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Abstract—Increasing biomedical studies have demonstrated
important associations between lncRNAs and various human
complex diseases. Developing data integrative models can boost
the performance of lncRNA-disease association identification.
However, existing models generally have to transform heteroge-
nous data into homologous networks, and then sum up these
networks into a composite network for integrative prediction.
The transformation may conceal the intrinsic structure of the
heterogeneous data, and the summation process may suffer from
noisy networks. Both these issues compromise the performance.
In this paper, we introduce a Weighted Matrix Factorization
based data fusion solution to predict LncRNA-Disease Associ-
ations (WMFLDA). WMFLDA first directly encodes the inter-
associations between different types of biological entities (such as
genes, lncRNAs, and Disease Ontology terms) via a heterogeneous
network, which also encodes multiple intra-association networks
of entities of the same type. Next, it assigns weights to these
inter-association and intra-association matrices, and performs
collaborative low-rank matrix factorization to explore the la-
tent relationships between entities. After that, it simultaneously
optimizes these weights and low-rank matrices. In the end, it
uses the optimized low-rank matrices and weights to recon-
struct the lncRNA-disease association matrix and accomplish
the prediction. WMFLDA achieves a larger area under the
receiver operating curve (by at least 7.61%), and a larger
area under the precision-recall curve (by at least 5.49%) than
competitive data fusion approaches in different experimental
scenarios. WMFLDA can not only maintain the intrinsic struc-
ture of the association matrices, but can also selectively and
differentially combine them. The codes and datasets are available
at http://mlda.swu.edu.cn/codes.php?name=WMFLDA

Index Terms—LncRNA-disease associations, Matrix factoriza-
tion, Data fusion, Heterogeneous networks

I. INTRODUCTION

In the past few years, with the rapid development of
both experimental technology and computational methods, an
increasing number of long non-coding RNAs (lncRNAs) has
been discovered in large-scale transcriptome analysis, and their
importance has become increasingly evident [2]. LncRNAs
have low expressions and modest sequence conservation with
highly specific tissues, and they have been involved in a
wide range of biological processes [11]. Increasing evidence
has demonstrated critical associations between lncRNAs and
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a broad range of complex human diseases [9], [15]. For
example, the decreased expression of lncRNA ‘WT1-AS’ is
shown to promote cell proliferation and invasion in gastric
cancer [6]. Various lncRNA (or disease) related biological data
have been accumulated, however, only a few lncRNA-disease
associations have been reported. The study of identifying novel
lncRNA-disease associations has attracted increasing attention
[4]. Computational approaches can identify the most probable
associations for experimental validation [3], [5], thus avoiding
expensive and time-consuming wet-lab experiments.

Developing effective computational models to predict po-
tential lncRNA-disease associations in large scale has become
one of the most important topics of bioinformatics [4]. Various
computational methods have been developed, and they can
be roughly divided into three categories. The first category is
mainly based on the known lncRNA-disease associations [5],
[14]; these methods generally assume that similar diseases are
associated with functionally similar lncRNAs. Most of these
methods cannot be applied to new diseases without known
associated lncRNAs, and vice versa. The second category pre-
dicts novel lncRNA-disease associations using known disease
related genes or miRNAs [12], [21]. Most methods of the
second category transform related data into a heterogenous
network and apply network based inference to accomplish
the prediction. The third category fuses multiple data sources
to identify lncRNA-disease associations [3], [19]. Each data
source provides a partial view of the complex mechanism
between diseases and lncRNAs, and combining diverse data
sources can provide a more comprehensive view [8]. The latter
data fusion methods typically obtain a better performance
than the methods that use individual data sources alone.
However, they often transform heterogenous data sources into
homogeneous networks, and simply sum up these homologous
networks. As such, they may neglect the intrinsic structure of
the individual data sources, and may be impacted by noisy
networks [7].

Matrix factorization techniques have been widely developed
to fuse multiple heterogenous data sources [8]. They neither
have to transform heterogenous data sources into homoge-
neous networks, nor develop separate models for each data
source [22]. In addition, they can explore and employ the
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intrinsic and shared structure for different types of data. Wang
et al. [17] proposed a symmetric nonnegative matrix tri-
factorization approach (S-NMTF) to simultaneously cluster
multi-type relational data sources. Zitnik and Zupan [22]
developed a penalized matrix tri-factorization based model
(DFMF) to simultaneously factorize multiple data matrices for
predicting gene functions and pharmacologic actions. Lu et
al. [13] introduced an inductive matrix completion [10] based
approach (SIMCLDA), which uses feature vectors extracted
from Gaussian interaction profile kernel of lncRNAs and
functional similarity of diseases to predict potential lncRNA-
disease associations.

The aforementioned matrix factorization-based data fusion
methods show great potential in recovering underlying asso-
ciations between various types of biological data, but they
implicitly assume that each data source has equal relevance
towards the target prediction task, and ignore the different
degrees of relevance each data source may have [7]. To
overcome this problem, Fu et al. [7] introduced a matrix
factorization based lncRNA-disease association prediction (M-
FLDA) model to assign weights to individual inter-association
matrices between different types of biological entities, and
simultaneously decompose these inter-association matrices in-
to low-rank matrices. MFLDA then uses the optimized low-
rank matrices and weights to reconstruct the target matrix
to predict new associations between lncRNAs and diseases.
However, MFLDA does not account for the different degrees
of relevance of intra-association matrices of the same type of
objects, and thus its performance may be compromised by the
low-quality or irrelevant data sources.

To simultaneously account for the different degrees of
relevance of inter-association matrices and of multiple intra-
association matrices, we propose a Weighted Matrix Fac-
torization based data fusion solution to predict LncRNA-
Disease Associations (WMFLDA). WMFLDA first encodes
inter-associations between different types of biological entities
(such as genes, lncRNAs, and Disease Ontology terms) via
a heterogeneous network, which also encodes multiple intra-
association networks of the objects of the same type. Then,
it presets weights for inter-association and intra-association
matrices and performs collaborative low-rank matrix factor-
ization. Next, it simultaneously optimizes the weights and
the low-rank matrix approximations of the inter-association
and intra-association data matrices. After that, WMFLDA
completes the lncRNA-disease association matrix based on the
product of optimized low-rank matrices and weights to predict
potential disease-related lncRNAs. In five-fold cross validation
experiments on experimentally confirmed lncRNA-disease as-
sociations, WMFLDA achieves an AUROC of 0.9037 and an
AUPR of 0.3747. It significantly outperforms related com-
paring methods, including RWRlncD [14], KATZLDA [3],
RWRHLDA [21], S-NMTF [17], SIMCLDA [13], and MFL-
DA [7]. In addition, the experiments confirm that WMFLDA
can selectively and differentially combine inter-association
and intra-association data matrices. We want to remark that
WMFLDA can also be directly used to recommend links

between other entities.

II. METHODOLOGY

A. Problem Formulation

Suppose there are m types of molecules directly or indirect-
ly related to lncRNAs or diseases, and a collection of inter-
association data sources R, each of which relates a pair of
object types. Rij ∈ R (Rij ∈ Rni×nj , i, j ∈ 1, 2, . . . ,m)
store the inter associations between ni objects of the i-th type
and nj objects of the j-th type. Note, Rij can be asymmetric.
Multiple intra-association data matrices for the i-th type of
objects are denoted as Θ

(t)
i ∈ Rni×ni , t ∈ {1, 2, · · · , ti},

where ti is the number of intra-association matrices for the i-
th object type. Matrix factorization based data fusion wants to
collaboratively decompose R or its sub-matrices, constrained
by sub-matrices of Θ, into low-rank matrices to explore the
latent relationship between objects of different types. It then
uses the low-rank matrices to reconstruct the target association
matrix (i.e. Rij) and predict new associations between objects
of the i-th type (lncRNAs) and objects of the j-th type
(diseases).

B. Matrix Factorization based Data Fusion

The matrix factorization-based data fusion approach has
various variants [16]–[18], [22]. To facilitate the discussion
of our problem, we start with a recent and representative
framework proposed by Zitnik and Zupan [22]. The objective
function of this framework is:

min
G≥0
Z(G,S) =

∑
Rij∈R

∥∥Rij −GiSijG
T
j

∥∥2
F

+

τ∑
t=1

tr(GT )Θ(t)G

(1)

where Gi ∈ Rni×ki , Gj ∈ Rnj×kj , τ = maxi ti, Sij ∈
Rki×kj (ki � ni, kj � nj), G = diag(G1,G2, · · · ,Gm),
tr(·) and ‖·‖2F are the matrix trace operator and the Frobe-
nius norm, respectively. Sij has much fewer vectors than
Rij and it can be viewed as a compressed matrix, which
encodes latent inter associations between objects of the i-
th type and objects of the j-th type. Gi(Gj) is the low-
rank representation of objects of the i-th (j-th) type. Θ(t)

collectively stores all the following block diagonal matrices:
Θ(t) = diag(Θ

(t)
1 ,Θ

(t)
2 , · · · ,Θ(t)

m ), t ∈ (1, 2, · · · ,maxi ti),
and the i-th block matrix along the main diagonal of Θ(t) is
zero if t > ti. Entries in intra-association matrices are positive
for dissimilar objects, and negative for similar ones. The
positive entries are known as cannot-link constraints, because
they force pairs of dissimilar objects to be far away from each
other in the latent component space; and the negative entries
are must-link constraints, since they force pairs of objects to be
close in the latent component space. These intra-associations
can guide the pursue of coherent low-rank matrices Gi and
reduce the value of the cost function during optimization.
Suppose Gi is the low-rank representation of ni lncRNAs,
and Gj is the low-rank representation of nj diseases; then



the potential lncRNA-disease associations can be predicted as
GiSijGj .

Many network based data fusion methods [3], [20], [21]
first map lncRNA (disease)-related data sources onto homolo-
gous networks of lncRNAs (diseases), and then fuse lncRNA
(disease) similarity networks via network integration [19]. Eq.
(1) directly works on multi-type objects with multi-relations
rather than mapping them onto homologous networks, and
thus it has the potential of exploring and employing the
intrinsic structure of objects of the same type and of different
types. In addition, Eq. (1) optimizes the target association
matrix Rij with respect to Gi and Gj , and both Gi and
Gj are also determined by other indirectly connected data
sources of lncRNAs and diseases; therefore, it can also ac-
count for multiple indirect data sources. However, we can
clearly see that Eq. (1) equally treats all the inter-association
matrices Rij and all the intra-association matrices Θ

(t)
i , i =

{1, 2, . . . ,m}, t ∈ {1, 2, · · · , τ}. As such, its performance
may be compromised by noisy (or irrelevant) inter-association
networks and intra-association networks. To account for the
different degrees of relevance of inter-association matrices
towards the prediction task, Fu et al. [7] extended Eq. (1)
by assigning different weights to Rij (i, j = 1, 2, . . . ,m).
Empirical studies have shown that accounting for the different
degrees of relevance can improve the prediction performance.
However, the approach of Fu et al. [7] ignores the different
relevance of the various intra-association data sources.

C. Objective Function of WMFLDA

From the above analysis we advocate to assign weights
to different intra-association and inter-association matrices to
selectively integrate the multi-relational data matrices. In this
way, both the inter-association and the intra-association matri-
ces can be selectively combined for integrative prediction, and
the impact of noisy networks can be further reduced. To this
end, the objective function of WMFLDA is defined as follows:

min
G≥0
L(G,S,Wr,Wh) =

∑
Rij∈R

Wr
ij

∥∥Rij −GiSijG
T
j

∥∥2
F

+

m∑
i=1

τ∑
t=1

Wh
ittr(G

T
i Θ

(t)
i Gi)

s.t. Wr ≥ 0,Wh ≥ 0,

m∑
i,j=1

Wr
ij = 1,

m∑
i=1

τ∑
t=1

Wh
it = 1

(2)

where Wr ∈ Rm×m, Wh ∈ Rm×τ , Wr contains the
weights assigned to |R| inter-association matrices and Wh

it

is the weight of t-th intra-association matrix of the i-th object
type. For Rij /∈ R, Wr

ij = 0. For Θt
i, t > maxi ti,

Wh
it = 0. Unlike Eq. (1), Eq. (2) can explore the contribution

of different intra-association and inter-association matrices by
assigning weights to them. However, Eq. (2) may only set
Wr

ij = 1 to Rij if Rij has the smallest reconstruction
loss (‖Rij −GiSijGj‖2F ) among all the inter-association
matrices, and the other inter-association matrices will be

disregarded. Eq. (2) may also assign Wh
it = 1 to Θ

(t)
i , if

Θ
(t)
i has the fewest cannot-link constraints among all the intra-

association matrices. In other words, the sparser the intra-
association (inter-association) matrix is, the larger the weight
assigned to it will be. As a result, the contribution of other
intra-association matrices will be ignored.

Given the complementary information of different data
sources, using only one inter-association matrix and one intra-
association matrix may not produce reliable predictions. To
avoid this trivial weight assignment, we add two l2-norm based
regularization terms on Wr and Wh, and update the objective
function as follows:

min
G≥0
L(G,S,Wr,Wh) =

∑
Rij∈R

Wr
ij

∥∥Rij −GiSijG
T
j

∥∥2
F

+

m∑
i=1

τ∑
t=1

Wh
ittr(G

T
i Θ

(t)
i Gi)

+ α ‖vec(Wr)‖2F + β
∥∥vec(Wh)

∥∥2
F

s.t. Wr ≥ 0,Wh ≥ 0,
∑

vec(Wr) = 1,
∑

vec(Wh) = 1

(3)

where vec(Wr) is the vectorization operator that stacks the
rows of Wr, α > 0 and β > 0 are used to control the
complexity of vec(Wr) and vec(Wh); α and β can also help
to selectively integrate inter-association and intra-association
data matrices.

The objective function of WMFLDA is non-convex in G, S,
Wr, and Wh altogether. We can optimize L(G,S,Wr,Wh)
according to the idea of auxiliary functions frequently used
in the convergence proof of approximate matrix factorization
algorithms [22]. For G, S, Wr, and Wh, we alternatively
consider three of them as constants and optimize the other
one. We obtain the optimal G and S by taking the partial
derivative of Eq. (3) with respect to G and S with importing
the Lagrangian multipliers and Karush-Kuhn-Tucker comple-
mentary condition [1]. The explicit solution of Wr,Wh are
shown as follows:

Wr
ij =


γ−Lij

2α if γ > Lij and Rij ∈ R

0 if γ ≤ Lij or Rij /∈ R
, (4)

where Lij = ‖Rij −GiSijGj‖2F be the reconstruction loss

for Rij , γ =
2α+

∑p

p′=1
vL(p′)

p . Let vL ∈ R|R| store the entries
of vector vec(L) in ascending order with entries corresponding
to Rij /∈ R removed. Let p ∈ {1, 2, . . . , |R|}, there exists a
appropriate p′, satisfying vr(p′) = γ−vL(p′)

2α when p′ ≤ p,
vr(p′) = 0 when p′ > p. vr ∈ R|R| stores the corresponding
entries of vec(Wr) with entries corresponding to Rij /∈ R
removed.

Wh
it =


µ−K(t)

i

2β if µ > K
(t)
i and t ≤ maxi ti

0 if µ ≤ K
(t)
i and t > maxi ti

, (5)



where K
(t)
i = tr(GT

i Θ
(t)
i Gi), µ =

2β+
∑q

q′=1
vK(q′)

q . Let
vK store the entries of vector vec(K) in ascending order
with entries corresponding to Θ

(t)
i , t > maxi ti removed. Let

q ∈ {1, 2, . . . , |Θ|}, |Θ| is the number of intra-association
matrices for all the types, there exists an appropriate q′,
satisfying vh(q′) = µ−vK(q′)

2β when q′ ≤ q, vh(q′) = 0 when
q′ > q. vh stores the corresponding entries of vec(Wh) with
entries corresponding to Θ

(t)
i , t > maxi ti removed.

From the explicit solution of Wr and Wh, we can easily
see that the inter-association matrix Rij that has the smallest
reconstruction loss will be assigned a larger weight. Simi-
larly, the intra-association matrix Θt

i that has fewer cannot-
link constraints will be assigned a larger weight. On the
other hand, a small (or zero) weight will be assigned to
the inter-association matrix with a larger reconstruction loss,
and a small (or zero) weight will be assigned to the intra-
association matrix with more cannot-link constraints. A larger
reconstruction loss may often be caused by the noisy entries
of the respective association matrices. We want to highlight
that WMFLDA has the potential to automatically remove the
noisy inter-association and intra-association matrices, simply
by assigning zero weights to the respective data matrices. In
addition, we want to remark that low-rank matrix factorization
is also robust to noisy associations. As such, WMFLDA can
be more robust to noisy data sources, and provide a more
prominent performance than the matrix factorization based
data fusion solutions [7], [13], [17], [22].

III. RESULTS AND DISCUSSION

A. Experimental setup

To investigate the performance of WMFLDA, we consider
6 object types: lncRNAs (Type 1), miRNAs (Type 2), genes
(Type 3), Gene Ontology (Type 4), Disease Ontology (Type
5), and drugs (Type 6). We collected 25 matrices (9 inter-
association matrices, 16 intra-association matrices) between
these objects from public databases. The details of the data
sources are listed in Table I. We used the latest version of the
databases (access date: 15 June 2018) for the experiments.

To comparatively study the effectiveness of the proposed
WMFLDA, we compare it against five representative and com-
petitive solutions for lncRNA-disease association prediction,
which include KATZLDA [3], RWRlncD [14], RWRHLD
[21], S-NMTF [17], SIMCLDA [13], and MFLDA [7]. The
first four methods equally treat all the association matrices
during the fusion process, and MFLDA only assigns weights
to different inter-association matrices. The input parameters of
these methods are set as specified by the authors in their code,
or optimized in the suggested ranges. α = 107 and β = 106 are
adopted for WMFLDA. The low-rank size ki, i ∈ {1, 2, . . . , 6}
are separately specified to 220, 220, 160, 20, 50 and 50 for
experiments.

Five fold cross-validation is adopted to investigate the
performance. After each association has been tested in a
single round of cross validation, we plot the receiver operating
characteristic (ROC) curve by varying the true positive rate

(TPR, sensitivity) against the false positive rate (FPR, 1-
specificity) at different rank cutoffs. The value of the area
under the ROC Curve (AUROC) can be computed to quantify
the overall performance. The larger the AUROC value, the
better the performance is, and a random guess corresponds
to an AUROC value of 0.5. In addition, we also use the
Precision-Recall (PR) curve to measure the performance of
the methods and the area under the PR curve (AUPRC) to
quantify the overall performance. The AUROC and AUPRC
values can quantify the performance from different aspects,
and they can provide a more comprehensive evaluation of the
proposed solution.
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Fig. 1. Performance comparison between WMFLDA, MFLDA, SIMCLDA,
S-NMTF, RWRHLD, and RWRlncD. (a) ROC curve and AUROCs. (b) PR
curve and AUPRCs.

B. LncRNA-Disease Association Prediction with Cross Vali-
dation

In this section, we perform five-fold cross validation on
experimentally confirmed lncRNA-disease associations to s-
tudy the performance of WMFLDA. Particularly, we randomly
divide known lncRNA-disease associations (R15) into five
folds; the associations in four folds are used as training
samples and the remaining associations of the other fold are
alternatively used as testing samples for evaluation. Fig. 1(a)
plots the ROC curves of the comparing methods and reports
their corresponding AUROCs of 5-fold cross validation. It is
evident that WMFLDA always has the highest TPRs under
the same FPRs, and achieves the highest AUROC (0.9037)
among the methods; the AUROCs of MFLDA, SIMCLDA,
S-NMTF, RWRHLDA, and RWRlncD are 0.8398, 0.8212,
0.7862, 0.7584, and 0.6909, respectively. WMFLDA improves
the AUROC by at least 7.61% with respect to the comparing
methods. As for the PR curves and AUPRC in Fig. 1(b),
WMFLDA again consistently outperforms the other methods,
and it improves the AUPRC by at least 5.49%. These compar-
isons demonstrate the effectiveness of WMFLDA in selectively
combining multiple inter-association and intra-association data
matrices for accurate lncRNA-disease association prediction.

WMFLDA performs significantly better than MFLDA, al-
though MFLDA also optimizes the weights assigned to differ-
ent inter-association matrices. This is because MFLDA ignores
the different relevance levels of multiple intra-association
matrices towards the target prediction task. SIMCLDA uses
principle component analysis to extract informative feature



TABLE I
DETAILS ON THE COLLECTED INTER-ASSOCIATION AND INTRA-CONSTRAINT MATRICES FROM DIFFERENT DATA SOURCES

Type Source Mapped Samples Mapped Associations Website

LncRNA-Disease LncRNADisease
240 × 412 2697 R15

http://www.cuilab.cn/lncrnadisease/
Lnc2Cancer http://www.bio-bigdata.net/lnc2cancer/

LncRNA-miRNA StarBase v2.0 240 × 495 1002 R12 http://starbase.sysu.edu.cn/mirLncRNA.php/
LncRNA-Gene LncRNA2Target 240 × 15527 6186 R13 http://www.lncrna2target.org/
LncRNA-GO GeneRIF 240 × 6428 3094 R14 ftp://ftp.ncbi.nih.gov/gene/GeneRIF/
miRNA-Disease HMDD 495 × 412 13562 R25 http://www.cuilab.cn/hmdd/
miRNA-Gene miRTarBase 495 × 15527 135852 R23 http://mirtarbase.mbc.nctu.edu.tw/
Gene-GO GO Annotation 15527 × 6428 1191503 R34 http://geneontology.org/
Gene-Disease DisGeNET 15527 × 412 115317 R35 http://www.disgenet.org/
Gene-Drug DrugBank 15527 × 8283 3760 R36 http://www.drugbank.ca/

Gene-Gene

DIP 2719 × 2719 4551 Θ
(1)
3 http://dip.doe-mbi.ucla.edu/dip/Main.cgi

HPRD 7898 × 7898 32097 Θ
(2)
3 http://hprd.org/index html

I2D 13106 × 13106 283306 Θ
(3)
3 http://ophid.utoronto.ca/ophidv2.204/index.jsp

IntAct 11778 × 11778 113973 Θ
(4)
3 http://www.ebi.ac.uk/intact/

MINT 7898 × 7898 32097 Θ
(5)
3 http://mint.bio.uniroma2.it/

BioGrid 13086 × 13086 289961 Θ
(6)
3 http://thebiogrid.org/

Drug-Drug

CredibleMeds 63 × 63 83 Θ
(1)
6 http://www.crediblemeds.org/

DDIcorpus2011 314 × 314 582 Θ
(2)
6 http://labda.inf.uc3m.es/doku.php?id=en:labda ddicorpus

DDIcorpus2013 495 × 495 1133 Θ
(3)
6 http://labda.inf.uc3m.es/doku.php?id=en:labda ddicorpus

ANSM 832 × 832 27159 Θ
(4)
6 http://ansm.sante.fr/Dossiers/Interactions-medicamenteuses/Interactions-medicamenteuses/(offset)/0

NLMcorpus 189 × 189 408 Θ
(5)
6 http://github.com/dbmi-pitt/public-PDDI-analysis/tree/master/PDDI-Datasets/NLM-Corpus

ONC 295 × 295 4029 Θ
(6)
6 http://github.com/dbmi-pitt/public-PDDI-analysis/tree/master/PDDI-Datasets/ONC-High-Priority

OSCAR 225 × 225 8585 Θ
(7)
6 http://sites.google.com/site/oscarusermanual/-oscar-emr/3-0-clinical-functions/3-7-1

PKcorpus 164 × 164 416 Θ
(8)
6 http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/package-insert-DDI-NLP-corpus.html

SemMedDB 571 × 571 4762 Θ
(9)
6 http://skr3.nlm.nih.gov/SemMed/

DrugBank 2419 × 2419 453436 Θ
(10)
6 http://www.drugbank.ca/

vectors based on multiple inter-association matrices and then
completes the lncRNA-disease association matrix using the
primary feature vectors. However, it does not utilize the
intra-association information. For this reason, it always loses
to WMFLDA. S-NMTF integrates multiple inter-association
data sources using matrix tri-factorization; it still has lower
AUROC and AUPRC than WMFLDA. The reason is that S-
NMTF cannot selectively combine different data sources. In
fact, it performs matrix factorization on a big (

∑m
i=1 ni ×∑m

i=1 ni) matrix, which includes all inter-association matrices
and requires the matrices to be symmetric. This is the cause
of the high running time of S-NMTF. RWRHLD applies a
random walk with restart on a heterogenous network to predict
lncRNA-disease associations; its AUROC and AUPRC are
marginally higher than RWRlncD. This is mainly because
RWRHLD transforms heterogeneous data sources onto lncR-
NA functional similarity and disease similarity, and then takes
advantage of these two networks and known lncRNA-disease
associations to infer new associations. This transformation
may conceal the intrinsic structure of the data sources. RWRl-
ncD has the lowest AUROC and AUPRC among the com-
paring methods, since it only utilizes known lncRNA-disease
associations to infer additional lncRNA-disease associations.
These results show that data fusion methods for lncRNA-
disease association prediction achieve a better performance
than computational methods that use individual data sources
alone.

C. Effects of weighting intra-association data matrices

From the explicit solution of Wr in Eq. (4), we can
clearly see that once the value of α is specified, the weight
Wr

ij assigned to Rij ∈ R can be computed based on the
reconstruction loss of that matrix. In addition, from Eq. (5),
we can easily see that once the value of β is specified, the
weight assigned to Θ

(t)
i ∈ Θ(t) can be determined based

on the number of cannot-link constraints for intra-association
matrices tr(GT

i Θ
(t)
i Gi). Given this, both α and β play

important roles in determining the performance of WMFLDA.
To search for a feasible value of α and β, following the
experimental settings in Section III-B, we conduct five-fold
cross validation to predict lncRNA-disease associations by
varying α and β in 10−2, 10−1, . . . , 109, 1010, and report the
average AUPRC under each combination of α and β in Fig.
2.
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Fig. 2. AUPRC of WMFLDA under different input values of α and β.

From Fig. 2, we observe that when α = 107 and β = 106,
WMFLDA achieves the highest AUPRC. The input value of
α significantly affects the performance; the AUPRC value
increases as α increases, and reaches a plateau when α > 104.
This is because a too small α value assigns little emphasis to
the inter-association matrices, and the target inter-association
matrix is underrated as a result. The input value of β also
affects the performance; the AUPRC value significantly in-
creases as β gets larger, and then it slightly decreases when
β > 106. This observation shows that both the input values of
α and β have an impact on the performance of WMFLDA.

To further investigate the capability of WMFLDA in selec-
tively combining intra-association matrices, we report in Fig. 3
the weights (Wh

it) assigned to 10 intra-association matrices of
drugs under different input values of β with α = 107. We can



observe that when β = 105, only the intra-association matrix
Θ

(1)
6 for drugs is selected. Θ

(1)
6 has the fewest cannot-link

constraints (83 cannot-link constraints) among all the intra-
association matrices for drugs in Table I. When β ≥ 109,
all the ten intra-association matrices Θ

(t)
6 , t = (1, 2, . . . , 10)

are selected and assigned nearly equal weights. This behavior
is expected from Eq. (5). A (too) small β value does not
have a sufficient regularization effect on the weights assigned
to different intra-association matrices. On the other hand, a
(too) large β value results in a strong regularization effect,
and forces similar weight assignments to all matrices. When
β = 106, 107 or 108, some intra-association matrices are
selected for fusion, and WMFLDA has the highest AUROC
and AUPRC when β = 106. The exclusion of other intra-
association matrices is possible because these matrices may
contain more noisy intra-associations than the selected sources,
and the selected intra-association matrices have more reliable
intra-associations to achieve an accurate lncRNA-disease asso-
ciations prediction. In summary, the experiments with different
values of β confirm that WMFLDA indeed can selectively
integrate different intra-association matrices, and selectively
combining these intra-association data matrices contributes to
an improved performance.
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Fig. 3. Weights (Wh
6t, t = 1, 2, · · · , 10) assigned to ten intra-association

matrices Θ
(t)
6 of drugs when β = 105, β = 106, β = 107, β = 108,

β = 109, β = 1010 and α = 107.

IV. CONCLUSIONS

In this paper, we introduce a Weighted Matrix Tri-
factorization based data fusion solution to predict LncRNA-
Disease Associations (WMFLDA). Unlike other computa-
tional methods, WMFLDA can selectively integrate inter-
associations and intra-associations of multi-relational data
sources, and it can also explore and exploit the intrinsic and
shared structure of heterogeneous data sources. The effec-
tiveness of WMFLDA in predicting novel lncRNA-disease
associations is confirmed by various experiments. WMFLDA
can also be directly applied to predict links between different
types of objects.
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