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Abstract

Multiple clustering aims at discovering diverse ways
of organizing data into clusters. Despite the progress
made, it’s still a challenge for users to analyze and un-
derstand the distinctive structure of each output clus-
tering. To ease this process, we consider diverse clus-
terings embedded in different subspaces, and analyze
the embedding subspaces to shed light into the structure
of each clustering. To this end, we provide a two-stage
approach called MISC (Multiple Independent Subspace
Clusterings). In the first stage, MISC uses independent
subspace analysis to seek multiple and statistical inde-
pendent (i.e. non-redundant) subspaces, and determines
the number of subspaces via the minimum description
length principle. In the second stage, to account for the
intrinsic geometric structure of samples embedded in
each subspace, MISC performs graph regularized semi-
nonnegative matrix factorization to explore clusters. It
additionally integrates the kernel trick into matrix fac-
torization to handle non-linearly separable clusters. Ex-
perimental results on synthetic datasets show that MISC
can find different interesting clusterings from the sought
independent subspaces, and it also outperforms other re-
lated and competitive approaches on real-world dataset-
s.

Introduction
Clustering is an unsupervised learning technique that aims
at partitioning data into a number of homologous groups (or
clusters). However, traditional clustering methods typically
provide a single clustering, and fail to reveal the diverse pat-
terns underlying the data. In fact, several different clustering
solutions may co-exist in a given problem, and each may
provide a reasonable organization of the data, e.g., people
can be assigned to different communities based on different
roles; proteins can be categorized differently based on their
amino acid sequences or their 3D structure. In these sce-
narios, it would be desirable to present multiple alternative
clusterings to the users, as these alternative clusterings can
explain the underlying structure of the data from different
viewpoints.
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To address the aforementioned problem, the research field
of multi-clustering has emerged during the last decade.
Naive solutions run a single clustering algorithm with dif-
ferent parameter values, or explore different clustering algo-
rithms (Bailey 2013). These approaches may generate multi-
ple clusterings with high redundancy, since they do not take
into account the already explored clusterings. To overcome
this drawback, two general strategies have been introduced.
The first one simultaneously generates multiple clusterings,
which are required to be different from each other (Jain, Me-
ka, and Dhillon 2008; Dang and Bailey 2010). The second
one generates multiple clusterings in a greedy manner, and
forces the new clusterings to be different from the already
generated ones (Cui, Fern, and Dy 2007; Hu et al. 2015;
Yang and Zhang 2017).

Most of these multi-clustering methods consider multi-
ple clusterings in the full feature space. However, as the di-
mensionality of the data increases, clustering methods en-
counter the challenge of the curse of dimensionality (Parson-
s, Haque, and Liu 2004). Furthermore, some features may
be relevant to some clusterings but not others. This phe-
nomenon is also observed in data with moderate dimension-
ality. Subspace clustering aims at finding clusters in sub-
spaces of the original feature space, but it faces an expo-
nential (2d − 1) search space and focuses on exploring on-
ly one clustering. Some approaches try to find alternative
clusterings in a weighted feature space (Caruana et al. 2006;
Hu et al. 2015) or in a transformed feature space (Cui, Fern,
and Dy 2007; Davidson and Qi 2008); however, the former
methods cannot control well the redundancy between differ-
ent clusterings, and the latter cannot find multiple orthogonal
subspaces at the same time.

To overcome these issues, we propose an approach called
Multiple Independent Subspace Clusterings (MISC) to ex-
plore diverse clusterings in multiple independent subspaces,
one clustering for each subspace. During the first stage,
MISC uses Independent Subspace Analysis (ISA) (Szabó,
Póczos, and Lőrincz 2012) to explore multiple pairwise-
independent (i.e., non-redundant) subspaces by minimizing
the mutual information among them, and seeks the num-
ber of independent subspaces via the minimum description
length principle (Rissanen 2007). MISC automatically deter-
mines the number of clusters in each subspace via Bayesian
k-means (Welling 2006), and groups the data embedded



in each subspace using graph regularized semi-nonnegative
matrix factorization (Ding, Li, and Jordan 2010). To group
non-linearly separable data in a subspace, it further maps the
data into a reproducing kernel Hilbert space via the kernel
trick.

This paper makes the following contributions:
• We introduce an approach called MISC to explore multi-

ple clusterings in independent subspaces. MISC automat-
ically computes the number of independent subspaces,
which provide multiple individual views of the data.

• MISC leverages graph regularized semi-nonnegative ma-
trix factorization and kernel mapping to group non-
linearly separable clusters, and can determine the number
of clusters in each subspace.

• Experimental results show that MISC can explore differ-
ent clusterings in various subspaces, and it significant-
ly outperforms other related and competitive approach-
es (Caruana et al. 2006; Bae and Bailey 2006; Cui, Fer-
n, and Dy 2007; Davidson and Qi 2008; Jain, Meka, and
Dhillon 2008; Hu et al. 2015; Yang and Zhang 2017;
Niu, Dy, and Jordan 2010; Guan et al. 2010; Niu, Dy, and
Ghahramani 2012).

Related Work
Existing multi-clustering approaches can be classified into
two categories depending on how they control redundancy,
either based on clustering labels, or on feature space.

COALA (Constrained Orthogonal Average Link Algo-
rithm) (Bae and Bailey 2006) is the classic algorithm that
controls redundancy through clustering labels. It transforms
linked pairs of the reference clustering into cannot-link con-
straints, and then uses agglomerative clustering to find an
alternative clustering. MNMF (Multiple clustering by Non-
negative Matrix Factorization) (Yang and Zhang 2017) de-
rives a diversity regularization term from the labels of exist-
ing clusterings, and then integrates this term with the ob-
jective function of NMF to seek another clustering. The
performance of both COALA and MNMF heavily depend-
s on the quality of already discovered clusterings. To alle-
viate this issue, other methods simultaneously seek multi-
ple clusterings by minimizing the correlation between the
labels of two distinct clusterings and by optimizing the
quality of each clustering (Jain, Meka, and Dhillon 2008;
Wang et al. 2018). For example, De-kmeans (Decorrelat-
ed k-means) (Jain, Meka, and Dhillon 2008) simultaneously
learns two disparate clusterings by minimizing a k-means
sum squared error objective for the two clustering solutions,
and by minimizing the correlation between the two cluster-
ings. CAMI (Clustering for Alternatives with Mutual Infor-
mation) (Dang and Bailey 2010) optimizes a dual-objective
function, in which the log-likelihood objective (accounting
for the quality) is maximized, while the mutual information
objective (accounting for the dissimilarity) of pairwise clus-
terings is minimized.

Multi-clustering solutions that explore multiple cluster-
ings using a feature-based criterion have also been stud-
ied. Some of them assign weights to features. For example,
MetaC (Meta Clustering) (Caruana et al. 2006) first applies

k-means to generate a large number of base clusterings us-
ing weighted features based on the Zipf distribution (Zipf
1949), and then obtains multiple clusterings via a hierarchi-
cal clustering ensemble. MSC (Multiple Stable Clusterings)
(Hu et al. 2015) detects multiple stable clusterings in each
weighted feature space using the idea of clustering stabili-
ty based on Laplacian Eigengap. Unfortunately, MSC can-
not guarantee diversity among multiple clusterings, since it
cannot control the redundancy very well. Other feature-wise
multi-clusterings are based on transformed features. They
use a data space S to characterize the existing clusterings
and try to construct a new feature space, which is either or-
thogonal to S, or independent from S. Once the novel fea-
ture space is constructed, any clustering algorithm can be
used in this space to generate an alternative clustering. OSC
(Orthogonal subspace clustering) (Cui, Fern, and Dy 2007)
transforms the original feature space into an orthogonal sub-
space using a projection framework based on the given clus-
tering, and then groups the transformed data into different
clusters. ADFT (Alternative Distance Function Transforma-
tion) (Davidson and Qi 2008) adopts a distance metric learn-
ing technique (Xing et al. 2003) and singular value decom-
position to obtain an alternative orthogonal subspace based
on a given clustering. Thereafter, it obtains an alternative
clustering by running the clustering algorithm in the new
orthogonal feature space. mSC (Multiple Spectral Cluster-
ings) (Niu, Dy, and Jordan 2010) finds multiple clusterings
by augmenting a spectral clustering objective function, and
by using the Hilbert-Schmidt independence criterion (HSIC)
(Gretton et al. 2005) among multiple views to control the re-
dundancy. NBMC (Nonparametric Bayesian Multiple Clus-
tering) (Guan et al. 2010) and NBMC-OFV (Nonparametric
Bayesian model for Multiple Clustering with Overlapping
Feature Views) (Niu, Dy, and Ghahramani 2012) both em-
ploy a Bayesian model to explore multiple feature views and
clusterings therein.

Feature-based multiple clustering methods typically seek
a full space transformation matrix, or measure the similar-
ity between samples in the full space. Therefore, their per-
formance may be compromised with high-dimensional da-
ta. Furthermore, some data only show cluster structure on
a subset of features. Given the above analysis, we advocate
to separately explore diverse clusterings in independent sub-
spaces, and introduce an approach called MISC. MISC first
uses independent subspace analysis to obtain multiple in-
dependent subspaces, and then performs clustering in each
independent subspace to achieve multiple clusterings. Ex-
tensive experimental results show that MISC can effectively
uncover multiple diverse clusterings in each identified sub-
space.

Proposed Approach
MISC consists of two phases: (1) Finding multiple indepen-
dence subspaces, and (2) Exploring a clustering in each sub-
space. In the following, we provide the details of each phase.

Independent Subspace Analysis
Blind Source Separation (BSS) is a classic problem in signal
processing. Independent Component Analysis (ICA) is a sta-



tistical technique that can solve the BBS problem by decom-
posing complex data into independent subparts (Hyvärinen,
Hoyer, and Inki 2001). Let’s consider a data matrix X ∈
Rd×n for n samples with d features. ICA describes X as a
linear mixture of sources, i.e., AS = X ∈ Rd×n, where
A ∈ Rd×d is the mixing matrix and S corresponds to the
source components. The source matrix S ∈ Rd×n repre-
sents n observations under multiple independent row vec-
tors, i.e., S = (S1;S2; · · · ;Sd), where each Si corresponds
to a source component.

Unlike ICA, which requires pairwise independence be-
tween all individual source components, Independence Sub-
space Analysis (ISA) aims at finding a linear transforma-
tion of the given data, and it yields several jointly indepen-
dent source subspaces, each of which contains one or more
source components. Let’s assume there are v independent
subspaces; ISA seeks the corresponding source subspaces
S(1), · · · ,S(v) by minimizing the mutual information be-
tween pairwise subspaces as follows:

min MI(S(1), · · · ,S(v)) (1)

Various ISA solvers are available, and they vary in terms
of the applied cost functions and optimization techniques
(Szabó, Póczos, and Lőrincz 2012). For example, fastI-
SA(Hyvärinen and Köster 2006) seeks the mixing matrix
A by iteratively updating its rows in a fixed-point manner.
Unfortunately, fastISA can only find equal-sized subspaces,
while multiple clusterings may exist in subspaces of differ-
ent sizes. Here we adopt a variant of ISA (Szabó, Póczos,
and Lőrincz 2012), which makes use of the “ISA separation
principle”, stating that ISA can be solved by first performing
ICA, and then searching and merging the components. As
such, the independence between the groups is maximized,
and the groups do not need to have an equal number of com-
ponents. This ISA solution only needs to specify the num-
ber of subspaces v, which is difficult to determine. To com-
pute the number of subspaces, we use a greedy search strate-
gy, which combines agglomerative clustering and Minimum
Description Length (MDL) principle (Rissanen 2007).

The first step of agglomerative clustering is to merge sub-
spaces. Given two subspaces S(i) and S(j), we compute their
independence as follows:

CI(S(i),S(j)) = CH(S(i) ∪ S(j))− CH(S(i))− CH(S(j))
(2)

where CH(S) = |S|
2 · log2(n) +

∑n
i=1 log2

1
fS(S·i)

is the
entropy cost to encode the n objects in the subspace S using
the probability-density function 1

fS
, which can be obtained

using kernel density estimation1. We compute CI of each
pair of subspaces and merge the subspaces with the smallest
CI . We repeat the above step until the number of subspaces
v < 2, or all the CI > 0.

We apply the MDL principle to determine the number of
subspaces. MDL is widely used for model selection. Its core
idea is to choose the model, which allows a receiver to ex-
actly reconstruct the original data using the most succinct

1https://bitbucket.org/szzoli/ite/downloads/

transmission. MDL balances the coding length of the mod-
el and the coding length of the deviations of the data from
that model. More concretely, the coding cost for transmitting
data D together with a model M is

L(D,M) = L(M) + L(D|M) (3)

When subspaces are merged in each iteration, we update
L(D,M). Finally, we choose the number of subspaces v
corresponding to the smallest L(D,M). Concretely, we use
the technique in (Rissanen 2007; Ye et al. 2016) to measure
the length of the model and data coding as follows:

L(M) =
d2

2
· log2(n) + (v + 1) · log2(d) (4)

L(D|M) =
d

2
· log2(n) +

v∑
i=1

n∑
j

log2

1

fS(S
(i)
·j )

(5)

where n is the number of samples, d is the number of fea-
tures, and fS(S

(i)
·j ) is the probability-density function for

each subspace. As a result, we obtain v independent sub-
spaces.

Exploring Multiple Clusterings
After obtaining multiple independent subspaces, we use
Bayesian k-means (Welling 2006) to guide the computa-
tion of the number of clusters in each subspace. Bayesian
k-means adopts a variational Bayesian framework (Ghahra-
mani and Beal 1999) to iteratively choose the optimal num-
ber of clusters. We then perform Graph regularized Semi-
NMF (GSNMF) to cluster data embedded in each subspace.
GSNMF is an improvement upon SNMF by leveraging the
geometric structure of samples to regularize the matrix fac-
torization.

SNMF (Ding, Li, and Jordan 2010) is a variant of the clas-
sical NMF (Lee and Seung 1999); it extends the application
of traditional NMF from nonnegative inputs to mix-signed
inputs. At the same time, it preserves the strong clustering
interpretability. The objective function of SNMF can be for-
mulated as follows:

JSNMF =‖ X− ZH ‖2 s.t.H ≥ 0 (6)

where Z ∈ Rd×k can be viewed as the cluster centroids, and
H ∈ Rk×n,H ≥ 0 is the soft cluster assignment matrix in
the latent space. We can transform the soft clusters to hard
clusters by clustering the index matrix H.

Inspired by GNMF (Graph regularized Nonnegative Ma-
trix Factorization) (Cai et al. 2011), we make use of the in-
trinsic geometric structure of samples to guide the factoriza-
tion of H, and cascade it to Z. As a result, we obtain the
following objective function for the graph regularized SN-
MF (GSNMF):

JGSNMF =‖ X− ZH ‖2 +λtr(HLHT ) (7)

where tr(·) denotes the trace of a matrix, λ ≥ 0 is the regu-
larization parameter; L ∈ Rn×n is the graph Laplacian ma-
trix L = D − P, P ∈ Rn×n is the weighted adjacency



matrix of the graph (Cai et al. 2011), D ∈ Rn×n is the diag-
onal degree matrix whose entries are the row sum of P. By
minimizing the graph regularized term, we assume that if
X·j and X·i are close to each other, then their cluster labels
H·i and H·j should be close as well.

However, GSNMF, similarly to NMF and SNMF, does not
perform well with data that are non-linearly separable in in-
put space. To avoid this potential issue, we consider map-
ping the data points onto a Reproducing kernel Hilbert space
φ(X), and reformulate Eq. (7) as follows:

JKGSNMF =‖ φ(X)− ZH ‖2 +λTr(HLHT ) (8)
This formulation makes it difficult to compute Z and H,

since they depend on the mapping function φ(·). To solve
this problem, we add constraints on the basis vectors Z. As
such, the basis matrix Z can be further formulated as the
combination of weighted-samples Z = φ(X)W, in which
W ≥ 0 is the weight matrix. Eq. (8) can be rewritten as
follows:
JKGSNMF =‖ φ(X)− φ(X)WH ‖2 +λTr(HLHT )

s.t.W ≥ 0; H ≥ 0
(9)

Through kernel mapping, KGSNMF can properly cluster,
not only linearly separable data, but also non-linearly sep-
arable ones.

Optimization: We follow the idea of standard NMF to
optimize W and H by an alternating optimization tech-
nique. Particularly, we alternate the optimization of W and
H, while fixing the other as constant. For simplicity, we use
φ to represent φ(X).

Optimizing JKGSNMF with respect to W is equivalent
to optimizing the following function:

J1(W) =‖ φ− φWH ‖2 (10)
To embed the constraint W ≥ 0, we introduce the Lagrange
multiplier Φ ∈ Rn×k:

L(W) =‖ φ− φWH ‖2 −ΦWT (11)

Letting the partial derivative ∂L(W)
∂W = 0, we obtain

Φ = (φTφ+ φTφWH)HT (12)
Based on the Karush-Kuhn-Tucker (KKT) (Boyd and Van-
denberghe 2004) complementarity condition ΦijWij = 0,
we have:

[(φTφ+ φTφWH)HT ]ijWij = 0 (13)
Eq. (13) leads to the following updating formula for W:

Wij ←Wij

√
[φTφ]+HT + [φTφ]−WHHT

ij

[φTφ]−HT + [φTφ]+WHHT
ij

(14)

where we separate the positive and negative parts of φTφ by
setting [φTφ]+ = (|φTφ| + φTφ)/2, [φTφ]− = (|φTφ| −
φTφ)/2.

Similarly, we can get the updating formula for H:

Hij ← Hij

√√√√WT [φTφ]+ + WT [φTφ]+WH + λ[HL]−ij

WT [φTφ]+ + WT [φTφ]+WH + λ[HL]+ij
(15)

From Eq. (14) and Eq. (15), we can see that the updating for-
mulas do not depend on the mapping function φ(·), and we
can compute φ(X·i)

Tφ(X·j) via any kernel function, i.e.,
φ(X·i)

Tφ(X·j) = κ(X·i,X·j).
By iteratively applying Eqs. (14) and (15) in each inde-

pendent subspace, we can obtain the optimized W∗ and H∗.
Each H∗ obtained from each subspace corresponds to one
clustering. As such, we obtain v clusterings from v indepen-
dent subspaces.

Algorithm 1 presents the whole MISC procedure. Line 1
computes the source matrix S via independent component
analysis; Line 2 merges the subspaces according to Eq.(2)
and using agglomerative clustering, and saves the MDL
(Lmin) for each merge; Line 3 chooses the best set of sub-
spaces Ωmin with the minimum MDL (Li) through a sorting
operation; Lines 5-9 cluster data for each subspace though
KGSNMF; Lines 10-18 give the procedure of KGSNMF.

Algorithm 1 MISC: Multiple Independent Subspace Clus-
terings
Input: X: dataset of n samples with d features;
Output: {Ci}vi=1 : v clusterings.
1: S = ICA(X)
2: {Li,Ωi}di=1= MergeSubspace(S) /*agglomerative clus-

tering S; Ωi is the set of subspaces after i-th mergeing
and Li is the MDL corresponding to Ωi*/

3: {Lmin,Ωmin}=sort({Li,Ωi}).
/*Ωmin = {S(1),S(2), · · · ,S(v)}*/

4: For j = 1 : |Ωmin|
5: kj = Bayesian k-means(S(j))
6: H(j) = KGSNMF(S(j), kj)
7: Cj = k-means(H(j), kj)
8: End For
9: Function H = KGSNMF(X,k)

10: Initialize W and H randomly.
11: /* Compute kernel similar matrix*/
12: [φ(X·i)

Tφ(X·j)] = κ(X·i,X·j)
13: While not converged Do
14: Update W using Eq. (14);
15: Update H using Eq. (15);
16: End While
17: End Function

Complexity analysis

The complexity of ISA is O(d2n) and the complexity of
MDL is O(dn2) (for each merge). Since we need to merge
the subspaces for at most d times, the overall time complexi-
ty of the first stage isO(d(d2n+dn2)). For the second stage,
MISC takes O(n2d) time to construct the p-nearest neigh-
bor graph. Assuming the multiplicative updates stop after t
iterations and the number of clusters is k, then the cost for
KGSNMF is O(tdkn + n2d). In summary, the overall time
complexity of MISC is O(dn(d2 + dn+ tk + n)).



Experiments
Experiments on synthetic data
We first conduct two types of experiments on synthetic data,
the first type of experiments is to prove that MISC can find
multiple independent subspaces, and the second type is to
prove that our KGSNMT has a better clustering performance
than SNMF.

The first synthetic data contains four subspaces consist-
ing of 800 samples with 8 features: the first subspace con-
tains four clusters, corresponding to the shapes of the digits
‘2’,‘0’,‘1’,‘9’ (Fig. 1(a)); the second subspace also contains
four clusters, corresponding to the shapes of the letters ‘A’
(three shapes) and‘I’ (Fig. 1(b)); the third one contains six
clusters generated by a Gaussian distribution (Fig. 1(c)); the
last one contains two clusters, which are non-linearly sepa-
rable (Fig. 1(d)). To ensure the non-redundancy among the
four subspaces, we randomly permute the sample index in
each subspace before merging them into a full space. Note
that the synthetic data is diverse; it includes subspaces with
the same scale, such as the first and the second subspaces, as
well as subspaces with different scales, such as the second,
third, and fourth subspaces. We choose the Gaussian heat
kernel as the kernel function and the kernel width is set to
the standard variance σ = sqrt(

∑n
i=1 ‖ X·i − X ‖2 /n).

Following the set of GNMF in (Cai et al. 2011), we use 0-1
weighting and adopt the neighborhood size ε = 5 to com-
pute the graph adjacency matrix P, and then set λ = 10 in
Eq. (8). We apply MISC on the first synthetic dataset and
plot the found subspace views and clustering results in the
last four subfigures of Fig. 1.

The first view shown in Fig. 1(e) corresponds to the sec-
ond original subspace; the second view shown in Fig. 1(f)
corresponds to the first original subspace; the third view
shown in Fig. 1(g) corresponds to the third original sub-
space; and the fourth view shown in Fig. 1(h) corresponds
to the fourth original subspace. Due to the ISA procedure,
the original feature space has been normalized and convert-
ed into the new space, so the four original subspaces are
similar to the four subspaces found by MISC, but not identi-
cal. The relative position of each cluster in the new subspace
is still the same as before, but the new subspaces are rotated
and stretched because ICA tries to find subspaces which are
linear combinations of the original ones. For each subspace,
we use KGSNMF to cluster the data. KGSNMF correctly i-
dentifies the clusters for the first, third, and fourth views; the
second one is approximately close to the original one. Since
KGSNMF accounts for the intrinsic geometric structure and
for non-linearly separable clusters, it obtain good clustering
results on both non-linearly separable and spherical clusters.

The second and third synthetic datasets are collected from
the Fundamental Clustering Problem Suite (FCPS)2. We use
them to investigate whether KGSNMF achieves a better
clustering performance than SNMF. Atom, the second syn-
thetic dataset, consists of 800 samples with three features.
It contains two nonlinearly separable clusters with differ-
ent variance as shown in Fig. 2. Lsun, the third synthetic

2http://www.uni-marburg.de/fb12/datenbionik/downloads/FCPS

dataset, consists of 400 samples with two features. It con-
tains three clusters with different variance and inner-cluster
distance as shown in Fig. 3. We choose a Gaussian kernel
and set λ = 10 for KGSNMF and GSNMF as before. The
clustering results on Atom are plotted in Fig. 2, and we can
see that both KSNMF and KGSNMF correctly separate the
two clusters, while k-means, SNMF, and GSNMF do not.
This is because the introduced kernel function could map
the nonlinearly separable space to a high-dimensional lin-
early separable space. The clustering results for Lsun are
shown in Fig. 3. k-means, SNMF, GSNMF, and KSNMF do
not cluster the data very well. k-means, SNMF, and GSNM-
F are all influenced by the distribution of the clusters at the
bottom. KSNMF can mitigate the impact, but it still cannot
perfectly separate the clusters, whereas KGSNMF can do the
job correctly. Overall, KSNMF achieves good clustering re-
sults especially on nonlinearly separable clusters, such as on
Atom. The impact of different structures could be alleviat-
ed to some extent on both linearly and nonlinearly separable
data. The embedded graph regularized term can better repre-
sent the details of the intrinsic geometry of the data; as such
KGSNMF obtains better clustering results than KSNMF.
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Figure 1: Four different clusterings in four subspaces (a-d),
and the four clusterings explored by MISC (e-h).
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Figure 2: Results of different clustering algorithms on the
synthetic dataset Atom.

0 1 2 3 4 5
0

1

2

3

4

5

6

(a) k-means
0 1 2 3 4 5

0

1

2

3

4

5

6

(b) SNMF
0 1 2 3 4 5

0

1

2

3

4

5

6

(c) GSNMF
0 1 2 3 4 5

0

1

2

3

4

5

6

(d) KSNMF
0 1 2 3 4 5

0

1

2

3

4

5

6

(e) KGSNMF

Figure 3: Results of different clustering algorithms on the
synthetic dataset Lsun.



Experiments on real-world datasets
We test MISC on four real-world datasets wildly used for
multiple clustering, including a color image dataset, two
gray image datasets, and a text dataset.
• Amsterdam Library of Object Images dataset. The

ALOI dataset3 consists of images of 1000 common ob-
jects taken from different angles and under various illu-
mination conditions. We have chosen four objects: green
box, red box, tennis ball, and red ball, with different col-
ors and shapes from different viewing directions for a to-
tal of 288 images (Fig. 4). Following the preprocessing in
(Dalal and Triggs 2005), we extracted 840 features4 and
further applied Principle Component Analysis (PCA) to
reduce the number of features to 49, which retain more
than 90% variance of the original data.

• Dancing Stick Figures dataset. The DSF dataset
(Günnemann et al. 2014) consists of 900 samples of
20 × 20 images with random noise across nine stick fig-
ures. (Fig. 5). The nine raw stick figures are obtained by
arranging in three different positions the upper and lower
body; this provides two views for the dataset. As for the
ALOI, we also applied PCA, and retained more than 90%
of the data’s variance as preprocessing.

• CMUface dataset. The CMUface dataset5 contains 640
grey 32× 20 images of 20 individuals with varying poses
(up, straight, right, and left). As such, it can be clustered
either by identity or by pose. Again, we apply PCA to
reduce the dimensionality while retaining more than 90%
of the data’s variance.

• WebKB dataset The WebKB dataset6 contains html doc-
uments from four universities: Cornell University; Uni-
versity of Texas, Austin; University of Washington; and
University of Wisconsin, Madison. The pages are addi-
tionally labeled as being from 4 categories: course, fac-
ulty, project, and student. We preprocessed the data by
removing rare words, stop words, and words with a small
variance, retaining 1041 samples and 456 words.

Figure 4: Four objects of different shapes (box and ball) and
colors (green and red) from ALOI.

Figure 5: Nine raw samples of the Dancing Stick Figures.

We compare MISC with MetaC, MSC, OSC, COALA,
De-kmeans, ADFT, MNMF, mSC, NBMC, and NBMC-
OFV (all methods are discussed in the related work section).

3http://aloi.science.uva.nl/
4https://github.com/adikhosla/feature-extraction
5http://archive.ics.uci.edu/ml/datasets.html
6http://www.cs.cmu.edu/ webkb/

The input parameters of these algorithms were set or opti-
mized as suggested by the authors. We also set the number
of subspaces as 2 and the number of clusters as that of true
labels of CMUface and WebKB datasets, respectively.

We visualize the clustering results of MISC for the first
three image datasets in Figs. 6-8, and use the widely-known
F1-measure (F1) and normalized mutual information (NMI)
to evaluate the quality of the clusterings. Since we don’t
know which view the clustering corresponds to, we com-
pare each clustering with the true label under each view, and
finally compute the confusion matrix and report the results
(average of ten independent repetitions) in Table 1.

cluster 1 cluster 2

(a) Subspace1: shape

cluster 1 cluster 2

(b) Subspace2: color

Figure 6: ALOI dataset: Mean images of the clusters in two
subspaces detected by MISC from the perspective of shape
(a) and color (b).

cluster 1 cluster 2 cluster 3

(a) Subspace1: upper-body

cluster 1 cluster 2 cluster 3

(b) Subspace2: lower-body

Figure 7: DSF dataset: Mean images of the clusters in t-
wo subspaces detected by MISC from the perspective of the
upper-body (a) and lower-body (b).

(a) Subspace1: identity (b) Subspace2: pose

Figure 8: The mean image of the clusters of two clusterings
in two subspaces of CMUface detected by MISC from the
perspective of identity (a) and pose (b).

Fig. 6 shows the two clusterings found by MISC on the
ALOI dataset: one reveals the subspace corresponding to
shape (Fig. 6(a)), and the other subspace corresponding to
color (Fig. 6(b)). Similarly, Fig. 7 gives the two clusterings
of MISC on the DSF dataset: one reveals the subspace cor-
responding to the upper-body (Fig. 7(a)), and the other sub-
space representing the lower-body (Fig. 7(b)). Fig. 8 pro-
vides two clusterings of MISC on the CMUface dataset: one
represents the clustering according to ‘identity’ (Fig. 8(a))
and the other according to ‘pose’ (Fig. 8(b)). All the figures
confirm that MISC is capable of finding meaningful cluster-
ings embedded in the respective subspaces.



Table 1: F1 and NMI confusion matrix (Mean±Std). C1 and C2 indicate two clusterings of the same data. •/◦ indicates whether
MISC is statistically (according to pairwise t-test at 95% significance level) superior/inferior to the other method. The bold
numbers represent the best results.

F1
ALOI DSF CMUface WebKB

Shape Color Upper-body Lower-body Identity Pose University Category

MetaC C1 0.783±0.022• 0.636±0.022• 0.871±0.019• 0.433±0.019• 0.234±0.019• 0.284±0.025• 0.473±0.021• 0.442±0.014•
C2 0.716±0.020• 0.616±0.018• 0.610±0.025• 0.622±0.024• 0.542±0.025• 0.130±0.024• 0.402±0.028• 0.474±0.018•

MSC C1 0.759±0.021• 0.605±0.014• 0.738±0.018• 0.476±0.020• 0.592±0.012• 0.115±0.030• 0.463±0.018• 0.502±0.026
C2 0.597±0.019• 0.799±0.017• 0.498±0.023• 0.681±0.019• 0.23±0.0180• 0.386±0.017• 0.456±0.019• 0.513±0.018◦

OSC C1 0.681±0.020• 0.732±0.018• 0.683±0.023• 0.482±0.021• 0.343±0.013• 0.292±0.015• 0.462±0.020• 0.490±0.020•
C2 0.732±0.020• 0.681±0.012• 0.456±0.027• 0.694±0.020• 0.220±0.023• 0.307±0.017• 0.487±0.018• 0.473±0.020•

COALA C1 0.665±0.000• 0.665±0.000• 0.749±0.000• 0.415±0.000• 0.507±0.016• 0.145±0.013• 0.473±0.018• 0.451±0.021•
C2 0.497±0.000• 1.000±0.000• 0.436±0.000• 0.734±0.000• 0.216±0.025• 0.463±0.021◦ 0.461±0.026• 0.506±0.019•

De-kmeans C1 0.597±0.017• 0.799±0.018• 0.655±0.019• 0.545±0.012• 0.545±0.016• 0.142±0.026• 0.448±0.023• 0.520±0.015◦
C2 0.825±0.019• 0.604±0.021• 0.576±0.015• 0.613±0.030• 0.376±0.028• 0.123±0.017• 0.429±0.013• 0.560±0.022◦

ADFT C1 0.665±0.000• 0.665±0.000• 0.749±0.000• 0.415±0.000• 0.507±0.022• 0.145±0.019• 0.469±0.022• 0.567±0.022◦
C2 0.631±0.014• 0.782±0.023• 0.529±0.024• 0.684±0.017• 0.419±0.026• 0.257±0.014• 0.466±0.019• 0.520±0.022◦

MNMF C1 0.665±0.000• 0.665±0.000• 0.749±0.000• 0.415±0.000• 0.507±0.016• 0.145±0.027• 0.464±0.021• 0.508±0.018
C2 0.587±0.012• 0.727±0.013• 0.693±0.022• 0.723±0.015• 0.435±0.022• 0.225±0.022• 0.511±0.015• 0.507±0.023

mSC C1 0.688±0.013• 0.411±0.021• 0.849±0.019• 0.452±0.016• 0.685±0.015◦ 0.284±0.009• 0.692±0.014◦ 0.350±0.011•
C2 0.469±0.016• 0.729±0.021• 0.482±0.010• 0.826±0.016• 0.362±0.021• 0.440±0.012• 0.264±0.014• 0.545±0.015◦

NBMC C1 0.462±0.012• 0.763±0.018• 0.529±0.003• 0.778±0.014• 0.817±0.014◦ 0.361±0.013• 0.623±0.016◦ 0.351±0.012•
C2 0.743±0.027• 0.554±0.022• 0.833±0.021• 0.473±0.018• 0.459±0.019• 0.591±0.018◦ 0.381±0.021• 0.513±0.016◦

NBMC-OFV C1 0.519±0.029• 0.836±0.018• 0.805±0.011• 0.478±0.012• 0.846±0.012◦ 0.386±0.011• 0.855±0.021◦ 0.353±0.018•
C2 0.767±0.026• 0.602±0.012• 0.538±0.012• 0.800±0.015• 0.475±0.016• 0.612±0.024◦ 0.236±0.016• 0.622±0.025◦

MISC C1 1.000±0.000 0.497±0.000 1.000±0.000 0.331±0.000 0.654±0.015 0.124±0.016 0.645±0.024 0.456±0.022
C2 0.497±0.000 1.000±0.000 0.331±0.000 1.000±0.000 0.255±0.013 0.446±0.026 0.355±0.018 0.505±0.022

NMI
ALOI DSF CMUface WebKB

Shape Color Upper-body Lower-body Identity Pose University Category

MetaC C1 0.570±0.020• 0.276±0.020• 0.820±0.021• 0.167±0.023• 0.463±0.028• 0.141±0.021• 0.238±0.023• 0.289±0.028•
C2 0.442±0.013• 0.242±0.016• 0.475±0.016• 0.474±0.021• 0.557±0.016• 0.122±0.019• 0.205±0.021• 0.342±0.023•

MSC C1 0.661±0.023• 0.427±0.023• 0.721±0.018• 0.441±0.013• 0.481±0.023• 0.113±0.024• 0.234±0.014• 0.395±0.024•
C2 0.206±0.030• 0.606±0.027• 0.475±0.017• 0.705±0.023• 0.286±0.020• 0.320±0.019• 0.286±0.022• 0.417±0.022•

OSC C1 0.372±0.019• 0.472±0.018• 0.587±0.024• 0.147±0.021• 0.463±0.012• 0.168±0.017• 0.290±0.015• 0.391±0.013•
C2 0.472±0.021• 0.372±0.015• 0.090±0.013• 0.600±0.023• 0.209±0.017• 0.294±0.027• 0.315±0.021• 0.359±0.024•

COALA C1 0.344±0.000• 0.344±0.000• 0.734±0.000• 0.250±0.013• 0.628±0.022• 0.196±0.014• 0.298±0.023• 0.368±0.019•
C2 0.000±0.000• 1.000±0.000• 0.314±0.110• 0.697±0.000• 0.253±0.009• 0.389±0.034• 0.295±0.018• 0.407±0.024•

De-kmeans C1 0.206±0.021• 0.606±0.016• 0.528±0.016• 0.362±0.022• 0.590±0.030• 0.173±0.022• 0.246±0.018• 0.448±0.029◦
C2 0.654±0.030• 0.211±0.017• 0.429±0.023• 0.482±0.010• 0.559±0.018• 0.159±0.021• 0.214±0.021• 0.475±0.023◦

ADFT C1 0.344±0.000• 0.344±0.000• 0.734±0.000• 0.250±0.013• 0.628±0.021• 0.196±0.011• 0.291±0.017• 0.507±0.019◦
C2 0.272±0.022• 0.572±0.024• 0.281±0.016• 0.559±0.019• 0.641±0.023• 0.203±0.014• 0.302±0.019• 0.426±0.021

MNMF C1 0.344±0.000• 0.344±0.000• 0.734±0.000• 0.250±0.013• 0.628±0.021• 0.196±0.021• 0.292±0.021• 0.411±0.017•
C2 0.187±0.011• 0.587±0.025• 0.523±0.020• 0.633±0.014• 0.554±0.017• 0.323±0.029• 0.401±0.029• 0.269±0.018•

mSC C1 0.759±0.017• 0.319±0.018• 0.811±0.017• 0.547±0.016• 0.754±0.019◦ 0.252±0.011• 0.792±0.014◦ 0.306±0.012•
C2 0.255±0.022• 0.698±0.015• 0.455±0.019• 0.739±0.012• 0.244±0.019• 0.423±0.015• 0.286±0.019• 0.511±0.018◦

NBMC C1 0.255±0.016• 0.785±0.015• 0.391±0.016• 0.841±0.015• 0.797±0.014◦ 0.385±0.021• 0.605±0.009◦ 0.334±0.016•
C2 0.763±0.012• 0.224±0.021• 0.806±0.012• 0.354±0.014• 0.451±0.011• 0.540±0.015◦ 0.468±0.017• 0.694±0.015◦

NBMC-OFV C1 0.276±0.006• 0.860±0.018• 0.786±0.018• 0.249±0.020• 0.829±0.012◦ 0.352±0.017• 0.857±0.012◦ 0.531±0.018•
C2 0.781±0.018• 0.341±0.014• 0.399±0.014• 0.788±0.008• 0.35±0.0151• 0.571±0.019◦ 0.454±0.009• 0.699±0.014◦

MISC C1 1.000±0.000 0.000±0.000 1.000±0.000 0.000±0.000 0.691±0.019 0.221±0.021 0.544±0.025 0.225±0.016
C2 0.000±0.000 1.000±0.000 0.000±0.000 1.000±0.000 0.325±0.023 0.501±0.019 0.345±0.019 0.422±0.015

MISC gives the best results across both evaluation metrics
on each view for ALOI and DSF. Although the competitive
algorithms can also find two different clusterings on these
two datasets, the corresponding F1 and NMI values are s-
maller (by at least 20%) than those of MISC. The reason is
that MISC first uses ISA to convert the full feature space in-
to two independent subspaces, and then clusters the data in
each subspace. In contrast, De-kmeans and MNMF find two
clusterings in the full feature space, and don’t perform well
when the actual clusterings are embedded in subspaces. In
addition, although ADFT and OSC do explore the second
clustering with respect to a feature weighted subspace or a
feature-transformed subspace, this clustering is still affected
by the reference one, which is computed in the full-space.
In contrast, the second clustering explored by MISC is inde-
pendent from the first one, and has a meaningful interpreta-
tion.

MISC does not perfectly identify the two given cluster-
ings for the CMUface and WebKB datasets. Nevertheless, it
can still distinguish the two different views on each dataset.

It’s possible that these different views embedded in sub-
spaces share some common features and are not completely
independent; as such, the two subspaces found by MISC do
not quite correspond to the original views. The other meth-
ods (De-kmeans, ADFT, and MNMF) cannot well identify
the two views, because both C1 and C2 are close to the ‘i-
dentity’ clustering and far away from the ‘pose’ one. Com-
pared to MISC, De-kmeans finds multiple clusterings in the
full space; as such, it cannot discover clusters embedded in
subspaces. MNMF, ADFT, and OSC find multiple cluster-
ings sequentially, thus subsequent ones depend on the for-
merly found ones. NBMC-OFV achieves the best results on
CMUface and WebKB. The reason is that NBMC-OFV can
discover multiple partially overlapping views, whereas the
other algorithms can not.

In summary, the advantages of MISC can be attributed to
the explored multiple independent subspaces and to the ker-
nel graph regularized semi-nonnegative matrix factorization,
which contribute to the finding of low-redundant clusterings
of high-quality.



Conclusion
In this paper, we study how to find multiple clusterings
from data, and present an approach called MISC. MISC as-
sumes that diverse clusterings may be embedded in differ-
ent subspaces. It first uses independent component analy-
sis to explore statistical independent subspaces, and it de-
termines the number of subspaces and the number of clus-
ters in each subspace. Next, it introduces a kernel graph
regularized semi-nonnegative matrix factorization method
to find linear and non-linear separable clusters in the sub-
spaces. Experimental results on synthetic and real-world da-
ta demonstrate that MISC can identify meaningful alterna-
tive clusterings, and it also outperforms state-of-the-art mul-
tiple clustering methods. In the future, we plan to investi-
gate solutions to find alternative clusterings embedded in
overlapping subspaces. The code for MISC is available at
http://mlda.swu.edu.cn/codes.php?name=MISC.
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