
A Virtualization Architecture for In-depth Kernel Isolation∗

Jiang Wang, Sameer Niphadkar, Angelos Stavrou, and Anup K. Ghosh
Center for Secure Information Systems,

George Mason University Fairfax, VA 22030

Abstract

Recent advances in virtualization technologies have
sparked a renewed interest in the use of kernel and pro-
cess virtualization as a security mechanism to enforce re-
source isolation and management. Unfortunately, virtual-
ization solutions incur performance overhead. The mag-
nitude of this overhead is directly proportional to the ex-
tend of virtualization they offer: full virtualization incurs
an additional indirection layer to interface with the ever
increasing hardware devices.

In this paper, we propose a hypervisor-assisted, micro-
kernel architecture which aims to provide in-depth re-
source isolation without the performance penalty of full
virtualization. To that end, we extend the hypervisor ca-
pabilities with a lightweight VMM which enforces “iden-
tity context” to all assigned devices for each of the hosted
kernels. Furthermore, we separate the control from the
data plane for all hardware devices using data memory
mapping and modifications of the native device drivers
to divert control flow via the hypervisor. Our approach
is layered, accommodating a wide-range of devices from
legacy to experimental devices able to provide native, in-
silicon context separation.

1 Introduction

In recent years, there has been a renewed interest in vir-
tualization technologies. This lead to a wealth of systems
that offer different layers of virtualization ranging from
lightweight process virtualization [2, 10, 17, 11] to full
kernel virtualization [3]. However, the primary design
tenet of all virtualization techniques is to enforce logi-
cal separation between shared resources by implementing
kernel data-structures called “containers”, “namespaces”
or more general reference monitors. Lightweight virtu-
alization systems including OpenVZ [2], VServer [17],
ZAP [10], and Solaris zones [11] have been successful in
implementing in-kernel process isolation into containers

∗This work was funded in part by DARPA under Army contract
W31P4Q-07-C-0244 and also by AFOSR under MURI Grant # FA9550-
07-1-0527.

to manage and share available resources. Similarly, para-
virtualization and hardware-based virtualization systems
such as Xen [5] and VMware [3] depend on a privileged
abstraction layer which acts as a mediator between the in-
dividually instantiated kernels and hardware devices. This
layer creates the required indirection that enables the iso-
lation of hardware resources from un-trusted kernels.

However, from security standpoint, para-virtualization
offers better isolation, preventing kernel rootkits from es-
caping from the process containers. Unfortunately, al-
though lightweight compared to full virtualization, cur-
rent para-virtualization schemes incur more overhead than
the in-kernel, container isolation mechanisms [17, 10, 2].
Most of this overhead can be attributed to the virtualiza-
tion of I/O operations and the need for shared device con-
text switching. Recent advances in hardware attempt to
address this by enhancing the way I/O virtualization is
implemented. However, recent hypervisor designs do not
reflect these improvements. Moreover, the complexity of
VMMs has increased remarkably owing to the manage-
ment of resources and compatibility with various kernels
and applications.

In summary, there are two major families of virtual-
ized systems: one that is based on a single kernel model
with shared resources and separate processes in the user
space, and another that utilizes a hypervisor to isolate
different kernels at the cost of I/O overhead and depen-
dence on a complex VMM. We posit that both aforemen-
tioned virtualization models have strengths that we can
harness. By combining strong isolation techniques of the
para-virtualization architecture with the improved perfor-
mance and low resource consumption of the native device
drivers from process containers, we get the best of both
worlds without any of the weaknesses. Our aim is afford-
able security and dependability through strong isolation.

Unlike container-based systems, we maintain state
separation both in the kernel and user-space by deep
hypervisor-assisted, kernel-level isolation which includes
the device driver state. In addition, to reduce the perfor-
mance overhead, we propose a different I/O model that
differentiates between the control and data access requests
for each device. To that end, we identify the necessary
modifications for native device drivers to be hypervisor-

1



friendly, supporting many state contexts. Lacking native
device support, the hypervisor keeps a table of the con-
texts for the device and maps it to different guest OSes.
All the device driver code always executes under the iden-
tity of the guest kernel that issued the request. Of course,
any access for both control or data requires the permission
of a controller module in the hypervisor. The same con-
troller is employed when there is a conflict for device ac-
cess. Unlike para-virtualization, we do not rely on the va-
lidity of the native driver code nor of a privileged domain
acting as a manager. Since there is no master device driver
or a back-end driver which takes full control of the device
and shared by the guest OSes, there is complete isolation
between different guest OSes preventing any data “bleed-
ing” from hardware devices. For instance, even if an ap-
plication or a device driver is compromised within a guest
OS, then this compromise will not enable the attacker to
gain access to the rest of the system. Notice that not all
guest OSes require the same set of device drivers.

Another important characteristic of our system that en-
hances the dependability, and some might argue security
through availability, is the reliable allocation and schedul-
ing of available host resources. Being able to enforce re-
source consumption policies prevents resource starvation
attacks. Indeed, we employ a resource module on the hy-
pervisor exploiting the fact that it runs at a lower level
controlling all hardware resources.

Moving forward, most of the functionality that is cur-
rently implemented inside the hypervisor, other than the
resource allocation and scheduling, can be transitioned
to the hardware. Of course, it is necessary for hard-
ware manufacturers to be encouraged to support the I/O
hardware enhancements seen on the modern CPUs. Self-
virtualized or direct pass-through I/O and IOMMU [1]
support on AMD SVM [4] and Intel VT-d [7] are two tech-
nologies that can help devices and device drivers become
hypervisor-friendly leaving only the identity management
to the hypervisors. We believe that our work provides a
compelling security and performance argument towards
that direction.

2 System Architecture

The primary goal of our design is to provide full isolation
between the instances of the guest OSes. We do so by
removing any master or globally shared code including
device drivers and by preventing any resource starvation
attacks. In addition, we would like to avoid the perfor-
mance penalty of full virtualization for I/O. Our approach
is inspired by recent hardware support for context separa-
tion using self-virtualized or direct pass-through I/O and
IOMMU[1] support on AMD SVM[4] and Intel VT-d[7].
However, even if this hardware-assisted I/O architectures

appear to be superior in terms of performance and con-
text separation, to take advantage of their potential, we
need the support of device manufacturers. In our system,
we do not assume the existence of such support. Instead,
we can also accommodate legacy devices with unmodified
drivers. We do, however, analyze the benefits of such sup-
port for hypervisors used for both security isolation and
virtualization.

Overall, our approach is comprised of the following
components (see Figure 1):

1. A lightweight Hypervisor employed for VM
scheduling and hypercall handling. In our pro-
totype, we modified a stable version of the Xen
hypervisor[5] which is widely popular and tested.

2. A Controller which runs under the hypervisor and
manages resource allocation and limits. This in-
cludes device data memory mapping, capture and
handling of control requests, and scheduling.

3. A novel native device driver design that builds on
the existing driver functionality but supports multi-
ple identities that will be managed by the hypervisor.
This will enable the seamless sharing of hardware
devices with the hypervisor as a mediator.

In addition to the above components, we utilize I/O
hardware assists that already support virtualization. We
are also using a minimized kernel like the one used in
Xen or Xen aware HVMs (Hardware Virtual Machines)
but without the overhead of other management structures
like XenStore, Dom0 controller or I/O ring structure. In-
stead, we use a predefined memory allocation and map-
ping policy, device ID table setup, a write protection pol-
icy customized for every device. Contrary to Xen, we
don’t depend on a privileged domain that shares the state
for all other guests. This prohibits direct or indirect at-
tacks to driver or domain code vulnerabilities. Attackers
can only target the integrity of the small and static hyper-
visor code. Initially, we build one guest OS and then share
its memory pages for code among all the other guests.
Each guest OS has its own memory containing data. Of
course, we only support a specific kernel (in our prototype
implementation, Linux) and thus, we can share its stan-
dard code among all the guests. The resulting architec-
ture offers lower performance overhead than the current
Xen model and better isolation than OpenVZ. Any guest
can share its read-only (RO) code pages by granting them
to the controller which validates and advertises the code
via the grant reference. Any other guest can map and ap-
propriately use the pages. Resource allocation details are
presented in details in the following sections.

Figure 2 depicts the typical architecture of a current vir-
tual machine monitor. In comparison, our architecture is
shown in figure 1.

2



 
Figure 1: Our proposed Architecture.

2.1 Memory Allocation & Mapping

Currently, the para-virtualized kernel boots in a trusted
domain (Dom0). The guest OS, called DomU by the do-
main builder, is a lower-privilege process running inside
the trusted domain. The trusted domain builds initial page
tables and loads the kernel image at the appropriate vir-
tual address. Guest OSes are responsible for allocating
and initializing page tables for their processes (restricted
to read only access). A guest OS allocates and initial-
izes a page and registers it with Xen to serve as the new
page table. Direct page writes are intercepted, validated
and applied by the Xen hypervisor. The page has a refer-
ence count number to count the number of references to
the page by the VMs. The page frame can be reused only
when its un-pinned and its reference count is zero. Each
domain has a maximum and current memory allocation –
max allocation is set at domain creation time and cannot
be modified. Xen provides a domain with a list of ma-
chine frames during bootstrapping, and it is the domain’s
responsibility to create the pseudo-physical address space
from this.

We use the same concept for memory allocation. How-
ever, we place the domain builder in the hypervisor as part
of the resource controller. For every domain, we use the
writable page table model implemented in Xen where the
page tables are marked read-only (RO). All the process-
level executable code, libraries, and kernel code is shared
amoung the domains using physical to machine mapping
of the corresponding memory pages and hash verification.
Once the controller validates the hash of a page, it is ad-

vertised to all the other guests to use. The guests on their
part are instantiated with pre-hashed values of executable
modules and only need to map to the appropriate mem-
ory locations allocated by the controller. The hypervisor
has the machine to physical mapping of the entire mem-
ory address space and updates a requesting domain, only
if the request is permitted by the controller. Similarly, we
restrict the hypercalls only for updates, writes and control
operations. A guest keeps track of the allocated address
space. Any kernel or user-level code is restricted to 3 op-
erations:

1. (R)ead/(W)rite/e(X)ecute memory operations.

2. DMA requests from I/O devices.

3. Interrupts to and from hardware and hypervisor:
Physical and Virtual IRQs.

Each of the operations is implemented as summarized
below:

R/W/X: We use the hardware support for extented page
tables and writable page tables for Read and Execute op-
erations. The controller is responsible for allocation and
mapping of memory. It defines the maximum reserve per
domain. Any attempt to exceed this reserve would fail. It
prepares a startinfo page similar to Xen which might be
used during the initial bootstrapping and then the guest
takes over with a sharedinfo page. Each guest is permit-
ted to read and execute in its own address space but a write
operation has to be validated by the controller. No guest

3



Figure 2: Current para-virtualization (Xen) Architecture.

is permitted to write to any other address space except it-
self. Any attempt to read or execute pages in a different
address space has to be validated by the controller which
uses grant reference for locating shared regions.

DMA requests: IOMMU is used to setup the DMA re-
quest translation from the guest to the device, direct or
persistent mapping[18] policy may be used. The write
protection and isolation is achieved in the hardware itself.
We employ IOTLB per guest to achieve faster translations.
For instance, in a VT-d operation when a device DMA re-
quest is intercepted by VT-d engine, a VT-d page table
corresponding to that device is walked for valid mapping.
VT-d page fault is just for log purpose since the PCI bus
doesn’t support I/O restart yet.

Physical and Virtual IRQs: We can have the same
mechanism of physical and virtual IRQs as it is imple-
mented under Xen. We use the HVM based fast system
call mechanism for ring 3 to ring 0 translation. We are
also using the VMCALL and VMMCALL for faster hy-
percall management. We borrow the interrupt remapping
mechanism seen on modern VT[7] processors only for hy-
pervisor to guest communication. All the interrupts are
delivered when a particular guest is scheduled to run sim-
ilar to the present mechanism.

Our approach eliminates most of the complexity in-
volved especially in hardware virtualized (HVM) and the
para-virtualized (PV) systems that exist in the Xen para-
virtualization model. Almost all the security policies can
be defined in and enforced by the controller. The Con-
trol Manager is an extension of the controller outside the
hypervisor used by guests to control and setup resource
allocation. Newer devices with virtualization capabilities,
such as multiple queue based NICs and self-virtualized
devices are supported by our design. The most impor-
tant aspect of our design is the control and data separation

managed by the controller . We understand that most of
the legacy devices may not be supporting data isolation -
so it is the responsibility of the controller to categorize the
data and separate them from the control operations.

2.2 I/O Setup

The device I/O model in current virtualization technolo-
gies relies on native device drivers to control the physical
devices through a trusted domain. Guest OSes, however,
get an emulated view of the virtual devices through an
indirection layer designed to multiplex a shared physical
device among many virtual machines. If the native de-
vice driver, which controls the physical device, happens
to contain vulnerable code, then the integrity of the vir-
tual machine is compromised. Even worse, if the native
device driver resides in a privileged domain, such as Dom
0 in Xen, then the compromised device driver can control
all the virtual machines and the privileged domain. The
driver domain model in Xen attempts to limit this threat
but without providing any guarantees: a malicious device
driver can still affect all the guest OSes that rely on that
driver. In addition, there is a performance hit due to the
increased indirection through intermediate buffers.

Our aim is to address the above problems by not rely-
ing on a single native device driver to control the physi-
cal device. We rely on hardware support provided by In-
tel VT-d and AMD IOMMU technologies and allow the
guest OSes to access the physical device directly. At the
same time, we add a controller which maintains the con-
text of the device when necessary and maps the context to
different guest OSes. In this model, since the most com-
plicated and vulnerable device driver runs in the guest OS
that made the request, a compromised device driver has a
limited attack surface. In addition, the controller does not

4



contain a full-fledged device driver but only maintains the
minimum control of the device. Therefore, the code for
controlling the device should be much simpler and easy
to verify.

Current hardware supported pass-through I/O is mainly
used for exclusively assigning a physical device to a spe-
cific guest OS. In our model, we need to share one physi-
cal device among many guest OSes with or without device
support. We present this idea to the device manufactures
so that we can have controller friendly functions.

In general,devices may provide three levels of contexts
support for I/O virtualization:

• Full-context support: The device supports multiple
contexts for both control and data operations. For ex-
ample, network cards provide transmit queues with
each queue having its own MAC address. In addi-
tion, all the control operations should be directed per
queue by the device itself. If the number of guest
OS’s is less than the number of queues, the resource
controller is only required to perform the context
management by assigning one queue per guest OS. If
the number of guest OS’s are more than the number
of queues, the resource controller has to multiplex
the queues for those guest OSes.

• Data-only context support: The device supports only
the multiple data contexts but does not support multi-
ple control contexts. For instance, there may be mul-
tiple queues per device, but the control operations
may not be specifically identified per device queue.
It is the responsibility of the resource controller to
identify and direct the per queue control operations.

• Legacy devices, no context support: The device does
not support multiple data nor multiple control con-
texts. It is seen in today’s mainstream and even vir-
tualized devices.

In all the above three scenarios, the resource controller
maintains the mapping (control and data) between the
guest OSes and the context on the devices, which is
similar to virtual pass-through I/O model suggested by
Lei[19]. When the device driver tries to access the device,
either through a legacy I/O port or a memory mapped I/O,
it will be intercepted by the hypervisor (with support of
Intel VT-d or AMD IOMMU). The controller then han-
dles these requests, which is described in the following
sections.

2.2.1 Handling Data Access

First, for data access, our controller will have different
behavior depending on the hardware:

1. If the device supports full context and the number of
contexts are more than the number of actual guest
OSes, then the data buffers on the device will be di-
rectly mapped to the guest OSes. And the data access
will not be intercepted by the hypervisor.

2. If the device supports data-only context, it is similar
to full context support.

3. If the device has no context support, then we can-
not directly map the buffer on the device to the guest
OS. Instead, we may map the buffer on the device
to a memory controlled by the controller. The con-
troller also allocates buffers for each guest OS. When
the guest OS tries to write the data to the device,
it will be intercepted by the hypervisor and written
to the temporary buffer maintained by the controller.
When the device is idle, the controller can move the
data to the device. In this case, the controller needs
to have some functions as a device driver so that it
can actually move the data. There is another option
for some specific devices as well. When the device
driver tries to access the legacy device and the de-
vice is not available, the controller can inject a vir-
tual IRQ or a virtual event to the guest OS. Since the
device driver would be running in a guest OS, it can
provide a function to wait for the device when it gets
the ”device busy” event.

The resource controller will maintain a table of contexts
for the device, which is similar to virtual pass-through I/O
model [19]. Since the controller will know the context of
the device, there are mainly two scenarios when passing
data: device is available or device is used by another guest
OS. If the device is available, the driver would behave like
normal without any issues. If the device is busy, the de-
vice driver can provide a wait_for_device() function
and wait for the device. When the device is available, the
driver tries again. As an alternative, the controller can
buffer the data or the control operation to a memory lo-
cation tagged per guest OS and move the data itself when
the device is idle.

2.2.2 Handling Control Access

If there is a control access for the device, the controller
will behave differently depending on the hardware sup-
port. For hardware devices with full context support, the
controller can directly pass the control access to the de-
vice. Only the management of mappings between the
guest OSes and the virtual functions on the devices is han-
dled by the resource controller. In case of legacy devices
with no or data-only context support, the controller is re-
quired to perform a more complex task when dealing with
control commands. It is presumed that the controller has

5



some knowledge of the device and cooperates with the
device driver. Therefore, the controller first maintains the
device state and then has some logic to determine whether
to pass the control command to the device or not. For ex-
ample, if one device driver in a guest OS attempts to dis-
able the device while other guest OSes are still using that
device, the controller should not pass-through the control
to the real device. Instead, the controller should build a
virtual state table for each guest OS and put the virtual
state for the device into “disabled” for that guest OS.

Furthermore, if a sequence of instructions compose one
command, then the controller should be able to capture
that sequence for a single virtual state and execute the
state on behalf of the guest OS. We claim that the func-
tionality required to control the device is a relatively small
portion of the total functionality of a typical data-intensive
device driver and incur infrequently compared to the data
transfer functions. Many other functions, such as inter-
facing with operating system, are not needed for our con-
troller. To facilitate this separation, the controller can pro-
vide a general API for the device drivers so that it can be
hardware architecture agnostic.

2.2.3 Example of Logic Flow

Here, we recite the steps for a guest OS through the device
driver to access the physical device. Once again, there are
three cases corresponding to three levels of device sup-
port.

First, let’s consider a device with full context support.
The steps are shown in the figure 3. If the device has
already provided full context support, then the controller
just needs to map between the guest OSes and the respec-
tive buffer on the device. After that, all the operations can
be passed down to the device directly.

Arrow labeled 1 in figure 3 denotes that the data is
transmitted directly from the driver in guest OS 1 to the
data buffer 1 in the device. Arrow labeled 2 means that
data is received directly by the driver in guest OS 2 from
the data buffer 2 in the device. The rest of the arrows indi-
cate the control operations, passed directly from per guest
OS to the respective location on the device.

For a device with data-only context support, the steps
are shown in Figure 4. Each guest OS can be assigned
to a specific data buffer on the device. Therefore, the data
access will bypass the controller. For the control access, it
will be intercepted by the controller and finally transferred
to the respective handler. The numerals in the figure can
be explained as follows: (1) Data is transmitted directly
from the driver in guest OS 1 to the data buffer 1 on the
device. (2) Control operations are intercepted by the hy-
pervisor and looked up by the controller.(3) Lookup table
in the controller matches the guest ID with the appropri-
ate handler. (4) Received data is directly passed from the

device buffer 2 to the driver in guest OS 2.
Finally, if the device has no context support, the typical

sequence when the I/O is instantiated by a guest OS is
shown in the Figure 5.

This is the worst case scenario in terms of performance
and it involves a no-context support device with a legacy
driver without support for control or data isolation. The
logical flow is as follows: (1) Operation of device driver
makes a page fault intercepted by the controller in the hy-
pervisor. (2) Based on the type of operation - control or
data, the matched ID for buffering is obtained. (3) Ei-
ther actual data operation takes place if the device is free
or a VIRQ is generated back to the device driver if busy.
For control operation, the function call is manipulated to
reflect a per VM operation. (4) Request is received.(5)
Based on the received data - lookup takes place in the data
table. (6) Data packets are buffered if the VM is not avail-
able or sent up if available.

Usually, the device channel in Xen uses inter-domain
shared memory using grant tables and event channels to
emulate the functionality of a device. The combination of
the shared memory containing a ring buffer for requests
and responses and the event channel provides the facilities
for the domains to talk to each other. There are at least two
different types of event “channels”: interrupt notification
(upper call or uni-directional) and notification of queued
descriptors (bi-directional). To implement our prototype
model, we modified the current pass-through mechanism
provided by Xen. In the current pass-through model of
Xen, one PCI device can be exclusively assigned to a Dom
U if the hardware supports I/O virtualization. After that,
even the privileged domain cannot access that device. To
achieve sharing among multiple guest OSes, we employ
the pass-through model and add the per device map in the
controller which can export it to a requesting VM. Then
the device can be assigned to multiple VMs and the con-
troller can then context switch the device among them.

2.2.4 Resource Management

The Virtual Machine Monitor is a thin software layer de-
signed to multiplex hardware resources efficiently among
virtual machines. The VMM, in our case the resource
controller, manages system hardware directly, providing
high I/O performance and complete control over resource
management. This control interface, together with profil-
ing statistics on the current state of the system, is exported
to a suite of kernel level management software running in
per guest OS. This complement of administrative tools al-
lows convenient management of the entire system. The
controller can create and destroy domains, monitor priv-
ileges, set network filters and routing rules, monitor per-
domain network activity at packet and flow granularity,
and allocate and safeguard all host-based resources. This

6



Figure 3: Necessary communication steps for a device with full context support.

Figure 4: Necessary communication steps for a device with data-only context support.

resource management includes storage, processing, I/O,
memory, and network described in this order in the next
paragraphs.

All the VMs access persistent storage directly and are
validated by the Controller. Each VM has a device ID ta-
ble to map the device to its respective memory location
allowing the VMs to manage the storage. This keeps the
mechanisms very simple and avoids more intricate solu-
tions such as VBDs used in the PV Xen model. A typ-
ical guest OS disk scheduling algorithm will re-order re-
quests prior to en-queuing them in an attempt to reduce re-
sponse time, and to apply differentiated service. A trans-
lation table is maintained by IOMMU for each guest OS;
the entries within this table are installed and managed by
the Controller. On receiving a disk request, the transla-
tion takes place if the request is validated by IOMMU
mapping. Permission checks also take place at this time.

Zero-copy data transfer takes place using DMA between
the disk and pinned memory pages in the requesting do-
main. Since each VM has a pre-defined disk space and
can behave independently like a full OS. Each VM allo-
cated disk space can have its own quota tools. It is possi-
ble to increase the VM disk space but may be difficult to
do it dynamically. However since we are relying on the
per VM specific applications, we may not actually need
to increase the VM disk space any more than its initial
allocation.

We are using the Credit based time unit allocation of
VCPU, which enforces fair sharing of CPU resources. We
of course can also have the standard linux kernel sched-
uler within each VM to allow per process time quantum
allocation. Furthermore, in a typical container based sys-
tem, each container is assigned an I/O priority, and the I/O
scheduler distributes the available I/O bandwidth accord-

7



Figure 5: Necessary communication steps for a device with no context support

ing to the priorities assigned. Thus no single container
can saturate an I/O channel. However, for our system we
rely on the fact that all the VMs would have equal I/O pri-
ority. So VMs can be scheduled in a round robin fashion
for I/O bandwidth. The Xen model actually employs the
same mechanism, the only difference is that complete I/O
bandwidth control is under Dom0 in Xen which responds
to the requests coming in from the ring buffer. Whereas
for our system the controller does the same in sync with
the CPU scheduler.

We use pre-mapping with hard limits for each VM, no
VM can exceed its allocated address space. Secondly
since we use grant references for sharing only the RO
code, we keep the sharing limited to code and not data.
Now with the idea of multiple data buffers in the controller
or hardware and IOMMU support for disk, we try to seg-
regate the data per VM. So in other words, there’s hardly
any writable data being shared in our system. Hence we
do not need the use of Bean counters. However, we can
use them if the need so arises.

The resources shared between guest OSes take into
consideration common shared objects. Hence, the con-
troller maintains a state space representation for per VM
shared resource. Every time a VM acquires a resource
the controller follows the control flow of the state space
for I/O operation. Once the VM is scheduled out the con-
troller saves the updated state space and loads the new
state flow of the running VM.

For network operations there are “hot” pages in mem-
ory that are involved in repeated I/O operations. For
example, a software cache of physical-to-machine page
mappings (P2M) associated with network transmits is
augmented to count the number of times each page has
been copied. When the count exceeds a specified thresh-

old, the page is transparently remapped into frequently
used memory. This scheme seems to be effective with
guest operating systems that uses a limited number of
pages as network buffers. The decision to remap a page
into frequently used memory increases the demand for
those pages, which may become a scarce resource. It
may be desirable to remap some frequently used pages
into normal memory, in order to free up sufficient fre-
quently used pages for remapping I/O pages that are cur-
rently “hot”.

3 Comparison to Related work

Our architecture borrows most concepts from Xen [5]
including the hypervisor module, memory write protec-
tion, grant reference for sharing, and interrupt remapping.
However, we do not rely on the privileged domain (Dom
0) or the IOEMU (emulator) based design seen in the
modern versions of PVM and HVM of Xen. Instead, we
use a controller in the hypervisor and customize the direct
pass-through model for sharing of devices. Also we don’t
use any domain initialization and we do not require a do-
main builder. Contrary to Xen, we implement memory
initialization and mapping inside the hypervisor using the
resource controller. In addition, we prevent inter-domain
communication via XenStore or event channel commu-
nication models. We only support network communica-
tion between the domains to implement isolation using
memory-mapped network interfaces. Finally, we would
be relying on hardware assists not just for data isolation
- but for controller supported code isolation as well. Our
native device driver support is inspired by container-based
isolation, such as Solaris Zones [11], FreeBSD Jails [8] ,

8



OpenVZ [2], VServer [17] and FVM [20]. In general, pro-
cess virtualization provides superior performance com-
pared to VMM [17] model.

Traditionally, hypervisors use a native device driver in
the privileged domain or the host to access the physical
device, and then emulate multiple virtual devices for guest
OSes or use split drivers to allow the guest OSes to access
the device (such as in Xen). If the device driver in the
driver domain [6] is compromised, it will affect all the
other related domains. Newer versions of hypervisors can
utilize the hardware support to let the device driver in the
guest to access the physical device directly. For exam-
ple, Xen supports pass-through I/O which can exclusively
assign a PCI device to a specific domain. However, the
device cannot be shared by multiple guest OSes with this
method. Another technique uses self-virtualized device
and allows sharing one physical device among multiple
guest OSes [12]. But it works only with support of the de-
vice. Virtual pass-through IO [19] tries to share a legacy
device among multiple guest OSes by context switching
the device.

More recently, TwinDriver model[9] proposed to split
the device driver into a guest OS part and a hypervisor part
aiming to achieve good performance without enhanced se-
curity. Our approach does not have any part of the driver
data path inside the hypervisor but rather we target to im-
prove the safety for drivers running inside the guest OS.
We remove the driver domain and schedule the device in
the hypervisor, so that even if a guest OS becomes com-
promised, the other guest OSes can still use the device
as long as the hypervisor holds its integrity. To that end,
we propose a general I/O model which separates the han-
dling for control and data. It can work with devices with
full context support as well as devices without any con-
text support. We do require some modifications of device
drivers to enforce some control functions inside the hy-
pervisor and make the device driver hypervisor-friendly.

sHype [13] is a hypervisor security architecture devel-
oped by IBM Research, in various stages of implemen-
tation in several hypervisors. The goal behind sHype is
based on isolation, mediated sharing and mandatory poli-
cies similar to SELinux [16]. However sHype relies heav-
ily on attestation and authentication for integrity guaran-
tees. It also believes in the Trusted Computing Group and
controlled monitoring of all the resources. But since it is
primarily focused on security of the hypervisor and not its
performance, it still relies on the native hypervisor based
VMM model, which adds an overhead. Besides with all
these policies, the complexity of the VMM is further in-
creased. In contrast, our system mainly focus on isola-
tion of I/O devices, and it can utilize the hardware with
full context support to directly assign a device to multiple
guest OSes. The hardware can thus enforce the isolation.
Moreover, we use a controller to control the device access

when the hardware does not provide enough support.
SecVisor [15] uses a hypervisor to enforce the code iso-

lation between the user-space and kernel-space. However,
it does not support multiple guest OSes. Loki [21] sys-
tem uses tagged memory to enforce application policies
on hardware. In contrast, we try to isolate applications by
putting them into their own protection domains. Jose Re-
nato Santos et. al. [14] proposed a general model for net-
work devices. Our model is more general, encompassing
all I/O devices and allows layered deployment supporting
both legacy and hardware-assisted I/O.

4 Conclusion
Current virtualization schemes exhibit a trade-off between
the degree of isolation and the system performance: light-
weight container systems offer weak isolation whereas the
strong isolation of full or para-virtualization systems suf-
fer from poor I/O performance due to the use of virtu-
alized drivers. In this paper, we propose and analyze a
new architecture that attempts to use recent advances to
provide enhanced kernel isolation without sacrificing per-
formance.

Our system borrows concepts from existing technolo-
gies and recent advances in hardware-assisted I/O map-
ping to isolate full kernels including their device drivers.
We desiged a layered architecture that can support legacy
devices by implementing the necessary functionality in
the hypervisor with a performance penalty. To amend this,
we advocate for new devices and device drivers that can
support multiple identities leaving only the identity man-
agement to the hypervisor. We posit that our work pro-
vides a compelling security and performance argument to-
wards that direction.

References
[1] IOMMU Architectural Specification. Advanced Mi-

cro Devices, Inc.

[2] Openvz. http://wiki.openvz.org.

[3] Vmware virtualization products. http://www.

vmware.com/products/.

[4] Secure Virtual Machine Architecture Reference
Manual, Advanced Micro Devices,Inc, 2005.

[5] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the art of virtualization. In In Proceedings
of the ACM Symposium on Operating Systems Prin-
ciples, 2003.

9

http://wiki.openvz.org
http://www.vmware.com/products/
http://www.vmware.com/products/


[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williamson. Safe hardware ac-
cess with the Xen virtual machine monitor. In OASIS
ASPLOS 2004 workshop, 2004.

[7] R. Hiremane. Intel R© Virtualization Technology for
Directed I/O (Intel R© VT-d). Technology c© Intel
Magazine, 4(10), 2007.

[8] P. Kamp and R. Watson. Jails: Confining the om-
nipotent root. In Proceedings of the 2nd Interna-
tional SANE Conference, 2000.

[9] A. Menon, S. Schubert, and W. Zwaenepoel. Twin-
drivers: semi-automatic derivation of fast and safe
hypervisor network drivers from guest os drivers. In
ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for program-
ming languages and operating systems, pages 301–
312, New York, NY, USA, 2009. ACM.

[10] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of zap: a system for mi-
grating computing environments. In OSDI ’02: Pro-
ceedings of the 5th symposium on Operating systems
design and implementation Due to copyright restric-
tions we are not able to make the PDFs for this con-
ference available for downloading, pages 361–376,
New York, NY, USA, 2002. ACM.

[11] D. Price and A. Tucker. Solaris zones: Operating
system support for consolidating commercial work-
loads. In 18th Large Installation System Administra-
tion Conference (LISA 2004, 2004.

[12] H. Raj and K. Schwan. High performance and scal-
able i/o virtualization via self-virtualized devices. In
HPDC ’07: Proceedings of the 16th international
symposium on High performance distributed com-
puting, pages 179–188, New York, NY, USA, 2007.
ACM.

[13] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez,
S. Berger, J. Griffin, and L. van Doorn. Building
a mac-based security architecture for the xen open-
source hypervisor. Computer Security Applications
Conference, 21st Annual, pages 10 pp.–, Dec. 2005.

[14] J. R. Santos, Y. Turner, and J. Mudigonda. Tam-
ing Heterogeneous NIC Capabilities for I/O Virtu-
alization. In Workshop on I/O Virtualization (WIOV
2008), 2008.

[15] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvi-
sor: a tiny hypervisor to provide lifetime kernel code
integrity for commodity oses. In SOSP ’07: Pro-
ceedings of twenty-first ACM SIGOPS symposium on

Operating systems principles, pages 335–350, New
York, NY, USA, 2007. ACM.

[16] S. Smalley, C. Vance, and W. Salamon. Implement-
ing SELinux as a Linux Security Module. NAI Labs
Report, 1:43, 2001.

[17] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier,
and L. Peterson. Container-based operating system
virtualization: a scalable, high-performance alterna-
tive to hypervisors. In EuroSys ’07: Proceedings
of the 2nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, pages 275–287,
New York, NY, USA, 2007. ACM.

[18] P. Willmann, S. Rixner, and A. Cox. Protection
Strategies for Direct Access to Virtualized I/O De-
vices. In USENIX Annual Technical Conference,
2008.

[19] L. Xia, J. Lange, and P. Dinda. Towards Virtual
Passthrough I/O on Commodity Devices. In Work-
shop on I/O Virtualization (WIOV 2008), 2008.

[20] Y. Yu, F. Guo, S. Nanda, L. Lam, and T. Chiueh. A
feather-weight virtual machine for windows applica-
tions. In ACM/Usenix International Conference On
Virtual Execution Environments: Proceedings of the
2 nd international conference on Virtual execution
environments, volume 14, pages 24–34, 2006.

[21] N. Zeldovich, H. Kannan, M. Dalton, and
C. Kozyrakis. Hardware enforcement of application
security policies using tagged memory. In OSDI ’08:
Proceedings of the 8th symposium on Operating sys-
tems design and implementation, 2008.

10


	Introduction
	System Architecture
	Memory Allocation & Mapping
	I/O Setup
	Handling Data Access
	Handling Control Access
	Example of Logic Flow
	Resource Management


	Comparison to Related work
	Conclusion

