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Abstract. Matrix factorization based data fusion solutions can accoun-
t for the intrinsic structures of multi-relational data sources, but most
solutions equally treat these sources or prefer sparse ones, which may
be irrelevant for the target task. In this paper, we introduce a Selec-
tive Matrix Factorization based Data Fusion approach (SelMFDF) to
collaboratively factorize multiple inter-relational data matrices into low-
rank representation matrices of respective object types and optimize the
weights of them. To avoid preference to sparse data matrices, it addi-
tionally regularizes these low-rank matrices by approximating them to
multiple intra-relational data matrices and also optimizes the weight-
s of them. Both weights contribute to automatically integrate relevant
data sources. Finally, it reconstructs the target relational data matrix
using the optimized low-rank matrices. We applied SelMFDF for predict-
ing inter-relations (lncRNA-miRNA interactions, functional annotations
of proteins) and intra-relations (protein-protein interactions). SelMFDF
achieves a higher AUROC (area under the receiver operating charac-
teristics curve) by at least 5.88%, and larger AUPRC (area under the
precision-recall curve) by at least 18.23% than other related and com-
petitive approaches. The empirical study also confirms that SelMFDF
can not only differentially integrate these relational data matrices, but
also has no preference toward sparse ones.

Keywords: Matrix factorization · Data fusion · Multi-relational data ·
Association prediction.

1 Introduction

With the rapid growth of Internet and modern technologies, we can obtain var-
ious data sources that are directly related to the main task, and also other
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data sources indirectly related to the task, which can still facilitate the com-
pletion of this task. For example, the accuracy of gene function prediction can
be improved by integrating the gene-level data (gene expression, gene-gene in-
teractions), and also by fusing transcript-level data (miRNA-gene interaction-
s, miRNA-miRNA interactions) that convey complementary information about
gene functions [7,26]. The ever-increasing heterogeneous data sources make data
fusion approaches increasingly popular over the past decade, which aim to col-
lectively explore interesting patterns from multiple data sources, and to reduce
the impact of noisy or irrelevant ones [7, 15].

An intuitive solution to fuse multiple data sources is concatenating the fea-
ture vectors of the same object across different data sources into a longer feature
vector, and then applying off-the-shelf learners on this long vector. But this con-
catenation ignores the intrinsic characteristics of these feature vectors and may
(and often does) suffer from the issue of curse of dimensionality and of miss-
ing features. Another intuitive solution is to train a classifier on each feature
view and then combine these classifiers for ensemble prediction [21], but this en-
semble solution may be impacted by low-quality base classifiers independently
trained on individual views, which can not ensure a base classifier with sufficient
accuracy. Furthermore, the early fusion (feature concatenation) and late fusion
(classifier ensemble) can not capture heterogeneous relations between different
object types. For these reasons, many inter-median data fusion solutions have
been proposed in recent years [6, 13,23].

Inter-median data fusion methods can be generally divided into three cate-
gories: multiple kernel(network) learning-based (MKL), Bayesian network -based
(BN) and matrix factorization-based (MF) [7]. MKL methods firstly transform
multi-relational data matrices onto the homologous data matrices that are di-
rectly related with the target task, and then applies different techniques to com-
bine these transformed data matrices for prediction [8,13,23]. These MKL-based
methods can selectively integrate multiple homologous data matrices. However,
they have to transform heterogeneous features or project multi-relational data
into a common feature space before fusion. This hand-crafted transformation and
projection may enshroud the intrinsic structure of multi-relational data, and thus
does not make full usage of them [26]. BN-based approaches combine the con-
cepts from probability and graph theory to represent and model causal relations
between random variables [17]. BN was initially applied to gene function predic-
tion [18] and also shows the potentiality in patient-specific data integration [25].
Although BN-based solution can capture conditional dependence between data
sources and variables, it suffers from a heavy computational limitation and asks
for sufficient training data with labels.

MF-based solutions generally factorize multiple data matrices into low-rank
matrices to explore latent relationships between objects across different data
sources. Solutions in this type do not need to project multi-relational data ma-
trices into the common feature space and thus can account for the intrinsic
structure of these information sources. To name a few, Ding et al. [5] extend-
ed the classical nonnegative matrix factorization (NMF) [14] to nonnegative
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matrix tri-factorization (NMTF) to co-cluster heterogeneous data, but NMTF
can only fuse inter-relational data matrices and ignore the intra-relational ones.
Wang et al. [19] proposed the symmetric nonnegative matrix tri-factorization
(SNMTF) to simultaneously cluster different types of objects, and incorporates
the intra-relational ones through manifold regularization [1]. However, SNMTF
has a heavy computational complexity and large runtime, because it perform-
s matrix factorization on a big matrix, whose block matrices embody inter-
relations between objects. Zitnik and Zupan [26] developed a penalized matrix
tri-factorization based model (DFMF) to jointly factorize multiple relational
data matrices for predicting gene functions and pharmacologic actions.

These aforementioned MF-based solutions show great potential in exploring
the underlying relations between objects, but they ignore the different relevances
of multi-relational data sources, since they implicitly assume each source having
equal relevance toward the target prediction task, while they may not (and of-
ten does). To overcome this problem, Fu et al. [6] introduced a MF-based model
(MFLDA) to predict lncRNA-disease associations by assigning different weights
to multiple inter-relational data matrices for objects of different types and by
jointly factorizing these matrices into low-rank ones. MFLDA then uses the op-
timized matrices to reconstruct the target matrix to predict new inter-relations
between objects of different types. However, MFLDA does not account for the d-
ifferent relevances of intra-relational data matrices for objects of the same types,
and thus its performance may be compromised by the low-quality or irrelevant
data sources. To simultaneously account for the different relevances of multi-
ple intra-relational data matrices, MFLDA was further extended to WMFLDA,
which can selectively fuse multiple intra-relation matrices [24]. However, these
extended solutions prefer to assigning larger weights to sparse data matrices, or
have a priority toward sparser ones, which may be irrelevant (or even harmful)
for the target task. In fact, this preference is also suffered by many MKL-based
solutions [9, 20,23].

To address these issues, we propose a Selective M atrix Factorization based
Data Fusion (SelMFDF) solution for integrating multi-relational data. SelMFD-
F can avoid preferring the sparse relational data matrices during the fusing
process. It performs collaborative matrix tri-factorization to optimize the low-
rank representation matrices of respective object types and the weights of inter-
relational data matrices. To selectively integrate multiple intra-relational data
matrices, it further optimizes these low-rank matrices by approximating them to
multiple intra-relational data matrices and the weights of these matrices. These
two types of weights contribute to identify relevant data sources and remove
irrelevant ones. After that, it approximates the target relational data matrix
using the optimized low-rank matrices. The main contributions of this paper are
summarized as follows:

(i) Our introduced SelMFDF can respect and explore the intrinsic structures
of multi-relational data matrices to simultaneously predict inter(intra)-relation
between objects of different (same) types, automatically discard irrelevant data
sources and credit larger weights to the more relevant ones.
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(ii) An alternative optimization procedure is developed to jointly optimize
the low-rank matrix approximations and weights of multi-relational data matri-
ces for the target prediction task.

(iii) Empirical study on predicting lncRNA-miRNA associations, gene func-
tions and protein-protein interactions shows that SelMFDF significantly outper-
forms the related and competitive methods NMTF [5], SNMTF [19], DFMF [26],
MFLDA [6], and WMFLDA [24].

2 Methodology
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Fig. 1. The operating principle of SelMFDF. In the left figure, Rij is the inter-relational

data matrix between object type i and j, R
(v)
ii is the v-th intra-relational matrix of the

i-th object type; in the right figure, Gi is the low-rank representation matrix of the
i-th object type. Wr

ij and Wh
iv are the weights assigned to respective inter-relational

and intra-relational data matrices.

The operating principle of SelMFDF is illustrated in Figure 1. SelMFDF pre-
sets weights for inter-relational and intra-relational data matrices, and performs
collaborative low-rank matrix factorization. It then jointly optimizes the weight-
s and the low-rank matrix approximations of these relational matrices. After
that, it reconstructs the target relational data matrix based on the product of
optimized low-rank matrices.

2.1 Matrix Factorization Model for Multiple Relational Data

The relationships between multi-type objects can be divided into inter-relations
and intra-relations, both of which can be encoded by relational data matrices. To
fuse these relational data sources, various solutions follow different principles to
transform these data matrices toward the target relational matrix using the inter-
relations between objects [7,22]. However, this transformation often overrides or
even distorts the intrinsic structures of multi-relational data. To avoid this issue,
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Zitnik and Zupan [26] introduced a penalized matrix factorization based data
fusion framework (DFMF). The objective function of DFMF is:

min
G≥0
L(G,S) =

∑
Rij∈R

∥∥Rij −GiSijG
T
j

∥∥2
F

+

m∑
i=1

maxi ti∑
t=1

tr(GTΘ
(t)
i G)

(1)

where ‖·‖2F and tr(·) are the Frobenius norm of a matrix and the matrix trace
operator. DFMF simultaneously considers m object types and fuses a collec-
tion of relational data sources (R). The inter relations between ni objects of
type i and nj objects of type j are stored in Rij ∈ Rni×nj , Gi ∈ Rni×ki is
the low-rank representation of object type i, Sij ∈ Rki×kj encodes the latent
relationship between Gi and Gj , ki � ni is the low-rank size of the respec-
tive object type, G = diag(G1,G2, · · · ,Gm). Without loss of generality, sup-

pose the i-th object type has ti intra relational data matrices and Θ
(t)
i is the

t-th one. Θ(t) collectively contains all the following block diagonal matrices:

Θ(t) = diag(Θ
(t)
1 ,Θ

(t)
2 , · · · ,Θ(t)

m ), t ∈ {1, 2, · · · ,maxi ti}, and the i-th block
matrix along the main diagonal of Θ(t) is zero if t ≥ ti.

Eq. (1) can respect and explore the intrinsic structure of multiple relational
data matrices, since it does not project these matrices onto the same space for
fusion. However, it equally treats all the relational matrices and ignores the dif-
ferent relevances of them toward the target task. As a result, its performance may
be dragged down by noisy or irrelevant data sources. To address this issue, Fu
et al. [6] extended DFMF by optimizing the weights assigned to inter-relational
data matrices. However, it still can not differentiate noisy intra-relational matri-
ces during the fusing process. Given that, Yu et al. [24] further specified weights
to different intra-relational matrices. The theoretical analysis and experimental
results show that these two extensions can indeed selectively fuse multiple rela-
tional data sources. However, they are inclined to select sparse ones with more
zero elements, since the sparse data matrices generally have a smaller approxi-

mate loss (
∥∥Rij −GiSijG

T
j

∥∥2
F

) or smoothness loss (tr(GT
i Θ

(t)
i Gi)). In practice,

a too sparse data matrix often cannot encode sufficient information for the target
task, and thus is irrelevant for the task.

2.2 Objective Function of SelMFDF

Based on the above analysis, to reduce the impact of noisy data sources and to
avoid inclined to sparse ones, we define the objective function of SelMFDF as
follows:
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min
G≥0
L(G,S,Wr,Wh) =

∑
Rij∈R

Wr
ij

∥∥Rij −GiSijG
T
j

∥∥2
F

+

m∑
i=1

τ∑
t=1

Wh
it

∥∥∥R(t)
ii −GiSiiG

T
i

∥∥∥2
F

s.t. Wr ≥ 0,Wh ≥ 0

(2)

where Wr ∈ Rm×m, Wh ∈ Rm×τ , τ = maxi ti, Wr contains the weights as-
signed to different inter-relational data matrices, if Rij /∈ R, Wr

ij = 0. Wh con-

tains the weights assigned to different intra-relational data matrices. If R
(t)
ii /∈ R

or t > ti, Wh
it = 0. Unlike Eq. (1), our objective function utilizes the shared

low-rank matrices Gi and Sii ∈ Rki×ki across ti intra-relational data matrices
to approximate R

(t)
ii . In this way, a data matrix inconsistent with other intra-

relational data matrices of the same objects will be assigned with a lower weight.

Particularly, for a sparse data matrix R
(t)
ii ,
∥∥∥R(t)

ii −GiSiiG
T
i

∥∥∥2
F

results in a large

loss, because R
(t)
ii encodes much fewer relations between objects than its cousin

matrices ({R(t′)
ii }

ti
t′=1, t

′ 6= t}) and the loss is dominated by tr(GiSiiG
T
i ). Simi-

larly, for a dense matrix with noisy entries,
∥∥∥R(t)

ii −GiSiiG
T
i

∥∥∥2
F

also results in a

big loss. To minimize the above objective function, a smaller weight will be au-
tomatically assigned to these two types of data matrices. Since Gi is also shared
by the inter-relational data matrices, the first term in Eq. (2) can also avoid pre-
ferring to sparse ones. As a result, Eq. (2) can avoid the preference toward the
sparse data matrices. We want to remark that low-rank matrix approximation
can also reduce the impact of noises to some extent [4, 16].

However, Eq. (2) may only set Wr
ij = 1 to Rij if Rij has the smallest

approximation loss (‖Rij −GiSijGj‖2F ) among all the inter-relational matrices,
and the other inter-relational ones will be discarded. Eq. (2) may also assign

Wh
it = 1 to R

(t)
ii , if R

(t)
ii has the smallest approximation loss among all the intra-

relational matrices. As a result, the contribution of other intra-relational ones will
be disregarded. To remedy this issue, we add two l2-norm based regularizations
on Wr and Wh, and update the objective function as follows:

min
G≥0
L(G,S,Wr,Wh) =

∑
Rij∈R

Wr
ij

∥∥Rij −GiSijG
T
j

∥∥2
F

+

m∑
i=1

τ∑
t=1

Wh
it

∥∥∥R(t)
ii −GiSiiG

T
i

∥∥∥2
F

+ α ‖vec(Wr)‖2F + β
∥∥vec(Wh)

∥∥2
F

s.t. Wr ≥ 0,Wh ≥ 0,
∑

vec(Wr) = 1,
∑

vec(Wh) = 1

(3)
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where vec(Wr) and vec(Wh) are the vectorization operator that stacks the rows
of Wr and Wh, α > 0 and β > 0 are used to control the complexity of vec(Wr)
and vec(Wh). By adding these two regularization terms, SelMFDF can selective-
ly integrate several relevant data matrices, and automatically remove irrelevant
ones. Our following optimization procedure for Wh and Wr will theoretically
confirm this advantage.

G̃ can be viewed as the optimized low-rank matrices of these object types,
we can approximate the target inter-relational data matrix between object type
i and j as Eq. (4). Similarly, we can also approximate the intra-relational data
matrix as Eq. (5).

R̂ij = G̃iS̃ijG̃
T
j (4)

R̂ii = G̃iS̃iiG̃
T
i (5)

In this way, SelMFDF can not only predict the inter-relations between different
types of objects, but also the intra-relations between objects of the same type.

2.3 Optimization of SelMFDF

The optimization problem in Eq. (3) is non-convex with respect to G, S, Wr

and Wh simultaneously. It is difficult to seek the global optimal solutions for all
the variables at the same time. Here, we follow the idea of alternating direction
method of multipliers (ADMM) [2] and DFMF [26] to alternatively optimize one
variable by fixing other three of these four variables in an iterative way.

To account for Gi ≥ 0, we import the Lagrangian multipliers {λi}mi=1 and
reformulate Eq. (3) as follows:

min
G≥0
L̃(G,S,Wr,Wh, λ) =∑

Rij∈R
Wr

ijtr(R
T
ijRij − 2RT

ijGiSijG
T
j + GT

j GjS
T
ijG

T
i GiSij)

+

m∑
i=1

τ∑
t=1

Wh
ittr(R

(t)
ii

T
R

(t)
ii − 2R

(t)
ii

T
GiSiiG

T
i + GT

i GiS
T
iiG

T
i GiSii)

+ α ‖vec(Wr)‖2F + β
∥∥vec(Wh)

∥∥2
F
−

m∑
i=1

tr(λiG
T
i )

s.t. Wr ≥ 0,Wh ≥ 0,
∑

vec(Wr) = 1,
∑

vec(Wh) = 1

(6)

Next, we goto the alternative optimization procedure.
Optimizing Sij : Suppose G, Wr and Wh are known and fixed, and let the

partial derivative of Eq. (6) with respect to Sij and Sii equal to 0, we can obtain
the explicit solution of Sij and Sii as follows:

Sij = (GT
i Gi)

−1GT
i RijGj(G

T
j Gj)

−1 (7)

Sii = (GT
i Gi)

−1
∑τ
t=1 Wh

it(G
T
i R

(t)
ii Gi)∑τ

t=1 Wh
it

(GT
i Gi)

−1 (8)
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Optimizing Gi: Similar as the optimization of S, we also take the partial
derivative of Eq. (6) with respect to Gi with known S, Wr and Wh:

∂L̃
Gi

=
∑

j:Rij∈R

Wr
ij(−2RijGjS

T
ij + 2GiSijG

T
j GjS

T
ij)

+
∑

j:Rji∈R

Wr
ji(−2RT

jiGjSji + 2GiS
T
jiG

T
j GjSji)

+

τ∑
t=1

Wh
it2R

(t)
ii Gi − λi

(9)

Multipliers λi can be obtained from Eq. (9) by letting ∂L̃
Gi

= 0 and the KKT
(Karush-Kuhn-Tucker) complementary condition [2] for nonnegativity of Gi as:

0 = λi ◦Gi (10)

where ◦ denotes the Hadamard product. Eq. (10) is a fixed point equation and
the solution must satisfy it at convergence. Thus, we can obtain:

For Rij ∈ R:

G
(e)
i + = Wr

ij(RijGjS
T
ij)

+ + Wr
ijGi(SijG

T
j GjS

T
ij)
−

G
(d)
i + = Wr

ij(RijGjS
T
ij)
− + Wr

ijGi(SijG
T
j GjS

T
ij)

+

G
(e)
j + = Wr

ij(R
T
ijGiSij)

+ + Wr
ijGj(S

T
ijG

T
i GiSij)

−

G
(d)
j + = Wr

ij(R
T
ijGiSij)

− + Wr
ijGj(S

T
ijG

T
i GiSij)

+

(11)

For t = 1, 2, . . . , τ :

G
(e)
i + = 2Wh

it(R
(t)
ii GiS

T
ii)

+ + 2Wh
it(GiSiiG

T
i GiS

T
ii)
−

G
(d)
i + = 2Wh

it(R
(t)
ii GiS

T
ii)
− + 2Wh

it(GiSiiG
T
i GiS

T
ii)

+
(12)

where the matrices with positive and negative symbols are defined as A+ =
|A|+A

2 and A− = |A|−A
2 , respectively. Then we can construct G as:

G← G ◦ diag(

√√√√G
(e)
1

G
(d)
1

,

√√√√G
(e)
2

G
(d)
2

, . . . ,

√
G

(e)
m

G
(d)
m

) (13)

Optimizing Wr: After updating S and G, we view them as known and take
the partial derivative of Eq. (6) with respect to Wr. In this case, the second,
fourth and fifth terms on the right of Eq. (6) are irrelevant to Wr. Then we
have:

L̃(G,S,Wr) =
∑

Rij∈R

Wr
ij

∥∥Rij −GiSijG
T
j

∥∥2
F

+ α ‖vec(Wr)‖2F
s.t. Wr

ij ≥ 0,
∑

vec(Wr) = 1

(14)
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Let Lij =
∥∥Rij −GiSijG

T
j

∥∥2
F

be the reconstruction loss for Rij , then Eq. (14)
can be updated as:

L̃(L,Wr, δ, γ) = vec(Wr)T vec(L) + αvec(Wr)T vec(Wr)

−
m∑

i,j=1

δijW
r
ij − γ(

m∑
i,j=1

Wr
ij − 1)

(15)

Eq. (15) is a quadratic optimization problem with respect to vec(Wr) and the
Lagrangian multipliers (δ and γ) are the two constraints of Wr.

Base on the KKT conditions, the optional Wr should satisfy the following
four conditions:

(i) Stationary condition: ∂L̃
∂Wr = L + 2αWr − δ − γ = 0

(ii) Feasible condition: Wr
ij ≥ 0,

∑m
i,j=1 Wr

ij − 1 = 0
(iii) Dual feasibility: δij ≥ 0,∀Rij ∈ R
(iv) Complementary slackness: δijW

r
ij = 0,∀Rij ∈ R

From the stationary condition, Wr
ij can be computed as follows:

Wr
ij =

δij + γ − Lij
2α

(16)

We can find that Wr
ij depends on the specification of δij and γ, and the speci-

fication of δij and γ can be analyzed in the following three cases:

(i) If γ > Lij , then Wr
ij > 0, because of the complementary slackness δijW

r
ij =

0, δij = 0 and Wr
ij =

γ−Lij

2α

(ii) If γ = Lij , because of δijW
r
ij = 0 and Wr

ij =
δij
2α , then δij = 0 and Wr

ij = 0
(iii) If γ < Lij , since Wr

ij ≥ 0, it requires δij > 0; because δijW
r
ij = 0, then

Wr
ij = 0

From the above analysis, we can set Wr
ij as:

Wr
ij =


γ−Lij

2α if γ > Lij and Rij ∈ R

0 if γ ≤ Lij or Rij /∈ R
, (17)

Let vL ∈ R|R| store the entries of vector vec(L) in ascending order with en-
tries corresponding to Rij /∈ R removed. Accordingly, vr ∈ R|R| stores the
corresponding entries of vec(Wr). For a not too big predefined α, there exist-
s p ∈ {1, 2, . . . , |R|} with vL(p) < γ and vL(p + 1) ≥ γ, satisfying

∑
vL =∑

vL(p)<γ
γ−vL(p)

2α = 1. Then vr(p′) has the following explicit solution:

vr(p′) =


γ−vL(p′)

2α if p′ ≤ p

0 if p′ > p

, (18)
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From
∑|R|
p′=1 vr(p′) =

∑p
p′=1

γ−vL(p′)
2α = 1, we can get the value for γ as:

γ =
2α+

∑p
p′=1 vL(p′)

p
(19)

To search the optimal p, we initialize p = |R| and decrease it step by step. In
each step, we repeatedly refer to Eqs. (18-19) and stop the search once a feasible
p is obtained. From Eq. (19), we can observe that for a nonnegative γ, at least
one inter-relational data matrix can be selected.

Optimizing Wh: When G, S and Wr are fixed, the first, the third and fifth
terms on the right of Eq. 3 are irrelevant to Wh, and can be ignored. Then we
can follow the similar procedure as that of Wr to obtain the explicit solution of
Wh:

Wh
it =


µ−O(t)

i

2β if µ > O
(t)
i and t ≤ maxi ti

0 if µ ≤ O
(t)
i and t > maxi ti

, (20)

where O
(t)
i =

∥∥∥R(t)
ii −GiSiiG

T
i

∥∥∥2
F

, µ =
2β+

∑h
h′=1

vO(h′)

h , vO stores the entries

of vector vec(O) in ascending order with entries corresponding to {R(t)
ii }

ti
t=1

(i = 1, 2, · · · ,m), and h can also be sought in the similar way as p in Eq. (18). We

can see from Eq. (20) that if O
(t)
i is larger, Wh

it will be smaller. Once GiSiiG
T
i

is a fixed appropriation, a sparser (or denser) R
(t)
ii causes a larger reconstruction

loss (O
(t)
i ). As a result, the explicit solution of Wh can also avoid the preference

toward the ‘sparse’ data matrices.

3 Experiments

3.1 Experimental setup

To investigate the effectiveness of SelMFDF, we apply it for inter-relation and
intra-relation prediction tasks. The inter-relation prediction tasks include lncRNA-
miRNA associations and Gene Ontology (GO) annotations of genes, where the
target relational matrix is a binary matrix, representing associations between
lncRNAs and miRNAs or between genes and GO terms (labels). The intra-
relation prediction task is to predict protein-protein interactions by reconstruct-
ing the target adjacent matrix of proteins. We collect five object types: lncRNA,
genes, miRNA, diseases and Gene Ontology, and adopt eight inter-relational
data sources and twelve intra-relational data sources between these objects for
experiments. The details of these sources are provided in Table 1.

To comparatively study the performance of SelMFDF, we compare it against
five matrix factorization based data fusion methods, including NMTF [5], S-
NMTF [19], DFMF [26], MFLDA [6] and WMFLDA [24]. The first three compar-
ing methods equally treat inter-relational matrices or intra-relational matrices
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Table 1. Details on the collected inter-relations and intra-relations from different data
sources

Datasets Size #Associations Sources

LncRNA-Gene 240 × 15527 6186 R12 http://www.lncrna2target.org/

LncRNA-miRNA 240 × 495 1002 R13 http://starbase.sysu.edu.cn/mirLncRNA.php/

LncRNA-Disease 240 × 412 2697 R14 http://www.cuilab.cn/lncrnadisease/

LncRNA-GO 240 × 6428 3094 R15 ftp://ftp.ncbi.nih.gov/gene/GeneRIF/

Gene-Disease 15527 × 412 115317 R24 http://www.disgenet.org/

Gene-GO 15527 × 6428 1191503 R25 http://geneontology.org/

miRNA-Gene 495 × 15527 135852 R32 http://mirtarbase.mbc.nctu.edu.tw/

miRNA-Disease 495 × 412 13562 R34 http://www.cuilab.cn/hmdd/

Gene-Gene

2719 × 2719 4551 R
(1)
22 http://dip.doe-mbi.ucla.edu/dip/Main.cgi

7898 × 7898 32097 R
(2)
22 http://hprd.org/index html

13106 × 13106 283306 R
(3)
22 http://ophid.utoronto.ca/ophidv2.204/index.jsp

11778 × 11778 113973 R
(4)
22 http://www.ebi.ac.uk/intact/

7898 × 7898 32097 R
(5)
22 http://mint.bio.uniroma2.it/

13086 × 13086 223546 R
(6)
22 http://thebiogrid.org/

miRNA-miRNA

239 × 239 57121 R
(1)
33 http://doi.org/10.1186/1471-2164-8-166

443 × 443 196249 R
(2)
33 http://doi.org/10.1093/bioinformatics/btx019

495 × 495 225645 R
(3)
33 http://www.cuilab.cn/hmdd/

495 × 495 202833 R
(4)
33 http://mirtarbase.mbc.nctu.edu.tw/

495 × 495 42723 R
(5)
33 http://starbase.sysu.edu.cn/mirLncRNA.php/

22 × 22 32 R
(6)
33 http://doi.org/10.1016/j.gene.2012.09.066

during the fusion process. MFLDA optimizes weights to different inter-relational
ones and WMFLDA further assigns weights to different intra-relational ones. The
input parameters of these methods are set as specified by the authors in the code,
or optimized in the suggested ranges. We use the area under the receiver operat-
ing characteristic curve (AUROC) and the area under the precision recall curve
(AUPRC) to quantify the overall performance. We run five fold cross validation
for ten independent rounds, and report the average results.

3.2 Results of inter-relation prediction tasks

For this investigation, we randomly divide the original lncRNA-miRNA associa-
tions (R13) into five folds for cross validation. Next, we plot the ROC curves of
the comparing methods and report their corresponding AUROCs in Figure 2(a).
We can see that SelMFDF always has the highest TPRs (true positive rates)
under the same FPRs (false positive rates), and achieves the highest AUROC
among these methods. Figure 2(b) plots the PR curves and reports the AUPRC-
s, we can also observe that SelMFDF consistently outperforms these comparing
methods.

SelMFDF performs significantly better than WMFLDA and MFLDA, al-
though the latter two also account for the different relevances of multiple rela-
tional data matrices. This is because they both use the manifold regularization
and approximation loss to determine the relevance of these matrices. As such,
they prefer sparse data matrices during the fusion process. However, those s-
parse matrices may be irrelevant for the target task. SelMFDF does not have
such preference, and thus it obtains better results than WMFLDA and MFLDA.
The other comparing methods equally treat all the data matrices. As expect-
ed, they have much lower AUROC and AUPRC than those of WMFLDA and
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Fig. 2. Results of lncRNA-miRNA association prediction. (a) ROC curve and AU-
ROCs. (b) PR curve and AUPRCs.

MFLDA, and say nothing of SelMFDF. In practice, S-NMTF costs the largest
runtime costs and memory, since it performs matrix factorization on a big adja-
cency matrix of all objects. NMTF only fuses inter relational data matrix and
thus loses to all the comparing methods.
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Fig. 3. The AUROCs and AUPRCs of SelMFDF with different collections of intra-
relational data matrices. R1 = {R(1)

22 ,R
(2)
22 ,R

(3)
22 ,R

(4)
22 ,R

(5)
22 ,R

(6)
22 }, R2 = R1 − R1

22,
R3 = R1−R3

22, R4 = R1−R1
22 −−R3

22.

To investigate whether SelMFDF has the capability to identify relevant data
matrices and avoid too sparse ones, we report the weights assigned to different

intra-relational matrices. The weights assigned to R
(i)
22 , (i = 1, . . . , 6) are (0,

0.0946, 0, 0.0537, 0.0946, 0.1084) and the weights assigned to R
(i)
33 , (i = 1, . . . , 6)

are (0.1033, 0.1572, 0.1133, 0.1092, 0.1568, 0.0089). We can see SelMFDF assigns

a zero weight to the sparsest R
(1)
22 and R

(6)
33 , and it also assigns a zero weight

to the densest R
(3)
22 . The sparsity of these data matrices is included in Table 1

(column ‘#Associations’). These two assignments are expected from Eq. (20)
that SelMFDF can avoid preferring to too sparse and too dense data matrices
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by crediting lower weights to them. In contrast, these comparing methods either
equally integrate them or prefer the sparse ones.

To prove these discarded matrices are indeed irrelevant, we further report the

results of SelMFDF by discarding R
(1)
22 and R

(3)
22 , in Figure 3. SelMFDF obtains

the highest AUROC and AUPRC when R
(1)
22 and R

(3)
22 are excluded. We also

see that R
(1)
22 has little contribution. This observation confirms the sparse data

matrix has a tiny impact on the target prediction task, since it is too sparse to
encode sufficient information for the target task. In addition, SelMFDF has an

increased performance when R
(3)
22 is discarded. That is possible because R

(3)
22 is

a dense matrix with many noisy entries.
We further apply these comparing methods to predict GO annotations of

genes (the target relational matrix is R25) in five-fold cross validation. The
AUROCs and AUPRCs of these comparing methods are revealed in Figure 4.
We can clearly see that SelMFDF again performs consistently better than the
other five approaches and the results give the similar conclusions as those on
predicting lncRNA-miRNA associations.
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Fig. 4. Results of predicting GO annotations of proteins. (a) ROC curve and AUROCs.
(b) PR curve and AUPRCs.

3.3 Results of intra-relation prediction task

To further explore the usage of SelDFMF in predicting intra-relations between
the same type of objects, we apply SelMFDF to predict protein-protein interac-
tions. For this study, we pick out the protein-protein interaction matrix collected

from BioGrid [3] from the collection of intra relational matrices {R(t)
22 }6t=1, and

then use G2S22G
T
2 to approximate the target intra-relational data matrix. Nex-

t, we select the top K predicted interact-pairs and check them by referring to
available interactions in BioGrid [3]. The number of confirmed interactions under
different K is reported in Table 2.

From Table 2, we can clearly see that SelMFDF always more accurately
predicts protein-protein interactions than other methods. In addition, from the
remaining 15 interactions (not recorded in the BioGrid) in top 20 predicted by
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Table 2. Number of confirmed PPIs (from BioGrid) predicted by comparing methods.

Methods
Confirmed Interactions

K=20 K=50 K=100 K=500 K=1000 K=10000

SelMFDF 5 9 17 56 118 879
WMFLDA 2 5 10 31 69 521
MFLDA 2 4 13 26 52 511
DFMF 2 4 10 23 43 482

S-NMTF 2 4 4 9 24 140
NMTF 0 0 0 1 1 9

SelMFDF, we further find 6 interactions confirmed by HRPD [11], IntAct [10]
and I2D [12] databases. These results indicate SelMFDF can be more reliably
applied for the intra-relations prediction.

3.4 Parameter Analysis
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Fig. 5. The AUROC and AUPRC of SelMFDF under different low-rank sizes k.

The low-rank size ki is an important parameter for low-rank matrix approx-
imation based solutions. To study the sensitivity of ki, we fix all ki = k across
these five types of objects for simplicity, and then increase k from 10 to 200.
Fig. 5 reports the AUROC and AURPC under different input values of ki in
predicting lncRNA-miRNA associations in five-fold cross validation. Both the
AUROC value and AUPRC value increase as the increase of k and reach to a
highest when k ≈ 20. Then the AUROC value has a slight decrease and keeps
stable after k > 100. The AURPC value nearly keeps stable when k ≥ 20. Given
these observations, we adopt k = 20 for experiments.

From Eq. (18) and Eq. (20), we can find that once the input value of α or
β is specified, the weights Wr and Wh assigned to the relational data matrices
are also determined. Thus, we further conduct five-fold validation to evaluate
the performance of SelMFDF under different combinations of α and β. We vary
α and β in {10−2, 10−1, · · · , 1010} and report the average AUROC and AUPRC
in Fig. 6. We can clearly see that when α = 107 and β = 104, SelMFDF achieves
the highest AUPRC. The input value of α significantly affects the performance;
the AUROC value and AUPRC value increase as α increase, and reach a plateau
when α > 107. The input value of β also affects the performance; the AUPRC
value increases as β get larger, and then it slightly decreases when β > 104.
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Fig. 6. AUROC and AUPRC of SelMFDF under different input values of α and β. (a)
AUROCs. (b) AUPRCs.

From these results, we can conclude that SelMFDF can automatically identify
irrelevant relational data matrices, and achieve a more prominent performance
on predicting the inter- and intra-relations between multiple object types. In
addition, it is effective in a wide combination of α and β values, and low-rank
sizes.

4 Conclusion

We introduced a selective matrix factorization based solution (SelMFDF) to fuse
multi-relational data matrices. Unlike existing matrix factorization based data
fusion approaches, SelMFDF can not only selectively integrate multi-relational
data matrices, but also avoid preferring to sparse ones and dense ones. Ex-
tensive experimental results show that SelMFDF achieves a much better per-
formance than the state-of-the-art solutions in predicting inter-relations and
intra-relations between objects. In our future work, we will extend SelMFDF for
large scale heterogeneous data fusion. The code and datasets are available at
http://mlda.swu.edu.cn/codes.php?name=SelMFDF.
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