP Routing

Routing Security
Routing Protocols
Routing in the Internet
Inter-ISP Routing
Path Vectors
Policies
Long Prefixes and Loop-Free Routing
Longer Prefix Attack
Filtering
Secure BGP (Kent et al.)
Problems with SBGP
Certificate Issuance
Certificate Tree Authorization
Certificates
Signed Origin BGP
Problems with SOBGP
Happy Packets
Link-Cutting Attack (Bellovin and Gansner)
Defenses
Conclusions
InterISP Routing

- “Tier 1” ISPs are peers, and freely exchange traffic.
- Small ISPs buy service from big ISPs.
- Different grades of service: link L-Z is for customer access, not transit. C→B goes via L-Y-X-W, not L-Z-W.
- A is multi-homed, but W-A-Z is not a legal path, even for backup.
- BGP is distance vector, based on ISP hops. Announcement is full path to origin, not just metric.
Path Vectors

- Route advertisements contain a prefix and a list of ASs to traverse to reach that prefix.

- Example: if B owns address block 10.0/16, L would see \langle 10.0/16, \{Y,X,W,B\} \rangle.

- ASs do not see paths filtered by upstream nodes. Y sees \langle 10.0/16, \{X,W,B\} \rangle and \langle 10.0/16, \{Z,W,B\} \rangle; since only forwards the former to L, L knows nothing of the path via Z.
Policies

- ISPs have a great deal of freedom when choosing the “best” path
- While hop count is one metric, local policies (i.e., for traffic engineering) count more
- These policies — in general, not disclosed publicly — affect with path neighbors will see
Long Prefixes and Loop-Free Routing

- Routers ignore advertisements with their own AS number in the path
- This is essential to provide loop-free paths
- Routers use longest match on prefixes when calculating a path
- These two facts can be combined to form an attack
Longer Prefix Attack

- Suppose B owns 10.0/16. Z sees \(10.0/16, \{W,B\}\)
- A advertises \(10.0.0/17, \{A,W\}\)
- Z will route packets for 10.0.0/17 to A — it has a longer prefix
- W will never see that path, and hence won’t pass it to B — the path (falsely) contains W, so it will be rejected by W
Filtering

- ISPs can filter route advertisements from their customers.
- Doesn’t always happen: AS7007 incident, spammers, etc.
- Not feasible at peering links.
Secure BGP (Kent et al.)

- Each node signs its announcements.
- That is, X will send \(\{W\}_X, \{Y\}_X, \{Z\}_X \).
- W will send \(\{B\}_W, \{A\}_W, \{X\}_W, \{X : \{Z\}_X\}_W \).
- Chain of accountability.
Problems with SBGP

- Lots of digital signatures to calculate and verify.
 - Can use cache
 - Verification can be delayed

- Calculation expense is greatest when topology is changing—i.e., just when you want rapid recovery. (About 120K routes...)

- How to deal with route aggregation?

- What about secure route withdrawals when link or node fails?

- Dirty data on address ownership.
Certificate Issuance

- Who issues prefix ownership certificates?
- Address space comes from upstream ISP or RIRs
- RIRs really are authoritative — hence they’re a monopoly
- If an RIR makes a mistake, the prefix is off the air
- Is this a risk worth taking?
The RIRs (Regional Internet Registries) give addresses to big ISPs and big end users.

Accordingly, the RIRs should issue certificates.

(Really, it should be ICANN, but the politics of that are too painful)

Small ISPs and small customers get address space from their own ISPs.

Every ISP is thus a certificate holder and a certificate issuer.

These are authorization certificates, not identity certificates.
Authorization Certificates

- The identity of the certificate holder is irrelevant
- What matters is the authorization: the certificate contains IP address ranges
- The signing party has its own certificate listing larger ranges of IP addresses, and hence the right to delegate them
Signed Origin BGP

- Suppose only the origin was digitally signed: \langle 10.0/16, B \rangle
- In addition, all polices are (securely) published in some database
- Receiving node verifies origin, then compares received path against all policies
- Query: is the received path consistent with policies?
- Advantage: many fewer signatures
Problems with SOBGP

- Sill have monopoly RIRs
- ISPs don’t like to publish policies
- Clever attackers can play games in the middle of the path
Happy Packets

- Philosophy: don’t worry too much about routing security
- Crucial metric: do packets reach their destination?
- What about confidentiality? If it matters, encrypt end-to-end
- But what about traffic analysis?
Link-Cutting Attack (Bellovin and Gansner)

- Suppose that we have SBGP and SOSP.
- Suppose the enemy controls a few links or nodes. Can he or she force traffic to traverse those paths?
- Yes...
Is Link-Cutting Feasible?

- Attacker must have network map. Easy for OSPF; probably doable for BGP—see “Rocketfuel” paper.
- Can attacker determine peering policy? Unclear.
- How can links be cut? Backhoes? “Ping of death”? DDoS attack on link bandwidth?
Sample Link-Cutting Attack
Cost of Link-Cutting Attacks on the Backbone

Routing Security
Routing Protocols
Routing in the Internet
Inter-ISP Routing
Link-Cutting Attack (Bellovin and Gansner)
Is Link-Cutting Feasible?
Sample Link-Cutting Attack
Cost of Link-Cutting Attacks on the Backbone
Defenses
Conclusions
Defenses

- Hard to defend against—routing protocols are doing what they’re supposed to!
- Keeping attacker from learning the map is probably infeasible.
- Feed routing data into IDS?
- Link-level restoration is a good choice, but can be expensive.
- Others?
Routing security is a major challenge.

Mentioned specifically in White House Cybersecurity document.

Lots of room for new ideas.