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Abstract—Distributed Denial of Service (DDoS) attacks still
pose a significant threat to critical infrastructure and Internet
services alike. In this paper, we propose MOTAG, a moving target
defense mechanism that secures service access for authenticated
clients against flooding DDoS attacks. MOTAG employs a group
of dynamic packet indirection proxies to relay data traffic
between legitimate clients and the protected servers. Our design
can effectively inhibit external attackers’ attempts to directly
bombard the network infrastructure. As a result, attackers will
have to collude with malicious insiders in locating secret proxies
and then initiating attacks. However, MOTAG can isolate insider
attacks from innocent clients by continuously ‘“moving” secret
proxies to new network locations while shuffling client-to-proxy
assignments. We develop a greedy shuffling algorithm to minimize
the number of proxy re-allocations (shuffles) while maximizing
attack isolation. Simulations are used to investigate MOTAG’s
effectiveness on protecting services of different scales against
intensified DDoS attacks.

Index Terms—DDoS; Moving Target Defense; Secret Proxy;
Insider; Shuffling

I. INTRODUCTION

Arbor Networks has reported a significant increase in the
prevalence of large-scale distributed denial-of-service (DDoS)
attacks in recent years [1]. In 2010, the largest reported
bandwidth achieved by a flood-based DDoS attack reached
100 Gbps. Meanwhile, the cost of performing a DDoS attack
has turned out to be surprisingly low. A Trend Micro’s white
paper [2] has revealed that the price for 1-week DDoS service
could be as low as $150 on Russian underground market.

A number of mechanisms have been proposed in the past
to prevent or mitigate DDoS attacks. Filtering-based ap-
proaches [3], [4], [5] use ubiquitously deployed filters to block
unwanted traffic sent to the protected nodes. Capability-based
defense mechanisms [6], [7], [8], [9] endeavor to constrain the
resource usage by the senders within the threshold permitted
by the receivers. Secure overlay solutions [10], [11], [12], [13],
[14], [15] interpose an overlay network to indirect packets
between clients and the protected nodes, aiming to absorb and
filter out attack traffic. However, these static defense systems
either rely on global deployment of additional functionalities
on Internet routers or require large, robust virtualized network
to withstand the ever-exacerbating attacks. Besides, some of
them are still vulnerable to sophisticated attacks, such as
sweeping [11] and adaptive flooding attacks [12].

In this paper, we propose MOTAG, a dynamic DDoS de-
fense mechanism that adopts moving target defense strategy
to protect centralized online services. In particular, MOTAG
offers DDoS resilience for authorized and authenticated clients
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of security sensitive services such as online banking and e-
finance. MOTAG employs a layer of secret moving proxies to
mediate all communications between clients and the protected
application servers. The network-level filters surrounding the
application servers only allow traffic from the valid proxy
nodes to reach the protected servers.

Proxy nodes in MOTAG have two important characteristics.
First, all proxy nodes are “secret” in that their IP addresses
are concealed from the general public and are exclusively
known by legitimate clients after successful authentication.
Each legitimate client is provided with the IP address of
one working proxy at any given time to avoid unnecessary
information leakage. We apply existing proof-of-work (PoW)
schemes [16], [17], [18], [19] to protect the client authentica-
tion channel. Second, proxy nodes are “moving”. As soon as
an active proxy node is attacked, it is replaced by another node
at a different location, and the associated clients are migrated
to alternative proxies. We show that these characteristics not
only enable us to mitigate brute-force DDoS attacks, but also
empower us to discover and isolate malicious insiders that
divulge the location of secret proxies to external attackers.
We do so via shuffling (repositioning) clients’ assignment to
new proxy nodes when their original proxies are under attack.
We develop algorithms to accurately estimate the number of
insiders and adjust client-to-proxy assignment accordingly to
rescue most innocent clients after each shuffie.

Our solution does not rely on global adoption on Internet
routers or collaboration across different ISPs to function.
Neither do we depend on resource-abundant overlay network
to out-muscle high bandwidth attacks and to provide fault tol-
erance. Instead, we take advantage of our proxies’ secrecy and
mobility properties to fend off powerful attackers. This entails
lower deployment costs while offering substantial defensive
agility, resulting in an effective DDoS protection.

II. THREAT MODEL AND ASSUMPTIONS

Instead of targeting open and general-purpose web services,
we focus on protecting security sensitive online services
against network flooding attacks. The clients of the protected
services are pre-authorized and their identities can be authenti-
cated before they are served. We assume a large pool of backup
proxies that attackers are incapable of attacking altogether.
However, only a small group of proxies are active at any
time to avoid extensive operational costs. An ideal source for
the proxy pool is one or several cloud environment where
customers are charged only for running instances.



We assume powerful attackers with high aggregate band-
width that are capable of simultaneously overwhelming many
standalone machines on the Internet. However, we do not
assume attackers that can saturate well-provisioned Internet
backbone links for ISPs, data centers, and cloud service
providers. Attackers, in case of uncertainty, can first perform a
reconnaissance attack (e.g., IP and port scanning) to pinpoint
targets for the subsequent flooding attack.

With the knowledge of MOTAG mechanism, attackers can
also flood the authentication channel through which the legit-
imate clients are admitted. However, it is significantly harder
for attackers to pass strong authentication by brute force and
reach the proxies as legitimate clients. To uncover the network
location of proxies, some attackers may plant “insiders” by
compromising legitimate clients or eavesdropping on legiti-
mate clients’ network connections. However, the number of
such insiders in a protected system will be limited.

III. MOTAG ARCHITECTURE

Figure 1 shows the overall architecture of MOTAG, which
consists of four inter-connected components: the authentica-
tion server, the proxies, the filter ring, and the application
server. The application server provides the online services
(e.g., banking or e-finance services) that we want to protect
and make accessible to authenticated clients. The IP address
of the application server is concealed from all clients. The
proxy nodes are a group of dynamic and distributed machines
that relay communications between clients and the application
server. The filter ring, similar to what was described in [12],
is comprised of a number of high speed routers placed around
the application server, allowing inbound traffic only from
valid proxy nodes. The authentication server is responsible
for authenticating clients and assigning legitimate ones to
individual proxy nodes.
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MOTAG allows a client to access the application server
only if the client can be successfully authenticated. One
simple solution is to associate the application domain name
with the IP address of the authentication server during DNS
registration. Each successfully authenticated client will be

randomly assigned to one of the active proxy nodes whose
identities are not publicly known. The authentication server
will inform each client about the IP address of a designated
proxy, and in the meantime, notify the proxy node about the
forthcoming connection from the client. The authentication
server, as well as each proxy node, maintains a dedicated
interface for the purpose of signaling. Through this signaling
channel, proxies report to the authentication server if they are
attacked; the authentication server informs proxies about client
assignment and coordinate their actions against DDoS attacks.

The authentication server also assigns a capability token
for each client-to-proxy session. This token limits a client’s
throughput by specifying the number of packets (or, the
number of bytes) allowed for the session in the next time
window (¢ seconds). A proxy should receive identical copies
of a capability token from two parties for every session, one
from the authentication server to notify new client assignment
and one from the client as a proof of identity. Every proxy
node maintains a per-session counter and regulates traffic
according to individual capability. Such capability-based polic-
ing is key for detecting external, brute-force flooding attacks
in that it distinguishes authorized packets from illegal ones.
Furthermore, it can detect and frustrate any internal attempt
to abuse the assigned capability such as sharing capability
with external attackers. For communications between proxy
nodes and the application server, a lightweight authenticator
as described in Mayday [12] can be employed for proxy
identity validation. The filter ring routers can perform fast
lookups to verify such lightweight authenticators in proxy-to-
application packets. These authenticators can be dynamically
altered and active proxy nodes will receive timely updates via
the signaling channel. To prevent the authentication server
from being flooded by botnets, we employ proof-of-work
(PoW) schemes [16], [17], [18], [19] to ensure its accessibility
for legitimate clients.

A. Secret Moving Proxies

In MOTAG, we build an intermediate layer with a pool of
geographically distributed proxies to diffuse attackers’ traffic
and shield the application server behind. We do not activate all
proxies at once. Instead, we only keep a small subset of proxies
working at all times and dynamically substitute attacked ones
at runtime, confusing attackers with “moving” proxies. The IP
addresses of all proxies are concealed from the general public.
Our proxies are resilient to scanning attacks because they only
talk to IP addresses of the authenticated clients. The mapping
from clients to working proxies is many-to-one.

If a proxy node is under attack, it will be shut down
and a new proxy node at a different network location will
be activated for replacement. Proxy substitution is a fast,
lightweight operation because all proxies run the same, simple
traffic indirection logic and maintain no client state. All session
information is centrally stored at the application server. A few
hot proxy spares can be kept alive over time and quickly
kick in whenever necessary. All clients connecting to the
attacked node will be re-assigned across the entire set of



active proxies. The new assignment can be pushed to the
affected clients by the authentication server, or the clients can
be re-authenticated for security assurance. We name the overall
process of proxy replacement and client re-allocation as client-
to-proxy shuffling and will introduce the details in Section IV.
No shuffling will be performed if there is no attack, and a
small set of proxy nodes with constant IP addresses are used
to serve all legitimate clients.

MOTAG is different from existing overlay network solu-
tions [10], [11], [12], [15], which rely on a fairly static network
composition of overlay nodes to tolerate and filter out the
attack traffic. Building and maintaining such an overlay entails
extensive and continuous investment to acquire more nodes
and bandwidth. In addition, sweeping [11] and adaptive [12]
flooding attacks may cause severe service disruptions. In con-
trast, MOTAG keeps its proxies confidential and mobile. Only
authenticated clients are informed about their assigned proxies.
This enhances defense agility against massive, sophisticated
attacks while reducing its dependence on the volume of proxy
resources.

B. Authentication with Proof-of-Work Protection

The authentication server with assured accessibility is es-
sential to our moving target defense. It acts as the initial
checkpoint to separate legitimate clients from illegal ones.
We use authentication as a mechanism to bind a client to a
specific network flow. Only with such unique binding, we are
able to keep track of the behavior of each client throughout
the shuffling process. Every client has to pass authentication
before assigned to a working proxy that eventually routes
traffic to the application server. The IP addresses of authenti-
cated clients are recorded and sent to proxies to enforce IP-
based filtering. The authentication server is also responsible
for advertising subsequent client-to-proxy assignments during
shuffling. MOTAG is agnostic to the specific authentication
mechanism employed.

The authentication server is the only part of the MOTAG
architecture that can be publicly addressed. Therefore, it can
be a new target of distributed flooding attacks. To mitigate this
attack, we take advantage of existing proof-of-work (PoW)
schemes [16], [17], [18], [19], which force clients to solve
cryptographic puzzles before allowing them to consume re-
sources on the server side. In particular, they can realize
per-computation fairness regarding bandwidth usage among
all clients [19], prevent connection depletion attacks [18],
and mitigate DDoS attacks on application-level authentication
protocols [16], [17]. Although mandating extra computational
task can help reduce attackers’ throughput, it also imposes con-
siderable burden on legitimate clients as well. Therefore, PoW
approaches are suitable for protecting client authentication in
that authentication packets are infrequently sent and are more
delay-tolerant. However, they are less preferable for securing
application data communication due to its high overhead.

IV. CLIENT-TO-PROXY SHUFFLING

Hiding proxies while enforcing client authentication can
effectively prevent external attackers from reaching MOTAG’s
packet delivery system. Moreover, by keeping proxies mobile
and performing guided shuffling on client-to-proxy assign-
ments, MOTAG can also mitigate insider attacks that expose
secret proxies to flooding attacks.

Attackers can implant malicious insiders in the targeted sys-
tem via social engineering, compromising legitimate clients,
stealing clients’ identities for authentication, and eavesdrop-
ping on clients’ network connections. Installed insiders in
a protected system are the results of targeted attacks with
relatively high technical sophistication. Thus, the number of
functioning insiders is expected to be small (maybe hundreds).
Nevertheless, the damage they can cause is still significant.
Once insiders uncover the IP addresses of some proxy nodes,
they will notify external attackers who will carry out DDoS
attacks against these exposed proxies. We address such attacks
as insider-assisted DDoS attacks, or simply insider attacks.
Although insider attacks cannot be fully prevented, we aim
to minimize their impact on innocent clients. In this paper,
we design a client-to-proxy shuffling mechanism to quarantine
insider attacks over time and ensure service accessibility for
as many innocent clients as possible.

A. Shuffling Strategy

In MOTAG, a pool of proxy nodes are reserved and idled
before DDoS attacks break out. As soon as an attack happens,
a small number of proxy nodes in the pool are activated. The
set of active proxy nodes can be logically classified into two
groups, namely serving proxies and shuffling proxies. Serving
proxies provide more reliable connection services to the known
innocent clients, while shuffling proxies are responsible for
shuffling operations and only provide intermittent connections
to suspicious clients. When attacked, shuffling proxies will be
replaced and the associated clients are flushed and reassigned.

At the beginning, all the active proxies are unmarked. All
clients are randomly assigned to proxies. Each client will be
assigned to only one proxy at a time. If some proxies are
attacked after the initial assignment, they will be marked as
shuffling proxies while others are considered serving proxies.
By employing the greedy algorithm described in Section IV-C,
we repeatedly shuffle the client-to-proxy assignment within the
shuffling proxy group to distinguish insiders from innocent
clients and segregate them.

After each shuffle, some shuffling proxies will still be at-
tacked and some will not. The intact shuffling proxies become
serving proxies and the associated clients are marked as trusted
and considered as saved from the on-going attack. Clients
connected to the attacked proxies are considered untrusted,
since we cannot tell who are the actual insiders within this
group. To save the innocent ones among them, we will
randomly re-distribute all the untrusted clients across the group
of shuffling proxies. Given the specific number of suspicious
clients and available proxy nodes, new proxies can be activated
as shuffling proxies from the pool to help accelerate shuffling



operations. Generally speaking, the more shuffling proxies are
available, the faster insiders will be quarantined.

By repeating the client-to-proxy shuffling for multiple
rounds and keeping record of the suspicious proxies/clients,
we can narrow down the range of suspects and gradually
identify most innocent clients. The insiders will eventually be
quarantined and the attack damage will be minimized.

Notice that the shuffling process is stateless, meaning each
shuffle is considered independent. The tags (trusted/untrusted)
we place on clients will be reset after each shuffle, to avoid
being confused by insiders’ inconsistent behavior. These tags
do not necessarily reflect the true identity of the clients. Plus,
the roles of proxies (shuffling/serving) are interchangeable
across shuffles, depending on the behavior of attackers. The
goal of shuffling operations is to separate innocent but at-
tacked/suspected clients from true insiders. Although some
insiders may make us believe in their innocence by staying
inactive, we can ensure that they are not going to cause extra
damage if they begin to attack later.

B. Shuffling Optimization

To contain insider attacks as quickly as possible, and also
to adapt to system dynamics such as client mobility, we need
a shuffling algorithm that can identify and separate as many
innocent clients as possible per shuffle. To that end, we first
analyze the number of innocent clients to save under different
client-to-proxy assignments.

Specifically, among a total number of N clients to be
shuffled, the number of insiders is N;, and the number of
innocent clients is N, so we have N;+N, = N. ! After one
round of shuffling, N, innocent clients are still being attacked,
and N, of them are not (N, + Ny, = N;). Our goal is to
mathematically compute the expected value of N, (denoted
as E(Ng,)) under different circumstances and find a way to
maximize it, given a number of K available shuffling proxies.
We use A; to represent the number of clients appointed to
proxy j.

Obviously, E(N,,) = Zle pjAj, where p; is the probability
that proxy j is not being attacked. Considering an arbitrary
proxy j, it is not being attacked only when none of the insiders
are connecting to it. Hence, p; is also the probability that all
insiders are assigned to proxy nodes other than j. According
to simple combinatorics, p; = (¥ ;,?f) / (gl ), where (1\1\//, ) is the
total number of ways to distribute the N; insiders within the
population N, and (N;?f ) is the number of combinations that
all insiders are within the N —A; clients not connecting to
proxy j. Therefore, the expected value of N, can be calculated
by Equation IV.1.

K yK (VA4
E(New) =Y pjAj = %N)’ (IV.1)
J=1 (N,)

We also have E(N.,) =N, —E(Ng,).
Given the total number of clients N, the number of insiders
N;, the number of shuffling proxies K, and the client-to-proxy

'We provide a method to estimate the number of insiders in Section IV-D.

assignment vector A, we want to maximize E (N, ). Intuitively,
the more shuffling proxies are used, the more innocent clients
are expected to be saved via each shuffle. In the extreme case
where K > N, each client can be allocated with an exclusive
proxy node (A; =1, Vj € (1,K)). E(Ney) = N. means no
innocent client will be attacked. This is the ideal scenario
where all insiders are quarantined their own proxy nodes
within one round of shuffling. However, in practice, it is
usually impossible to provide a dedicated proxy node for each
client when clients are large in number. In most cases, the
client population would outnumber the shuffling proxies by
far (K << N). Consequently, the way of distributing clients
across proxy nodes becomes utterly important.

Assuming we have a constant number of K shuffling prox-
ies, we are facing an optimization/maximization problem with
Equation IV.1 being the objective function. The variables are
summarized into the vector A of natural numbers that defines
the client-to-proxy assignment scheme, with the constraint
being

K
Y A;=N, where A cN¥ (IV.2)
j=1

Although recursive algorithms such as dynamic program-
ming can be employed to compute the optimal solution, we
adopt a greedy approach here to produce a quick and near-
optimal solution. Our simulations under various configurations
show that the results produced by the greedy algorithm ap-
proach very closely to the theoretical upper bound of E(N,).

C. The Greedy Shuffling Algorithm

Algorithm 1 shows the greedy algorithm for computing
the client-to-proxy assignment. The main function is called
GreedyAssign. Since in Equation IV.1 E(Ng,) is the sum
of pieces (i.e. pjA;) for all shuffling proxies computed in
the same way, we firstly perform optimality analysis for an
individual component. For an arbitrary proxy j, A; can be any
value within [0,N —1]. A; cannot be N. Otherwise, everyone
will be attacked if there is an insider onboard.

Since the value of N; will affect the optimal choice of A},
for a particular N;, we enumerate all possible values of A; and
select the one () that maximizes p;A;. This subroutine is
described in procedure MaxProxy of Algorithm 1. Under our
greedy approach, we assign ® clients to as many proxies as
possible.

Function GreedyAssign is called recursively to assign the
remaining clients to the rest of the proxies. The computation
will terminate under three conditions. First, when there are
more proxy nodes left than clients, each client will be assigned
to an exclusive proxy node. Second, when there is only one
proxy left, all remaining clients will be appointed to it. Third,
when the expected number of remaining insiders is rounded
to 0, all remaining clients will be evenly distributed for load
balancing. The overall computational complexity of the greedy
algorithm is O(N % N;). To further reduce the computational
overhead throughout the shuffling procedures, the client-to-
proxy assignment vectors for different N, K, N; combinations



can be pre-computed and stored in lookup tables for runtime
reference.

Algorithm 1 Greedy algorithm for computing client-to-
proxy assignment.

function GREEDYASSIGN(Client, Insider, Prox)
if Client < Prox then
Assign 1 exclusive proxy to each client
else if Prox =1 then
Assign all clients to the proxy
else if Insider =0 then
Evenly distribute Client over Prox
else
@ =MaxProxy(Client,0,Client — 1,Insider)
ProxToFill = floor(Client | )
if ProxToFill > Prox then
ProxToFill = Prox—1
RemC = Client — ProxToFill * ®
RemP = Prox — ProxToFill
RemA = Round( W)
Fill ProxToFill Proxies with o clients each
Fill the rest proxies according to
GreedyAssign(RemC,RemA, RemP)

procedure MAXPROXY(Client, Lbnd,Ubnd, Insider)
Max=0, MaxAssign=0
for i = Lbnd — Ubnd do
Client—i\ . 7 ( Cli
Save = ( 1,115,"2[”1) l/ (]nsli(;l’gr)

if Save > Max then

Max = Save, MaxAssign =i
return MaxAssign

To evaluate the optimality of the greedy algorithm, we will
compare its results with the theoretical upper bound of E (N, ).
Since Equation IV.1 is a summation of p;A; for each individual
shuffling proxy j, the max of IV.1 cannot be greater than the
sum of the max of each p;A; when relaxing Constraint IV.2,
i.e. Max(E(Ney)) < K xMax(pjA;). Here, Max(p;A;) can be
obtained by running subroutine MaxProxy(N,0,N —1,N;). The
comparison between the greedy algorithm and the theoretical
upper bound is done via simulations under various configura-
tions on MATLAB. The results are presented in Section VI.

D. Estimating the Number of Insiders

In our earlier discussion, we assume the number of insiders
(N;) is fixed and given; however, in practice, we have no such
prior knowledge. Since the value of N; has direct influence on
the client-to-proxy assignment, it is important to make accurate
estimation. In addition, such estimation has to be made at each
shuffle to cope with varying insider number and their behavior.

We solve this problem using maximum-likelihood estima-
tion (MLE). We first establish a connection between the
number of insiders N; and the number of proxies that are
not under attack (denoted as X). In a particular attack where
X = m, we calculate the probabilities Pr(X = m) with regard
to different N; values, and use the N; value that maximizes the
probability as the estimated number of insiders.

According to the inclusion-exclusion principle under balls-
and-urns model [20], we can compose Equation IV.3 to calcu-
late Pr(X =m), where Pr(X > M) stands for the probability
that at least M (M = m,m+1,...,K) proxy nodes are not
attacked, K is the total number of all shuffling proxies.

Prox=m) = pr(xzm) = ("7 e (ne+1)
+ (m;—z)Pr(X>(m+2))—...

4 (—=1)K=m (5) Pr(X > K) (IV.3)

In particular, these M not-under-attack proxies constitute
the set U= {uy,u,...,up}, where u; is the real ID of the jth
available proxy node. Set U can be any M sized subset of the
K shuffling proxies.

The key idea to compute Pr(X > M) is similar to how we
derive Equation IV.1. If a particular set U of proxies are not
attacked, the insiders must be among the clients assigned to
the rest proxy nodes (the complement of U). Thus, we have
Equation IV.4, in which ):EJM denotes the summation over
all possible combinations of U (all M sized subsets of the
K shuffling proxies), and N — Z]y:]Auj gives the number of
clients connecting to the proxies not in U. u; is an arbitrary
proxy node in the set, and Auj denotes the number of clients
assigned to that node.

(M ) N _ZMZI Ay

B Yo ( N )
- N
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Under a certain client-to-proxy assignment scheme A, we

can now correlate Pr(X = m) with N; by combining Equa-
tion IV.3 and IV4.

Pr(X > M) (IV.4)

Estimated Insider

10 . | L | | | . 15
10 30 50 70 100 150 200 250 300
Real Insider Number

Fig. 2. Insider estimation under 10K clients, 100 shuffling proxies

To evaluate our insider estimation algorithm, we implement
it on MATLAB and run simulations with different numbers
of insiders. Based on the number of attacked proxies, our
algorithm makes educated guesses on the real insider numbers.
The guess that maximizes the result of Equation IV.3 becomes
the final estimation. These estimations are plotted against true
insider numbers, in Figure 2. For each data point, we run the
simulation 30 times to compute the mean and 99% confidence
interval. According to the results in the figure, our algorithm
gives very accurate estimations.



V. SECURITY ANALYSIS

MOTAG is a dynamic traffic indirection framework opened
only to authenticated clients. It is designed to account for
both brute force and sophisticated DDoS attacks against the
protected application server and other potential targets.

a) Resistance to brute-force attacks: With MOTAG
protection, external attackers will not be able to locate secret
proxies without planting insiders, i.e. compromising or eaves-
dropping on legitimate clients. Even if attackers somehow get
to know the IP range of the entire proxy pool, they are still
unable to find out which proxies are currently active. MOTAG
is also invulnerable to scanning attacks thanks to IP-based
filtering. All active proxies will only respond to IP addresses
representing legitimate clients who have been successfully
authenticated. By outsourcing proxy infrastructure to one or
more cloud providers, the proxy pool (which can be the entire
cloud domain) will be so large that even powerful botnets are
unable to attack altogether. In the meantime, we only pay for
the running proxy instances over time.

The mobility of proxy nodes adds another layer of resiliency
against brute-force attackers. In the case that attackers hit
a secret proxy by chance, the attacked node will quickly
“move away”. Without the ability to trace the shifting proxies,
external attackers will get lost in front of the moving targets.

The only exposed component of the system is the au-
thentication server. It is protected by existing PoW schemes
that ensures legitimate clients can eventually get authenticated
given reasonable efforts and delay.

b) Resistance to insider attacks: Malicious insiders
pose a more serious threat because they have access to secret
moving proxies. Basically, Insiders can expose the proxies that
they uncover to the horizon of a powerful bonet. As discussed
in Section IV, by dynamically “moving” proxy nodes and
shuffling client-to-proxy designation optimally, MOTAG can
have such insiders quarantined in a few rounds. The precious
bandwidth of the application server wasted on attackers are at
most proportional to the ratio of proxies under attack (rather
than the number of attackers), which will drop throughout
multiple rounds of shuffles. In addition, since the shuffling
decisions are specifically made for each round, MOTAG can
easily accommodate to system dynamics such as the arriving
and leaving of clients and insiders. Some insiders may stay
silent across shuffles, aiming to profile the IPs of the proxy
pool. However, since proxies that are not under attack will
remain stable and the associated clients will not be shuffled,
silent insiders will stay on the same proxy forever and fail
their purpose.

c) Resistance to compromised proxies: With the help
of malicious insiders, attackers may even compromise some
proxy nodes. If successful, the application server and the
authentication server will be directly exposed to attackers.
However, lightweight authenticators, similar to what was used
in [12], can be used to identify and filter proxy-to-server
traffic. Therefore, the compromised proxies that are exploited
to attack the application or authentication server can be readily

identified. Their packets will be blocked by the high-speed
filter ring deployed around the servers.

VI. MOTAG EVALUATION
A. Insider Quarantine Capability

We experimentally evaluate MOTAG'’s effectiveness on mit-
igating insider-assisted DDoS attacks. To that end, we im-
plement all core algorithms of MOTAG on MATLAB and
run them with simulated clients and proxy nodes. Although
MOTAG allows the change on client and insider population
between different shuffles, we keep the numbers constant for
the easy of experimentation. In our simulations, we randomly
pick clients to be malicious insiders without informing MO-
TAG. MOTAG decides the number of clients assigned to each
proxy node but each client is randomly appointed to a proxy
with empty slots. We use Mersenne twister [21] as our random
number generator. We assume insiders will always attack. We
also assume attackers possess infinite bandwidth. Therefore,
all proxies connected by insiders are under attack. However,
as discussed earlier, we only assume a limited number of
insiders (hundreds) considering the difficulty to bypass strong
authentication. MOTAG uses the MLE method in Section IV-D
to estimate the number of existing insiders and uses the greedy
algorithm in Section IV-C to determine the client-to-proxy
assignment for the next shuffle. It usually takes more than
one shuffle to save a majority of innocent clients when the
number of insiders is large. Figure 3 quantitatively shows the
number of shuffles needed to save 80% and 95% innocent
clients by using our greedy algorithm (solid lines) and by
applying the theoretical upper bound of Equation IV.1 (dotted
lines) in each shuffle. Figure 3a and 3b vary the number of
insiders while keeping the total number of clients and shuffling
proxies constant. Figure 3c and 3d only change the number of
shuffling proxies. 10,000 clients are simulated in Figure 3a
and 3c, while 100,000 clients are simulated in Figure 3b
and 3d. We run the same 30 times simulation for each data
point and plot with 99% confidence interval.

First, we see that in almost all cases, the performance of
MOTAG is close to the theoretical optimum. This means that
greedy algorithm is very close to optimal. Then, Figure 3a
and 3b show that the number of shuffles needed to save the
same percentage of innocent clients grows almost linearly
with the increase in the number of insiders. More shuffles
indicate longer time to mitigate an attack, but it also means
that attackers have to devote much more effort to recruit more
insiders. Figure 3c and 3d reveal that the number of necessary
shuffles increases as less proxy nodes are available. The lines
climb slowly when the proxies outnumber the insiders and
become significantly steeper otherwise. Moreover, the narrow
confidence intervals of MOTAG’s data points indicate that
the performance of our shuffling algorithm is reliable and
predictable.

Notice that the change from 10,000 to 100,000 clients
almost causes no difference in the simulation results. Instead,
the ratio between the number of shuffling proxies and the
number of insiders is the decisive factor on protecting innocent
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B. Overhead

MOTAG mainly introduces two aspects of overhead to
communications between clients and the application server,
namely proxy-based communication indirection, and client-to-
proxy shuffling.

TABLE I
LATENCY OVERHEAD INTRODUCED BY PROXY INDIRECTION

THROUGHPUT OVERHEAD INTRODUCED BY PROXY INDIRECTION (MB/S)

Direct Indirect

RTT Mean RTT | Overhead | Max RTT | Overhead
1 63ms 104ms 63.35% 143ms 125.41%
2 | 86ms 99ms 15.64% 128ms 49.45%
3 | 83ms 102ms 23.73% 133ms 60.47%
4 90ms 112ms 23.77% 131ms 45.18%
5 | 84ms 107ms 27.73% 120ms 42.48%

TABLE 11

1 2 3 4 5
Direct | 90.66 | 83.46 | 86.24 | 123.30 | 121.20
Indirect | 1520 | 14.46 | 13.99 15.97 14.09
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Fig. 3.
clients

The number of shuffles needed to save 80% and 95% of innocent

clients. Figure 4 shows the minimum number of shuffling
proxies required to save 95% of innocent clients within 5, 10,
and 15 shuffles, respectively. The number of insiders ranges
from 10 to 800. The solid lines represent a client population
of 10 thousand and the dotted lines denote 100 thousand.
We see a close to linear relationship between the number
of required shuffling proxies and the number of insiders in
achieving a constant security goal. These results can help
system administrators decide how many proxy nodes they will
need to achieve their security goals. Again, a 10 fold increase
in the client population only has a minor impact on the results
and the 99% confidence intervals are almost negligible.

First, to assess the overhead introduced by proxy-based
traffic indirection, we select 10 geographically distinct U.S.
nodes from PlanetLab to form 5 end-to-end flows. We also
randomly pick 24 other nodes that spread across the country
to serve as proxies. We measure the latency and throughput for
both direct and indirect communications of the 5 flows, and
the results are shown in Table I and Table II, respectively.
SSH tunneling through individual proxy node is employed
to redirect traffic between end nodes. Round trip time (RTT)
numbers are obtained by bouncing short TCP messages back
and forth between the end nodes of each flow 100 times to get
the mean. Throughput numbers are the average of 10 Iperf [22]
sessions. Apparently, the impact of introducing proxies on
latency (usually less than 30%) is much less significant than its
influence on throughput. The drop on throughput is not only
caused by traffic indirection by proxies, but is also a result of
message encryption and decryption by SSH agents. In fact,
different crypto strategies, including no encryption, can be
listed as options when implementing MOTAG based systems.



Users can make informed decisions based on the nature of the
protected application.

TABLE III
TIME TO SWITCH BETWEEN TWO PROXY NODES (SECONDS)

1 2 3 4 5
MEAN | 0.514 | 0.512 | 0.509 | 0.546 | 0.530
MAX 0.677 | 0.773 | 0.693 | 0.714 | 0.753
MIN 0.291 | 0.208 | 0.249 | 0.357 | 0.214

The time needed to shuffle clients among different proxy
nodes determines the agility and usability of MOTAG against
insider attacks. Quick shuffles will make it harder for attackers
to “follow” and have insiders quarantined faster. At the same
time, innocent but shuffled clients will suffer less severe
service disruptions. Therefore, to quantify the impact of our
system to the end users, we measure the time needed for a
client to switch from one proxy node to another. To that end,
we choose 5 geographically dispersed nodes from PlanetLab
to be the destination servers. We randomly pick another node
to play the role of the authentication server. We time the entire
process that our local client gets notified by the authentication
server, then discards the current proxy and connects to the new
proxy, until reaching back to the destination server. During
this process, the authentication server sends a session ticket to
both the client and the new proxy node, the client will present
this ticket to the proxy to get authenticated. Only after that, the
new proxy node will start forwarding packets for the client. We
use another 8 PlanetLab nodes as proxies and switch between
them. The average, maximum, and minimum proxy switching
times for each destination are listed in Table III. The numbers
are fairly small yet consistent. Less than one second proxy
switching time should not cause significant service disruption
for most non-realtime applications.

VII. RELATED WORK

A number of research efforts have been devoted to defense
against DDoS attacks over the past decade [23]. Filtering-
based approaches [3], [4], [5] intend to use ubiquitously
deployed filters to block unwanted traffic far away from
the protected nodes. They assume that attack traffic can be
differentiated from legitimate traffic. However, this is usually
a difficult job because attackers can sneak through by spoofing
IP addresses and mimicking normal senders. Instead of trying
to distinguish and then block malicious traffic, MOTAG first
performs client authentication to filter out illegal clients.
Only authenticated clients will be appointed to the secret
moving Internet proxies that can directly talk to the protected
application server.

Capability-based mechanisms adopt a different philosophy
that gives the control over resource usage to the packet
receiver [6], [7], [8], [9]. Senders have to obtain receivers’
explicit permission before sending packets to them. Traffic
from authorized or privileged senders with valid capability
can be prioritized during an attack. Using capability is a more
proactive way of defense. Nevertheless, such solutions also

rely on a global adoption on the Internet routers for adequate
capability enforcement, which is unlikely to happen given
limited incentives. MOTAG uses capability token to identify
and rate-limit authenticated clients. Rather than depending on
high degree of deployment on the Internet routers, we employ
a thin layer of secret moving proxies for traffic policing.

To eliminate the physical network constraints and admin-
istrative boundaries, secure overlay networks are proposed to
provide flow authentication, filtering, indirection, as well as
attack tracking and tolerance [10], [11], [12], [13], [14], [15]
on top of the Internet. The common goal is to hide the pro-
tected nodes behind the well-provisioned, distributed overlay
network that is capable of absorbing DDoS traffic. TOR [24]
is a well-known implementation of overlay network. By using
an exposed, relatively static overlay network to withstand the
ever-intensifying DDoS attacks inflicted by expanding botnets,
the defenders will involve themselves in a never-ending armed
race with the attackers. Even if a strong overlay network that
can tolerate any DDoS attacks is in place, advanced attackers
can start by attacking a small portion of the overlay nodes
and sweep through the entire overlay step by step [11]. By
repeating such sweeping attack, attackers are guaranteed to
hit the critical nodes and cause major service disruptions.
Sophisticated attackers can even measure the impact of their
attacks via recruited legitimate clients. They can use such
feedback to spot and hence adapt their attack to focus on
the pinch points [12]. Moreover, the protected server can
potentially be exposed via insider attacks [25].

Besides overlay network, there are other efforts that hide the
paths to selected services behind intermediate protections [26],
[27]. These solutions intend to employ a simpler, easier-to-
deploy protection layer to filter out un-authorized traffic and
are thus conceptually similar to MOTAG. Unfortunately, they
fail to account for attacks in which authorized clients act as
malicious insiders to compromise their interlayer protection.
In this paper, we thoroughly analyzed insider threats and
proposed a shuffling mechanism to quarantine insider attacks.

MOTAG endows mobility to its packet indirection proxies.
This resembles the earlier network address randomization
technique against hitlist worms [28] and the fast-flux scheme
to sustain accessibility to illegal commercial websites [29].
To the best of our knowledge, we are the first in using such
dynamic method on defense against DDoS attacks.
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IX. CONCLUSION

We present MOTAG, a framework that employs dynamic,
hidden proxies as moving targets to mitigate network flooding
DDoS attacks. To reach the protected service, authenticated



clients are assigned to individual proxy nodes that perform
packet forwarding and session policing. When a DDoS attack
is mounted against MOTAG proxies, the authenticated clients
connected to the attacked proxies are re-assigned to alternative
proxies at realtime, enabling them to evade the ongoing attack
and maintain access the protected service. With MOTAG,
we can effectively hide the protected critical services from
external attackers. Sophisticated attackers can only use insiders
to locate our proxy nodes and attack them. MOTAG employs
a novel, efficient shuffling mechanism to quarantine insider-
assisted attacks. Our simulations show that MOTAG can pro-
tect a majority of innocent clients from DDoS attacks assisted
by hundreds of insiders within a small number of shuffles. In
addition, our experimental methodology and the results can be
used to guide the implementation and deployment of MOTAG-
based DDoS defense systems.
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