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Abstract—Communities in social networks evolve over time as
people enter and leave the network and their activity behaviors
shift. The task of predicting structural changes in communities
over time is known as community evolution prediction. Existing
work in this area has focused on the development of frameworks
for defining events while using traditional classification methods
to perform the actual prediction. We present a novel graph
neural network for predicting community evolution events from
structural and temporal information. The model (GNAN) in-
cludes a group-node attention component which enables support
for variable-sized inputs and learned representation of groups
based on member and neighbor node features. A comparative
evaluation with standard baseline methods is performed and
we demonstrate that our model outperforms the baselines.
Additionally, we show the effects of network trends on model
performance.

I. INTRODUCTION

Social network communities evolve over time according to
the behavior of individual community members and predicting
community evolution can help us in modeling the dynamics of
the entire network. By focusing on community dynamics we
are able to both leverage community member nodes as related
data points to improve prediction performance and apply our
methods to important real-world goals such as supporting
study groups in massive open online courses (MOOCs) [1],
[2] or disrupting groups involved in criminal activity [3].

Existing work in community evolution prediction has fo-
cused on developing new frameworks that label events between
pairs of communities, or groups, in consecutive network snap-
shots. A main goal of these frameworks is to define community
evolution events in such a way that prediction of those events
by standard classification models improves relative to other
frameworks. Not all frameworks use the same set of evolution
events, but the events from one of the first frameworks for
community evolution prediction [4] can either be mapped to
events in other frameworks or are explicitly dropped. This
standard set of predicted evolution events include: continuing,
dissolving, growing, merging, shrinking, and splitting.

Given a series of network snapshots over time, the prepara-
tion of a dataset for community evolution prediction involves
performing community detection on each snapshot network,
finding relationships between communities in adjacent snap-
shots, and then using the relationships and additional network
features to define community evolution events. Community
evolution prediction differs from other graph prediction prob-
lems in that network communities are found and provided as
input to prediction models. While previous work has utilized
features derived from community structure, we can go further
and use group attributes to determine the relevance of node
attributes for prediction.

In this work, we propose the Group-Node Attention Net-
work (GNAN) model1, a graph neural network that uses both
node and group features to predict the occurrence of one or
more community evolution events in the next snapshot. A
novel component of the model is group-node attention, where
the node attributes of individual community members and their
neighbors are used to learn a group embedding based on their
relevance according to the group attributes. To the best of our
knowledge, GNAN is the first use of graph neural networks
for the community evolution prediction task.

Our contributions are as follows: (1) We define a neural
network architecture (GNAN), which incorporates the novel
group-node attention component to learn group embeddings
from individual nodes for the community evolution prediction
task; (2) we perform a comparative analysis of GNAN against
four leading baseline methods and show that GNAN generally
outperforms them all with statistical significance; and (3) we
show how model performance is affected by the network
trends present in the training data.

II. BACKGROUND

A. Community Evolution Prediction

Community evolution prediction is the task of predicting fu-
ture evolution events for communities over a series of network
snapshots. There has been substantial work on community
evolution prediction in the last 10 years that have provided
frameworks for tracking evolving communities across network
snapshots (as shown in Fig. 1) and trained classifiers to predict
future evolution events [5], [6], [7].

1Implementation available at https://github.com/mattrepl/gnan-cep.
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Fig. 1: Community evolution events between pairs of commu-
nities in consecutive network snapshots.

We use the Group Evolution Discovery (GED) [4] frame-
work to find community evolution events, but our proposed
model can be used with any framework that provides com-
munity evolution event labels. Many traditional classification
techniques (decision trees, SVM, etc.) have been used in
previous work [8], [5], [9]. This literature often includes ex-
periments that evaluate the contribution of engineered features
[9], [10]. However, these previous works do not introduce new
classification models and instead redefine the community evo-
lution events. This acts as a form of feature engineering where
the definitions of community evolution events are crafted such
that prediction performance is improved. Consequently, we
focus on improving prediction performance by developing our
own classifier while using an existing community evolution
prediction framework.

B. Graph Neural Networks

Advancements in neural network architectures are being
applied to graphs, and there are several surveys [11], [12],
[13] that provide an overview of the model architectures and
their applications in graph classification [14], graph embedding
[15], node embedding [14], [16], link prediction [17], graph
generation [18], [19], and heterogeneous networks [20]. The
introduction of attention to graph neural networks [14] has
been particularly useful for working with graph data due
to supporting variable-sized, nonlinear inputs and trainable,
independent aggregation weights.

Our model, the Graph-Node Attention Network (GNAN), is
a graph neural network that uses group-node attention to learn
a group representation for predicting community evolution
events. Group-node attention represents a community by using
group-level features to attend to individual nodes associated
with the community. To the best of our knowledge, there is
no existing work using graph neural networks for community
evolution prediction or employing group-node attention.

III. GROUP-NODE ATTENTION NETWORK (GNAN)

Given a dynamic network, we represent it as a series
of network snapshots {G1, . . . ,GT }, where at each snapshot
index t there is a graph Gt = (Vt, Et). For each network
snapshot Gt, there is a corresponding set of communities
Ct. The community subgraph for group i in snapshot t is

referenced as Cti ∈ Ct. Community subgraphs are used to
identify the member and neighbor nodes associated with a
group.

The GNAN (Fig. 2) accepts input values for a single group
i at snapshot t and outputs a multi-label prediction vector for
the evolution events that group i will participate in with groups
from the next network snapshot t+1. There are multiple inputs
associated with each group that are accepted by the model;
these are: a node attribute matrix Xt

i, a group attribute vector
gt
i , and a group-relative node position vector mt

i.

Each group i in snapshot t is associated with a set of
nodes comprising of the group members M(·) and group
neighbors N(·) of the community subgraph Cti . The group-
relative position vector mt

i indicates whether a node is a group
member or a neighbor. This positional information allows the
model to distinguish between group members and neighbors
when predicting events. The node features may include in-
formation from previous snapshots and can be derived from
the network topology (e.g., in-degree) or from external data
such as text documents associated with nodes. Group features
capture aggregate information of group members (e.g., group
size) and how group members are connected to each other or
the rest of the network (e.g., edge density). GNAN can support
any continuous-valued attributes.

There are three fully-connected networks (FCNs) used for
input transformations that we refer to as: FCNX , FCNq , and
FCNg . Each FCN used in our implementation performs a
linear transform of its input and then a non-linear activation,
e.g.

FCNg(g
t
i) = ReLU(Wgg

t
i + bg),

where Wg ∈ RDg×Dm is a weight matrix and bg is a bias
vector. These transforms are used to reshape the input to match
the appropriate dimensions used by the model and each has
its own weight and bias parameters.

To simplify notation we will introduce several intermediate
variables which correspond to the output of these transforma-
tions:

zq = FCNq(g
t
i),

ZX = FCNX(Xt
i ‖mt

i),

hg = FCNg(g
t
i) ,

where ‖ denotes matrix or vector concatenation.

For readability, we will drop the i and t annotations when
referring to the intermediate variables. An individual input to
the model is for a single group i at a snapshot t. As shown
in Fig. 2, the node and group inputs pass through separate
fully-connected networks, FCNX and FCNq , which output ZX

and zq . These are used in the multi-head group-node attention
component detailed in Section III-B. The group attribute vector
gt
i is also used to compute a hidden representation hg for the

group i using only the group features.

Finally, the output of group-node attention GNATT(·) is



TABLE I: Definition of notation.

Symbol Definition
{G1, . . . ,GT } Series of T snapshot networks.
Gt = (Vt, Et) The set of nodes and edges for

network Gt.
{C1, . . . , CT } Series of community subgraph sets

from T snapshot networks.
Cti The subgraph for group i in snap-

shot t.
M(Cti ), N(Cti ) The set of member nodes and adja-

cent nodes for subgraph Ci, respec-
tively.

Ni Number of nodes associated with a
group i.

E Number of event classes.
Dn, Dg Number of attributes in a sin-

gle snapshot per node/vertex and
group.

Dm Number of hidden dimensions.
Dq, Dk, Dv The query, key, and value sizes

used in group-node attention.

Symbol Definition
H Number of attention heads.
P Number of previous snapshots used to con-

struct node attribute vectors.
xt
u 1 × DnP attribute vector for node u at

snapshot t.
Xt

i Ni × DnP attribute matrix for group i in
snapshot t.

ZX, zq Ni×Dm node representation matrix and Dq

group representation matrix.
gt
i 1×Dg group attribute vector for group i in

snapshot t.
mt

i 1 ×Ni group-relative position vector for all
nodes in group i in snapshot t.

hX , hg Hidden representation of the node and group
attributes.

ỹt+1
i 1×E multi-label prediction vector for group

i at snapshot t+ 1.

FCNX 
(ReLU)

FCNg 
(ReLU)

FCNout 
(Sigmoid)

Multi-Head
Group-Node 

Attention

FCNq 
(ReLU)
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hXkhg

Fig. 2: A diagram of the GNAN architecture showing the computation of event predictions of group i at snapshot t. The ‖
symbol represents concatenation.

concatenated with hg and passed through an output layer

hX = GNATT(ZX , zq) ,

ỹ = FCNout(hX ‖hg) ,

where FCNout uses a sigmoid activation function to scale the
predicted class label probabilities, ỹ ∈ RE ; and E is the
number of community evolution event classes.

The details of constructing the node attribute matrix Xt
i and

the group-node attention component are provided in Sections
III-A and III-B.

A. Spatial and Temporal Mixing

A major intuition behind our model is to incorporate
changes over time. For a single node u which exists in both
snapshots Gt−1 and Gt we can form a vector xt

u that is a
concatenation of the attributes of node u at snapshots t − 1
and t. More generally, given consecutive network snapshots
{Gt−1,Gt} and sets of communities found in each snapshot
{Ct−1, Ct}, we can form the input node attributes matrix Xt

i

for group i at snapshot t. This input matrix Xt
i is constructed

through row concatenation of all node feature vectors xt
u

for each node u that is a member or neighbor of group i:
{u ∈ M(Cti ) ∪ N(Cti )}. An additional dimension, represented
as vector mt

i in Fig. 2, is used to specify whether the node
is a member or neighbor (one-hop neighbor of the group) and
adds spatial position information to the node attribute vectors.

B. Group-Node Attention

In our model, we use group-node attention rather than self-
attention. That is, we treat the group features as the query and
the node features of member and neighbor nodes as the keys
and values, resulting in a hidden representation that uses group
features to attend to nodes. The output of the attention layer
is then an aggregation of the context vectors associated with
group i into a single hidden representation hX .

In order to generate hX , we use ZX , the transformed
result of the spatial and temporal mixing of the input nodes,
along with zq , the transformed group features, to construct
query, key, and value matrices (Q,K,V) using learned weight
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WQ

Fig. 3: A diagram of the multi-head group-node attention layer used in the model with H attention heads.

matrices WQ,WK ,WV as in [21]. Fig. 3 provides a diagram
of the multi-head group-node attention portion of the model
where we see the separate linear layers associated with each
of the weight matrices. The zq vector contributes to the query
matrix Q and ZX contributes to the key and value matrices
K and V.

The group-node attention layer uses multi-head attention
in order to potentially learn complementary group representa-
tions. The output of each head is provided by HEAD(·) defined
as

HEAD(ZX , zq) = αV,

where α is a attention coefficient vector and V is a value
matrix.

We use scaled dot-product attention where the attention
coefficients are

α = softmax(
QKT

√
Dm

).

The query Q, key K, and value V matrices are defined as

Q = zqW
Q,

K = ZXWK ,

V = ZXWV

where WQ, WK , and WV are learned weight parameters;
and Q ∈ R1×Dk , K ∈ RNi×Dk , and V ∈ RNi×Dm . Fully
expanded, the output of each head is then:

HEAD(ZX , zq) = softmax(
zqW

Q(ZXWK)T√
Dm

)ZXWV .

The head outputs are passed through a ReLU activation and
then all are concatenated (‖) together and sent through a final
transformation,

GNATT(ZX , zq) = (‖Hh ReLU(HEADh(ZX , zq)))W
O,

where WO ∈ RHDv×Dm is a weight matrix parameter that
mixes the results of the group heads.

Finally, the output of the multi-head group-node attention
component is provided as hX = GNATT(ZX , zq) to the rest
of the network.

IV. EXPERIMENTS

A. Community Detection and Tracking

Predicting events over a series of network snapshots where
communities can be simultaneously involved in multiple evo-
lution events requires both a method for detecting communities
and tracking them across snapshots. As outlined in Section
II-A, there are many existing community tracking frameworks.
Our model does not depend on any specific framework and we
selected GED [4] for our experiments as it is well-established
in the literature and supports overlapping communities. GED
uses two parameters—α and β—for labelling events; we
use values of 0.5 for both parameters. Note that community
evolution events over consecutive snapshots can be found more
efficiently than quadratic time by using a hash table to lookup
communities by node. We use the clique percolation method
(CPM) [22] on clique graphs as described in [23] to define the
communities for each network snapshot. Our implementation
of CPM constructs a clique graph and then merges cliques
that share a majority of members. CPM supports overlapping
communities and uses cliques as primitives for constructing
communities. This matches the intuition of our model and
expected structure of social interaction networks where com-
munities are dense, overlapping graph regions [22].

B. Datasets

We use two datasets of timestamped, directed interactions
to construct network snapshots. The first dataset is a collection
of Facebook wall posts [24] available from KONECT2. In
Facebook, users may post on each other’s walls and these
posts are typically comments, photos, and web links. Each of
these posts is recorded as an interaction with a source user
(the post author), a destination user (the owner of the wall),
and a timestamp. The second dataset is a collection of Scratch
project comments [25] extracted from a general Scratch dataset
available from the Harvard Dataverse3. Scratch is an online
social network and web application for writing and sharing
software projects. Users can comment on each other’s projects;
each project comment is recorded as an interaction between

2http://konect.cc/networks/facebook-wosn-wall/
3https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/

DVN/KFT8EZ

http://konect.cc/networks/facebook-wosn-wall/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KFT8EZ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/KFT8EZ
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two users. Most communities (95%) from the Facebook dataset
contain six or fewer members and similarly for Scratch most
communities contain eight or fewer members.

To construct network snapshots, we adopt a methodology
used by [26], [27], [28] to determine a fixed temporal window
length that prevents artificial accumulation of edges. Edges are
included in a snapshot if the node pair has interacted within
the temporal window captured by the snapshot. The Facebook
dataset extends from July 2006 until April 2009 and each
network snapshot includes activity for a month. The Scratch
dataset includes data from May 2010 until May 2011 and each
snapshot includes two weeks worth of activity.

Figs. 4 and 5 show the number of nodes and edges for
both the Facebook and Scratch network snapshots. We note
that continuing and dissolving events are the most frequent
in the Facebook dataset, while merging and splitting are the
most common in the Scratch dataset. This may be due to the
nature of the networks—Facebook is primarily used to connect
with people already known by a user, but Scratch encourages
creating new relationships through project collaboration.

C. Methodology

For comparison to GNAN, we chose four baseline methods
due to their diversity and frequent use for community evo-
lution prediction. The baseline methods are CART decision
trees, logistic regression, multilayer perceptron (MLP), and
SVM with an RBF kernel. The implementations from [29]
are used for CART, logistic regression, and SVM. Those
implementations support a class weights parameter which is
configured to balanced to adjust for the class imbalance in the

TABLE II: Node and group features used in experiments.

(a) Node features

Name Description
1 In-degree Count of incoming edges

at snapshot t
2 Out-degree Count of outgoing edges

at snapshot t
3 Previous in-degree Count of incoming edges

at snapshot t− 1
4 Previous out-degree Count of outgoing edges

at snapshot t− 1

(b) Group features

Name Description
1-6 Event counts Counts of the incoming event types

from the previous snapshot
(continuing, dissolving, growing,
merging, shrinking, and splitting)

7 Size Number of member nodes

dataset. None of these three baselines directly support multi-
label classification and an instance of the classifier was trained
for each community evolution event label. We performed a
sweep over the regularization parameter (C) for SVM using
the values: 0.01, 0.1, 1, 10, and 100. The GNAN and MLP
models are both implemented with [30], use a model size of 16
dimensions for embedding layers, and were optimized using
AdamW with a learning rate of 0.001 and weight decay of
0.01. The MLP models have three layers. The binary cross-
entropy loss function was used and training stops after five
consecutive epochs without a decrease in validation loss. We
use a basic set of network features, listed in Table II, which
capture connectivity and structure. Event counts for incoming
events from the previous snapshot are also included as a group
feature. Since none of the baselines support variable-sized
input, the features for group member and neighbor nodes were
provided as two separate vectors—one for group members and
one for group neighbors—containing the mean average of the
feature values. Those two vectors were concatenated with the
group features to form a single vector input.

We use a holdout method with random splits for evaluation.
We perform 30 random splits of the consecutive network
snapshots into training, validation, and test sets. All network
snapshots before the split are used for training and validation,
the remaining future network snapshots can be used for testing.
The random splits are selected from the interval [5, T ] where
T is the final snapshot. This guarantees a minimum number of
training examples are made available to the models. In order
to address the non-determinism and sensitivity to parameter
values for some of the models included in this experiment,
we train five instances of each model for each random split.
We select one of the five models for each split based on the
macro-averaged AUC to use for evaluation with the test data.
We only use the groups from the snapshot after the split for
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evaluation.

D. Comparative Results

The results of GNAN against the baselines are shown in
Table III. The mean AUC scores are used for the evaluation
as they capture the overall comparative performance. A two-
sided Wilcoxon signed-rank test is used at a 95% significance
level to compare scores. We find that GNAN outperforms all
baselines on both datasets with the exception of the shrinking
event in Facebook and the splitting event in Scratch. GNAN
achieves a statistically significant higher macro-average mean
AUC over all baselines on Facebook, and all baselines but the
MLP for Scratch.

In the Facebook snapshot series, we see that all methods
other than CART perform well for predicting shrinking and
splitting events. This is likely due to group size and previous
snapshot event counts being good indicators of shrinking and
splitting. We notice the same is true for the splitting event
in the Scratch dataset, but prediction of the shrinking event
seems to be more challenging.

The Scratch networks were constructed from social inter-
actions and we required there be at least four interactions
between a pair of nodes before including the edge in the
networks. This was done in order to improve the performance
of community detection with CPM; however, we expect that
including that missing structural information would further
improve the relative performance of GNAN over the baselines
for the Scratch network snapshots.

E. Temporal Effects

In addition to the comparative experiment, we evaluate the
performance of GNAN at particular snapshots and differing
amounts of training history. These experiments were con-
ducted on both the Facebook and Scratch snapshots, but only
figures for Facebook are included for brevity.

In Fig. 6, we see the mean AUC scores for the GNAN
model instances trained for the comparative analysis (Section
IV-D) on the Facebook network snapshots. If we consider the
changes in network activity over the snapshots in Fig. 4, we
can see that GNAN performance appears to correlate with
network growth. Using the number of undirected edges as

an indicator of network activity, we calculate Spearman’s
rank correlation coefficient and find that the mean AUC is
slightly correlated with the activity for the Facebook snap-
shots, ρ = .2956, p = 0.1, and for the Scratch snapshots,
ρ = .3501, p = .06.

A decrease in prediction performance during periods of
reduced network activity may indicate that the model is miss-
ing additional information useful for predicting community
evolution events. Notably, events external to the network—
such as start/stop of academic semesters or holidays—may
impact node behavior.

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Snapshot Index

C
ou

nt

Event Type

continuing

dissolving

growing

merging

shrinking

splitting

Facebook Snapshot Event Counts

(a) Facebook event counts

0%

25%

50%

75%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Snapshot Index

P
er

ce
nt

ag
e

Event Type

continuing

dissolving

growing

merging

shrinking

splitting

Facebook Snapshot Event Percentages

(b) Facebook event percentages

Fig. 7: The event counts and percentages over network snap-
shots for the Facebook dataset.

Additionally, we see the evolution event counts in Facebook
(Fig. 7) are positively correlated with network activity (Fig. 4;
and we observed the same for the Scratch snapshots. The
event percentage plot for the Facebook snapshots in Fig. 7
reveals that the distribution of events changes over time.
Though not shown here, we observed similar changes in the



TABLE III: Mean AUC scores for events in the Facebook and Scratch datasets. Highest values are in bold. The •/◦ annotation
indicates whether GNAN is statistically superior/inferior to the other method. A two-sided Wilcoxon signed-rank test was used
at 95% significance level.

(a) Facebook results

Method Cont. Dis. Grow Merge Shrink Split Macro Avg.
CART 0.526• 0.515• 0.508• 0.532• 0.570• 0.584• 0.539•

Log. Reg. 0.581• 0.590• 0.552• 0.695• 0.923• 0.892• 0.706•

MLP 0.620 0.596• 0.571• 0.718 0.939 0.962• 0.734•

SVM 0.585• 0.590• 0.556• 0.693• 0.916• 0.884• 0.704•

GNAN 0.636 0.617 0.603 0.757 0.939 0.966 0.753

(b) Scratch results

Method Cont. Dis. Grow Merge Shrink Split Macro Avg.
CART 0.533• 0.590• 0.517• 0.642• 0.570• 0.670• 0.586•

Log. Reg. 0.588• 0.784 0.584• 0.800 0.681• 0.828• 0.710•

MLP 0.621 0.814 0.610 0.819 0.778 0.908 0.756
SVM 0.588• 0.784 0.569• 0.749• 0.751• 0.824• 0.710•

GNAN 0.631 0.827 0.636 0.845 0.782 0.907 0.769

Scratch snapshots. In the Facebook snapshots, the proportion
of dissolving events is negatively correlated with increased
network activity, while continuing, growing, merging, and
splitting events all appear to be positively correlated with
increased network activity.

While all previous snapshots were used in training GNAN
and the baseline models for the comparative evaluation in
Section IV-D, additional GNAN model instances were trained
with incrementally larger snapshot intervals to determine the
performance impact of expanding training data by incremen-
tally adding older network snapshots. Snapshots for evaluation
were selected by starting at the final snapshot of each dataset
and adding every fifth snapshot index. For each evaluation
snapshot index, training data was provided in increasingly
larger intervals with a stride of five. When fewer than five
snapshots remain then all are added to the final interval of
training snapshots. For example, for the evaluation snapshot
index of 14, there are three training intervals: [9, 13], [4, 13],
[1, 13]. Five instances of GNAN are trained for each of the
three intervals of training data and then validation is used to
select the best model from each training interval for evaluation.

The results for Facebook (Fig. 8) and Scratch show that
while generally more training data improves model perfor-
mance, including data from earlier snapshots can negatively
impact prediction performance for certain evolution events.
The network activity (Figs. 4 and 5) of Facebook and Scratch
and the distributions of evolution events (Fig. 7) change over
time and this can affect model training.

For Facebook, the prediction performance of GNAN on
shrinking and splitting events appears to be consistent across
all evaluation snapshots. While not as tightly grouped as
the Facebook AUC scores, the shrinking and splitting events
also have the lowest variance in score across snapshots for
the Scratch dataset. The prediction performance for all other
events in both datasets appear to be more dependent on the
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Fig. 8: GNAN model performance as earlier training data is
introduced for the Facebook dataset.

evaluation snapshot used.
Consider the prediction of growing events for the Facebook

evaluation snapshot at index 34. We see that using only
snapshots 29-33 improves performance compared to using
snapshots 24-33. However, adding the five next earlier snap-
shots such that all snapshots 19-33 are used increases perfor-
mance again. According to Fig. 7a, there are growing training
examples gained by including all of the earlier snapshots. From
Fig. 4, we see that while the number of edges decline for
a period over snapshots 29-33 and snapshots 19-23, there is
only a growth of the number of edges in the snapshots 24-
29. It appears more training examples for the growing event
only improve prediction performance when those examples
are taken from snapshots with network activity similar to
that of the evaluation snapshot. This relationship between



network activity in the training snapshots and the evaluation
snapshot suggests that model performance may be improved
by selecting training snapshots that capture similar network
trends as the evaluation snapshot.

V. CONCLUSION

We introduced a graph neural network with group-node
attention (GNAN) for community evolution prediction. GNAN
is able to incorporate both spatial and temporal information
of individual member and neighbor nodes by way of group-
node attention. The model is capable of learning a task-specific
group representation for community evolution prediction and
outperforms the typical baselines used for predicting commu-
nity evolution events.
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