Network Security - ISA 656
Application Firewalls

Angelos Stavrou

August 20, 2008
Why move up the stack?

Apart from the limitations of packet filters discussed last time, firewalls are inherently incapable of protecting against attacks on a higher layer.

IP packet filters (plus port numbers...) can’t protect against bogus TCP data.

A TCP-layer firewall can’t protect against bugs in SMTP.

SMTP proxies can’t protect against problems in the email itself, etc.
Filtering levels

Application Firewalls
Moving Up the Stack

Filtering levels
Advantages
Disadvantages
Example: Protecting Email
Email Threats
In-bound Email
Different Protection Layers
Out-bound Email
Combining Firewall Types
Firewalling Email
Policy Enforcement
Out-bound Email

The DNS

Application Proxies

Circuit Gateways

Personal and Distributed Firewalls

The Problems with Firewalls

Application/proxy level firewalls

FTP
HTTP
TELNET
NFS
TCP
UDP
IP
ICMP
Ethernet
FDDI
PPP
Advantages

- Protection can be tuned to the individual application
- More context can be available
- You only pay the performance price for that application, not others
Disadvantages

- Application-layer firewalls don’t protect against attacks at lower layers!
- They require a separate program per application
- These programs can be quite complex
- They may be very intrusive for user applications, user behavior, etc.
Example: Protecting Email

- Do we protect in-bound or out-bound email? Some of the code is common; some is quite different
- Do we work at the SMTP level (RFC 2821) or the mail content level (RFC 2822)?
- What about MIME?
- (What about S/MIME- or PGP-protected mail?)
- What are the threats?
Email Threats

- The usual: defend against protocol implementation bugs
- Virus-scanning
- Anti-spam?
- Javascript? Web bugs in HTML email?
- Violations of organizational email policy?
- Signature-checking?
In-bound Email

- Email is easy to intercept: MX records in the DNS route in-bound email to a machine
- Possible to use "*" to refer and handle the entire domain
- Example: DNS records exist for gmu.edu and *.gmue.edu
- Net result: all email for that domain is sent to a front end machine
Different Protection Layers

- There are multiple layers of protection possible here.
- The receiving machine can filter IP Addresses from spammers, providing protection at the network layer.
- The receiving machine can run a hardened SMTP, providing protection at the application layer.
- Once the email is received, it can be scanned at the content layer for any threats.
- The firewall function can consist of either or both.
Out-bound Email

- No help from the protocol definition here
- But — most mailers have the ability to forward some or all email to a relay host
- Create a policy that all mail has to pass through the relay in order to be delivered
- Enforce this with a packet filter...
Combining Firewall Types

- Use an application firewall to handle in-bound and out-bound email
- Use a packet filter to enforce the rules
Firewalling Email

- Application Firewalls
 - Moving Up the Stack
 - Filtering levels
 - Advantages
 - Disadvantages
 - Example: Protecting Email
 - Email Threats
 - In-bound Email
 - Different Protection Layers
 - Out-bound Email
 - Combining Firewall Types
- The DNS
- Application Proxies
- Circuit Gateways
- Personal and Distributed Firewalls
- The Problems with Firewalls

Packet Filter

Outside

DMZ

Inside

SMTP Receiver

Anti-Spam Anti-Virus

Angelos Stavrou (astavrou@gmu.edu)
Policy Enforcement

- Email can’t flow any other way
- The only SMTP server the outside can talk to is the SMTP receiver
- It forwards the email to the anti-virus/anti-spam filter, via some arbitrary protocol
- That machine speaks SMTP to some inside mail gateway
- Note the other benefit: if the SMTP receiver is compromised, it can’t speak directly to the inside

Angelos Stavrou (astavrou@gmu.edu)
Out-bound Email

- Again, we use a packet filter to block direct out-bound connections to port 25
- The only machine that can speak to external SMTP receivers is the dedicated out-bound email gateway
- That gateway can either live on the inside or on the DMZ
DNS Issues

- UDP (discussed previously)
- Internal versus external view
- DNS cache corruption
- Optimizing DNSSEC checks
UDP Issues

- Remember the DNS server location discussed last time

- In fact, what we did there was use an application-level relay to work around packet filter restrictions

- We’re lucky — since the DNS protocol includes provision for recursion, it requires no application changes for this to work
Internal Versus External View

- Should outsiders be able to see the names of all internal machines?
- What about secretproject.foobar.com?
- Solution: use two DNS servers, one for internal requests and one for external request
- Put one on each side of the firewall
- Issue: which machine does the NS record for foobar.com point to, the inside or the outside server?
- Can be trickier than it seems — must make sure that internal machines don’t see NS records that will make them try to go outside directly
Cache Contamination Attacks

- DNS servers cache results from queries
- Responses can contain “additional information” — data that may be helpful but isn’t part of the answer
- Send bogus DNS records as additional information; confuse a later querier
DNS Filtering

- All internal DNS queries go to a DNS switch.
- If it’s an internal query, forward the query to the internal server or pass back internal NS record.
- If it’s an external query, forward the query to outside, but:
 - Scrub the result to remove any references to inside machines.
 - Scrub the result to remove any references to any NS records; this prevents attempts to go outside directly.
- Use a packet filter to block direct DNS communication.
Small Application Gateways

- Some protocols don’t need full-fledged handling at the application level
- That said, a packet filter isn’t adequate
- Solution: examine some of the traffic via an application-specific proxy; react accordingly
FTP Proxy

- Remember the problem with the PORT command?
- Scan the FTP control channel
- If a PORT command is spotted, tell the firewall to open that port temporarily for an incoming connection
- (Can do similar things with RPC — define filters based on RPC applications, rather than port numbers)
Attacks Via FTP Proxy

- Downloaded Java applets can call back to the originating host
- A malicious applet can open an FTP channel, and send PORT command listing a vulnerable port on a nominally-protected host
- The firewall will let that connection through
- Solution: make the firewall smarter about what host and port numbers can appear in PORT commands...
Again, built-in protocol support

Provide performance advantage: caching

Can enforce site-specific filtering rules
Circuit Gateways

- Circuit gateways operate at (more or less) the TCP layer
- No application-specific semantics
- Avoid complexities of packet filters
- Allow controlled in-bound connections, i.e., for FTP
- Handle UDP
- Most common one: SOCKS. Supported by many common applications, such as Firefox and GAIM.
Application Modifications

- Application must be changed to speak the circuit gateway protocol instead of TCP or UDP
- Easy for open source
- Socket-compatible circuit gateway libraries have been written for SOCKS — use those instead of standard C library to convert application
Adding Authentication

- Because of the circuit (rather than packet) orientation, it's feasible to add authentication
- Purpose: extrusion control
Rationale

- Conventional firewalls rely on topological assumptions — these are questionable today.
- Instead, install protection on the end system.
- Let it protect itself.
Personal Firewalls

- Add-on to the main protocol stack
- The “inside” is the host itself; everything else is the “outside”
- Most act like packet filters
- Rule set can be set by individual or by administrator
Saying “No”, Saying “Yes”

- It’s easy to reject protocols you don’t like with a personal firewall
- The hard part is saying “yes” safely
- There’s no topology — all that you have is the sender’s IP address
- Spoofing IP addresses isn’t that hard, especially for UDP
Application-Linked Firewalls

- Most personal firewalls act on port numbers
- At least one such firewall is tied to applications — individual programs are or are not allowed to talk, locally or globally
- Pros: don’t worry about cryptic port numbers; handle auxiliary ports just fine
- Cons: application names can be just as cryptic; service applications operate on behalf of some other application
Distributed Firewalls

- In some sense similar to personal firewalls, though with central policy control
- Use IPsec to distinguish “inside” from “outside”
- Insiders have inside-issued certificates; outsiders don’t
- Only trust other machines with the proper certificate
- No reliance on topology; insider laptops are protected when traveling; outsider laptops aren’t a threat when they visit

Angelos Stavrou (astavrou@gmu.edu)
Problems with Firewalls

- Malicious Insiders
- Mobile Devices
- Dynamic Connectivity
- Evasion
Malicious Insiders

- Firewalls assume that everyone on the inside is good
- Obviously, that’s not true . . .
- Insiders can cause much more damage since there is no control
- For example, open proxies over encrypted tunnels
Mobile Devices

- Laptops and smart phones, more or less by definition, are mobile
- When they’re outside the firewall, what protects them?
- Similar problems with all networked devices (over powerlines, blue-tooth)
- Is there a solution for mobile devices? (Personal firewalls, secure/close all unnecessary services)
Dynamic Connectivity

- Firewalls rely on topology and on “static” services
- If there are too many connections, some will bypass the firewall
- Sometimes, that’s even necessary; it isn’t possible to effectively firewall all external partners
- A large company may have hundreds or even thousands of external links, most of which are unknown to the official networking people
Evasion

- Firewalls and firewall administrators got too good
- Some applications weren’t able to run
- Vendors started building things that ran over known ports (i.e. HTTP)
- HTTP usually gets through firewalls and even web proxies...