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Data often exists in subspaces embedded within a high-dimensional space. Subspace clustering seeks to
group data according to the dimensions relevant to each subspace. This requires the estimation of sub-
spaces as well as the clustering of data. Subspace clustering becomes increasingly challenging in high
dimensional spaces due to the curse of dimensionality which affects reliable estimations of distances
and density. Recently, another aspect of high-dimensional spaces has been observed, known as the hub-
ness phenomenon, whereby few data points appear frequently as nearest neighbors of the rest of the
data. The distribution of neighbor occurrences becomes skewed with increasing intrinsic dimensionality
of the data, and few points with high neighbor occurrences emerge as hubs. Hubs exhibit useful geomet-
ric properties and have been leveraged for clustering data in the full-dimensional space. In this paper, we
study hubs in the context of subspace clustering. We present new characterizations of hubs in relation to
subspaces, and design graph-based meta-features to identify a subset of hubs which are well fit to serve
as seeds for the discovery of local latent subspaces and clusters. We propose and evaluate a hubness-
driven algorithm to find subspace clusters, and show that our approach is superior to the baselines,
and is competitive against state-of-the-art subspace clustering methods. We also identify the data char-
acteristics that make hubs suitable for subspace clustering. Such characterization gives valuable guideli-

nes to data mining practitioners.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Subspace clustering is a fundamental unsupervised learning
task which seeks to group data according to their similarity in a
combination of features. This is particularly relevant for high-
dimensional data, where samples reside in clusters, and different
combinations of features are relevant for different clusters. A single
feature could be relevant to at least one of the clusters. Global
dimensionality reduction methods fail in these scenarios as they
cannot capture the local relevance of features within each cluster.
Hence, local feature selection techniques are required, which can
capture the degree to which each feature contributes to the sub-
space of a cluster. Several different subspace clustering algorithms
have been proposed in the literature [13,32,21,30], based on differ-
ent definitions of subspaces and methodologies to capture local
feature relevance.

However, distance and density estimation in high-dimensional
data are negatively affected by the curse of dimensionality. In
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high-dimensional spaces data becomes sparse and pairwise dis-
tances become less meaningful, a phenomenon known as distance
concentration. Thus, achieving accurate distance and density esti-
mations in high-dimensional data is a challenge.

The hubness phenomenon [34] is another aspect of high-
dimensional data. The distribution of k-neighbor occurrences
becomes increasingly skewed as dimensionality increases, and
few data points with high neighbor occurrence counts emerge as
hubs in the full-dimensional space (also known as global hubs).
Hubness poses both challenges and good potential to enhance sub-
space clustering. A hub which is a neighbor of data points that
belong to a different class than itself can distort subspace estima-
tion, and is detrimental to clustering. Identifying such hubs with-
out access to class labels is a challenge for unsupervised learning
tasks. On the other hand, hubs are also known to exhibit useful
clustering properties and have been utilized to guide k-means clus-
tering [37]. The value of hubs on detecting subspaces and cluster-
ings therein has not been studied in the literature, and is the focus
of this work. As studied in the literature [34], the hubness phe-
nomenon is an inherent property of intrinsically high dimensional
data, irrespective of the data distribution and the neighborhood
size k. However, none of the subspace clustering algorithms pro-
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posed in the literature have considered this phenomenon in their
design.

In this paper, we study hubs and their characteristics in the con-
text of subspace clustering. We show that hubs are preserved in
local subspaces and enable discriminative initial distance measure-
ments in the full-dimensional space. Hence they form good seeds
for iterative, mode-seeking subspace clustering algorithms. The
seeding of hubs is non-trivial as different types of hubs exist, and
some are detrimental to clustering. We tackle two challenges in
unsupervised seed selection, which forms the core of our proposed
algorithm: (1) identifying hubs which are detrimental to clustering
without access to their class labels, and, (2) the design of a local
hubness ranking and selection mechanism to select hubs of differ-
ent classes. Our experiments on a non-parametric, mean shift
based subspace clustering algorithm demonstrate that hub-based
seeding improves the quality of clustering and subspace
estimation.

We summarize the main contributions of our paper as follows:

1. We present new characterizations of hubs in relation to sub-
spaces, and investigate the conditions under which hubs are
effective for clustering data. To the best of our knowledge, this
is the first study that analyzes and leverages hubs for subspace
clustering.

2. Different types of hubs exist, and not all are suitable for sub-
space clustering. We propose and evaluate meta-features based
on the k-nearest neighbor graph of data to predict the different
types of hubs.

3. We propose and evaluate a hubness-driven algorithm to find
subspace clusters, which is competitive against state-of-the-
art subspace clustering methods. Our experimental evaluation
demonstrates that selecting hubs which occur near local den-
sity modes can guide and improve the estimation of subspace
clusters.

The rest of the paper is organized as follows: Section 2 and Sec-
tion 3 describe the relevant literature and necessary background
for our work, respectively. Section 4 details new characterizations
of hubs and their utility for subspace clustering. Our proposed hub-
based subspace clustering algorithms are described in Section 5
and their evaluation is provided in Section 6. The paper concludes
with a discussion on when hubs should be leveraged, in Section 7.

2. Related work

Several approaches to subspace clustering have been proposed
in the literature. Based on the direction of subspace search, they
can be classified as top-down and bottom-up algorithms. Top-
down subspace clustering algorithms start from the full-
dimensional space and prune subspaces based on the locality
assumption, which assumes that the subspace of a cluster can be
derived from a local neighborhood around its centroid or cluster
members (e.g., [1,24]. Bottom-up algorithms start with one-
dimensional subspaces and expands them based on the Apriori
principle (e.g., [2,19]. Projected clustering methods (e.g., [1,6] seek
to find clusters of data projections on subsets of features, using
specialized distance functions. Soft-projected clustering methods
(e.g., [8,11] discover subspace clusters by weighting features
according to their local feature relevance. Weighting prevents the
loss of information incurred in dimensionality reduction. [8]
defines a weighted cluster as a collection of data points and a
weighting of the features along which the data are correlated.

Several hybrid, algebraic and spectral-based subspace cluster-
ing approaches have also been proposed. Many of the recent
state-of-the-art subspace clustering algorithms are spectral-based

and they operate in two stages: (1) construct an affinity matrix
of data lying in a union of subspaces, and (2) apply spectral cluster-
ing on the affinity matrix to cluster data according to subspaces.
The affinity matrix is constructed using the self-expressiveness
property of data. Several methods to obtain self-expressive coeffi-
cients have been proposed, and they differ mainly in the regular-
ization of the data representation matrix induced by the self-
expressive coefficients (e.g., low-rank representation [25,26,38],
sparse representation [10,40,39] and block-diagonal representa-
tion [27]. A unified optimization framework for affinity construc-
tion and spectral clustering is proposed by [23]. [39] find a
subset of data points, named exemplars, to best represent the data
as a linear combination of the selected exemplars. The spectral-
based methods embed data in a new global representation as
induced by the self-expressive coefficients, and data are segmented
according to subspaces by clustering on this embedded space.
However, they do not explicitly find the subspaces pertaining to
each cluster and hence lack interpretability of features relevant
to a subspace. Detailed survey on subspace clustering methods
and evaluation can be found in [13,32,21,30].

[34] provides a detailed theoretical study of the hubness phe-
nomenon, its emergence, and its impact on learning tasks. The lit-
erature on the application of the hubness phenomenon can be
broadly classified into two parts: (1) methods that seek to remove
the effect of hubness, and (2) methods that leverage hubness. Some
work reports the presence of hubs as detrimental to their tasks
(e.g., music retrieval [5], finger-print identification [15], zero-shot
learning [41]. [37] is the first work that leverages hubs for a learn-
ing task. The paper depicts hubs as good cluster prototypes, and
hubs are used to improve k-means clustering in high dimensions.
[14] proposed the relative hubness score for hub selection to
improve the k-Hubs algorithm proposed in [37].

There are three major differences between the hub selection
process in [37] and in [14], and our proposed approach: (1) The
previous algorithms rank and select local hubs, i.e. they compute
hubs within clusters formed during k-means iterations, while we
propose an algorithm to rank and select global hubs; (2) The initial
centroids of previous algorithms are selected based on random
sampling, while we use a hub-based sample as initial points of a
non-parametric clustering algorithm; (3) Existing algorithms per-
form clustering in full dimensional space, while we focus on hub
selection for subspace clustering. The authors in [29] empirically
identified geometric relationships between hubs, distance distri-
butions, data density and intrinsic dimensionality. In this paper,
we leverage their findings as well as identify new characterizations
of hubs, to develop our proposed algorithm for subspace clustering.

3. Background

3.1. The Hubness phenomenon

Let D = {x;}]_, be a collection of n data points x; € %t“. The hub-
ness score Ni(x) of a data point X is defined as the number of times
x occurs in the k-nearest neighbor (kNN) list of the other points
[34].

Ni(x) = il(x kNN(x:))

i=1

1 peQ
0 otherwise

1.0~ {

The data points x; that contribute to the hubness score of x are
called the reverse nearest neighbors of X (RkNN). A hub is a point x
whose hubness score Ni(X) > i + 20, where u and ¢ are the mean
and standard deviation of the hubness scores N, of all points in D.
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Table 1

Percentage of global hubs (all/good/bad) retained as local hubs within the corre-
sponding weighted clusters. The value N/A denotes the absence of good/bad global
hubs in a dataset. Percentages are rounded to two significant digits.

Data % Total Hubs % Good Hubs % Bad Hubs
Retained Retained Retained

Toy1 0.93 0.93 N/A
Toy2 0.90 0.90 N/A
Diabetes 0.82 0.91 0.59
Abalone 0.59 1.00 0.59
Letter 0.62 0.66 0.31
Pen-3 0.77 0.77 N/A
Pen-10 0.61 0.61 0
Image 0.46 0.49 0.19
Waveform1 0.85 091 0.44
Sonar 0.89 0.95 0.71
Musk1 0.54 0.70 0.10
Musk2 0.86 0.94 0.45
mfeat-factors 0.67 0.67 0
mfeat-pixels 0.66 0.66 0
ISOLET 0.79 0.83 0.31
COIL 0.24 0.24 N/A
Caltech-20 0.80 N/A 0.80
Caltech-100 0.88 N/A 0.88
DrivFace 0.79 0.79 N/A
OVA_ Colon 0.90 0.94 0.33

Hubs can be defined as either global or local. Global hubs are
points that emerge as hubs when N, is computed using the entire
data collection (which may include multiple clusters). Local hubs
are points x which emerge as hubs when Nj is computed using
only data that belong to the same cluster as Xx. For a unimodal data
distribution, global and local hubs are the same, but for multi-
modal distributions, local hubs represent hubs within each compo-
nent (cluster).

Hubs exhibit several geometric properties which are useful for
clustering data. Hubs occur near the centroids of uni-modal data
distributions. In multi-modal distributions, they occur near the
means of the individual component distributions. [34]| mathemat-
ically proved that this property is amplified in high dimensions and
is related to the phenomenon of distance concentration. [37]
empirically analyzed the role of hubs w.r.t k-means clustering
and designed several hub-based variants of k-means to leverage
local hubs as cluster centroids during k-means iterations.

However, the use of hubs to enhance the process of clustering
data is challenging due to the potential presence of the so-called
bad hubs. In fact, hubs are further classified as good and bad hubs,
based on the amount of label mismatch between a hub and its
reverse nearest neighbors. Typically, if the label mismatch is above
50%, then the hub is considered a bad hub. Bad hubs are detrimen-
tal to information retrieval and classification (clustering) tasks, as
they are close to many data points from different classes (clusters).
The discrimination of good and bad hubs requires label informa-
tion, which is typically not available in clustering problems.

3.2. Weighted Adaptive Mean Shift

Since we combine our hub-driven methodology with an adap-
tive version of mean shift, we provide here the necessary back-
ground on the latter. Mean shift [7] is a non-parametric
algorithm which estimates the modes in the data as the local max-
ima of a kernel density function. An adaptive kernel density esti-
mator for n instances in d dimensions is defined as follows:

fulo) = > 1 2 R)

T nidad
i h;

where x(x) is the kernel profile, and h; is an adaptive kernel band-
width that can be set differently for each data point. Successive esti-

mation points for the modes are derived from the gradient Vf,c(x)
as (Eq. 3.4 in [35]:

; )
S g (15 |?)
:
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S
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where g = —x/(X). Mean shift is applied to each data point, and all
points with the same mode are assigned to the same cluster.

The authors in [35] proposed a weighted adaptive kernel den-
sity estimator for data in subspaces (WAMS). The local feature rel-
evance of each point is learned by a weight distribution on its
features such that the dispersion among its nearest neighbors is
minimized. The weighted distance of point x from another point
Xx; with local feature relevance w; is defined as (Eq. 3.5 in [35]

Dy, (Xi,X) = S wa "‘“7"", where s, = <17>Zi<j\xi, — Xj|is the aver-

B n
2
age I attribute distance. Estimation points y,,; are computed as
(Eq. 3.21 in [35]:
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A sampling-based approximation of WAMS, called F-WAMS,
was also proposed for large datasets [35]. F-WAMS performs
weighted adaptive mean shift on a random subset of the data
{X1,X2,...,Xm}, Obtaining a set of initial clusters {Cq,Cs,...,Ci},
and local feature relevance for the sampled data: wy, wy, ..., Wy,
Each remaining data point X; is assigned to the cluster C; that min-
imizes the weighted distance Dy, (X;,X;) between X; and a cluster
member X;.

Ve =

4. Characterization of Hubs

In this section, we provide experimental evidence showing the
properties of hubs which make them good candidates as seeds of
subspace clusters. We present new geometric relationships
between hubs and subspace clusters, and propose meta-features
based on the k-NN graph of data to characterize bad hubs. Based
on the identified relationships, we present our proposed hub-
based algorithm in Section 5.

We use the simulated and real datasets listed in Table 1 and
described in Table 5 to evaluate the characteristics of hubs. We
generated two different simulated datasets. Toy1 consists of two
Gaussian clusters of 100 dimensions. One Gaussian has a mean of
one along each dimension, variance ¢? =1 along the first 40
dimensions d; : ds, and 2 = 5 along the remaining 60 dimensions
dyq : d1go- The other Gaussian has a mean of four along each dimen-
sion, variance ¢ = 5 along dimensions d; : dgy, and ¢ =1 along
dg1 : dioo. Both Gaussians have a diagonal covariance matrix. Each
cluster consists of 1000 points.

Toy2 consists of two spherical Gaussians of dimensionality 40
and 60, respectively, augmented with noisy features to form an
embedding dimensionality of 100. The relevant dimensions of
the two subspace clusters are d; : dso and dg; : dioo, Tespectively.
The means of each dimension of the two clusters are one and three,
respectively. Both Gaussians have a diagonal covariance matrix
and the variance of the relevant dimensions for both is four. The
augmented dimensions of each cluster are generated from a uni-
form distribution in the range [¢— 30,1+ 30], where u and o
are the mean and standard deviation of the respective Gaussian.
Again, each cluster consists of 1000 points.



196

P. Mani, C. Domeniconi/Neurocomputing 413 (2020) 193-209

Probability
N O 00 O N

-

o

8
Pairwise distance

a o N

Probability

o =~ M W A

8
Pairwise distance

Fig. 1. Pen-3: (a) Histogram of all pairwise distances; (b) Histogram of pairwise distances among hubs.
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Fig. 2. Overview of the proposed algorithm (H-WAMS).

4.1. Hubs and distance distributions

The authors in [29] have shown that the pairwise distance dis-
tribution of hubs manifests a better separation of clusters than the
same distribution computed using all points. Fig. 1 illustrates this
phenomenon for the real data Pen-3. The histograms in (a) and
(b) show the pairwise distances computed using all data and hubs
only, respectively. The resulting distributions are multimodal, thus
reflecting the clustering structure of the data. The modes obtained
from hubs are more pronounced, the corresponding components
have reduced variance, and are better separated from one another.
This pattern suggests that initializing the clustering process using
only hubs can facilitate the finding of good cluster centroids.

4.2. Hubs and subspace clusters

Here we investigate the relationship between hubs and sub-
space clusters. We adopt the concept of weighted cluster given in
[8], defined as a subset of data points, together with a vector w
of weights, such that the points are closely clustered according to
the L, norm distance weighted using w.

For the analysis, we construct weighted clusters by assigning an
ideal weight distribution to the features within each true cluster in
the data. The weight assigned to a feature is inversely proportional
to the variance of the feature within the corresponding cluster.

Specifically, the weight w; for feature f; is w; = #(f) The weights

of each cluster are normalized so that their values are within the
range (0, 1) and sum to 1. Local hubs in each cluster are computed
with respect to the weighted distances. The global hubs, which are

the hubs in the full-dimensional space, are computed using
unweighted distances.

Table 1 shows the percentage of global hubs retained as local
hubs within the corresponding true weighted clusters for simu-
lated and real data. The first column gives the total percentage of
global hubs retained as local hubs within the corresponding
weighted clusters. The second and third columns show the total
percentage of good (and bad) global hubs which are retained as
local hubs within their weighted clusters. The hubness threshold
for real datasets is set to N, > u+ o due to the large presence of
bad hubs. We observe that a large percentage of global hubs are
retained as local hubs within their corresponding weighted clus-
ters. Also, the percentage of global bad hubs which are retained
is much lower than the percentage of retained global good hubs.
Some datasets such as Pen and COIL do not have any global bad
hubs, while Caltech does not have any global good hubs. Hence
the percentage of retained good/bad hubs for these datasets is
denoted by N/A. On the other hand, a value of 0 means that none
of the global good/bad hubs emerge as local hubs within sub-
spaces, hence they are not retained.

The above results suggest that global hubs are good candidates
as seeds to estimate the subspaces they belong to. Since global
hubs tend to be distributed across clusters, they can be leveraged
for a data-driven estimation of subspace clusters, without prior
knowledge of the number of clusters in the data.

4.3. Bad and boundary hubs

Bad hubs negatively affect machine learning tasks which rely on
nearest neighbor algorithms. Bad hubs perform poorly as cluster
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seeds as they could attract many data points of different classes in
the same cluster. In addition, a good hub may lie near the boundary
of a class; as such, it will also perform poorly as seed of a cluster.
We define a hub as boundary if more than 50% of its k-nearest
neighbors belong to a class that is different from the hub’s class.

In this section we describe the design and evaluation of a meta-
feature based classifier to identify bad and boundary hubs. The
classifier is used to improve seed selection in our proposed sub-
space clustering algorithm, Hubness-driven Weighted Adaptive
Mean Shift (H-WAMS, Phase 1), which is described in detail in Sec-
tion 5. An overview of H-WAMS, is shown in Fig. 2. H-WAMS
involves the following steps: initialize a pool of global hubs to
serve as subspace seeds (Phase 0); identify and replace bad and
boundary hubs in the seed pool (Phase 1); rank and select seeds
from the pool by a measure of local hubness score (Phase 1); and
estimate subspace clusters (Phases 2 and 3).

Since clustering is an unsupervised task, the identification of
bad and boundary hubs is a difficult challenge. A solution to this
problem is to characterize bad and boundary hubs using meta-
features, and train a classifier on labeled samples collected from
other data sources. We propose to use meta-features defined on
the data kNN graph to discriminate bad or boundary hubs from
the remaining good hubs. (The latter class includes the good hubs
which are not boundary, and as such they are good in a strong
sense.) In the following, we introduce the meta-features we define,
and an empirical evaluation of the resulting classification process.

4.3.1. Meta-features

A kNN graph representation of the data is used to extract meta-
features from the immediate neighborhood of a hub. Let
D = {x;}{_,be a collection of data points. Let G = (V,E,w) be the
kNN graph of D, where V = {v4, v, ..., v,} is a set of n vertices cor-
responding to the data points x;€D. E={(v;,v)|v; € VA
v; € kNN(2;)} is a set of directed edges, where kNN(v;) denotes
the vertices in G corresponding to the k nearest neighbors of x;.
w:E—I1I={1,2,...,k}, is a function that assigns weights to
edges: w((v;, 7)) = r iff v; is the r'" closest nearest neighbor of v;
(r=1,...,k). We define the immediate neighborhood of a node
Vi as

IN(2;) = {vj|((vi, vj) €E) Vv (v, v) €E)}

where v; and v; are the nodes of G corresponding to data points Xx;
and x;, respectively. The subgraph of the immediate neighborhood
of a hub includes its k-nearest neighbors, its reverse k-nearest
neighbors, and the edges between them.

We propose 12 meta-features to characterize hubs; they can be
divided into three groups: measures of centrality, measures of hub-
ness, and measures of density. The list of all meta-features is given
in Table 2. Features 1 through 4 are measures of centrality. They
signify whether a hub is located in an interior region or near the
boundary of classes. LID and LCC are explained below in detail.
EN-r and WE-r are defined based on previous findings [3], which
state that power laws govern the distribution of edge count vs.
node count, as well as the distribution of edge weight vs. edge
count, in the one-step neighborhood of a node (a.k.a. egonet).
Hence, the above ratios are a measure of the strength of power
laws within the immediate neighborhood of a hub. Lower values
indicate neighborhoods which are sparsely connected, and hence
a higher possibility for them to be near boundaries. Features 5
through 9 are measures of hubness of the kNNs and RkNNs of a
hub, and are included to identify strong good and bad hubs. The
intuition is that neighbor nodes of a strong good hub would also
have high hubness scores, as they are likely to occur in dense inte-
rior regions. On the other hand, the majority of the RkNNs of a
strong bad hub may belong to surrounding classes, and they are

Table 2
List of meta-features computed on the immediate neighborhood IN of a hub.
#  Type Feature Definition
1 LID Local Intrinsic Dimensionality
2 Centrality LCC Local Clustering Coefficient
Measures
3 EN-r Ratio of edge count to node count in IN
4 WE-r Ratio of edge weight to edge count in IN
5 Avg Mean hubness score of kNNs
(Ninn)
6  Hubness Avg Mean hubness score of RkKNNs
Measures (Ngienn)
7 Var Variance of hubness scores of kNNs
(Ninn)
8 Var Variance of hubness scores of RKNNs
(NRinn)
9 Skew Skewness of hubness scores of RkNNs
(Nrinn)
10 Diffy Difference in density:
Diffy(h) = q(h) — 1/[RKNN| 3 q(r),q(x) =
reRkNN
1/dk(x), di(x) is the distance of X to its K
nearest neighbor.
11 Density Diff,,n  Relative difference in rank among the kNNs of a
Measures hub, which are also RkNNs of the same.
12 Var(IN) Normalized mean variance of data features in

IN: Var(IN)= avg(var(IN))/|IN|.

likely to be positioned near class boundaries and have low hubness
scores. The positive skewness in the distribution of hubness scores
of RkNNs is likely to be higher for bad hubs, as the majority of its
RkNNs is likely to have low hubness scores. Features 10 through
12 are different measures of density, meant to capture the bad or
boundary nature of hubs. Diff; measures the difference in local
densities for a hub and its RkNNs. The neighborhood around an
interior hub is expected to be dense, and therefore smaller differ-
ences in density than for hubs near boundaries are expected.
Diff, 4k is explained below in detail. Var(IN) is introduced to iden-
tify the presence of points that belong to different classes within
the same neighborhood, as measured by the variance of data fea-
tures in the immediate neighborhood of a hub. Below we provide
the details of features 1, 2, and 11.

1. Local Intrinsic Dimensionality (LID): it’s a local measure of intrin-
sic dimensionality, defined for each data point. It measures the
expansion of the cumulative distribution of pairwise distances
for increasing radii around a data point [17,18]. LID has also
been characterized as a measure of data inlierness [16,28]. A
lower value of LID indicates higher inlierness. [4] proposed an
estimator for LID based on the neighborhood of a data point,
which we use for our computation. The neighborhood size for
LID estimation is set to k = 5 x /n, in order to allow the compu-
tation to stabilize. The LID estimator is defined as:

1, dx)
LID(x) = (k;ln i m) 1)

where d;(x) is the distance of X to its i nearest neighbor.

2. Local Clustering Coefficient (LCC): it measures the degree to
which nodes cluster together. In other words, it indicates the
amount of transitivity in the neighborhood, which is measured
by the density of triangles in a network. Based on the definition
in [31], we compute the value of LCC for data point x as follows:

_ 2[{(#;, w)|(9;, vk € IN(node(x)) A (%), ve) € E)}|
B [IN(node(x))|(]IN(node(x))| — 1)

LCC(x)
(2)

where node(x) denotes the node of G corresponding to x.
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Table 3

Evaluation of the SVM classifier with meta-features to detect good vs. bad/boundary hubs. Pen and COIL do not have any bad/boundary hubs.
Test Data Mean F1-score F1-score Recall Recall

(Training) (Test) (Bad/Boundary) (Good)

Diabetes 0.83 0.57 0.45 0.82
Letter 0.85 0.54 0.40 0.59
Pen-3 0.85 0.87 N/A 0.77
Image 0.84 0.54 0.29 0.71
Waveform1 0.84 0.79 0.73 0.40
Sonar 0.83 0.69 0.71 0.25
Musk1 0.84 0.68 0.68 0.62
Musk2 0.83 0.61 0.49 0.86
mfeat-factors 0.85 0.70 0.62 0.69
mfeat-pixels 0.85 0.61 0.60 0.61
ISOLET 0.83 0.80 0.76 0.85
COIL 0.84 0.75 N/A 0.59

3. Difference in Neighbor Rank (Diff,4): it measures the relative
difference in rank (i.e., edge weight in the kNN graph) for points
that are both kNNs and RkNNs of a hub. When such a point has a
smaller kNN rank (i.e., it is closer) and a higher RkNN rank w.r.t.
a hub, it is indicative of a sparser region around the hub and a
denser region around the point, and the hub is likely to be a
bad hub. On the other hand, when a point has a higher RkNN
rank and a lower kNN rank, it is indicative of a denser region
around the hub, and the hub is likely to be a good hub in an
interior region. We formally define Diff,,,, as follows:

D wisx)-wixs))]

seS
w((x;s))

Diff qni (X) if S#g

otherwise

k

where S = {s|s € kNN(x) As € RkNN(x)} and w() is the edge
weight defined in Section 4.3.1. The upper-bound of Diff,4 is
k — 1, where k is the neighborhood size of the kNN graph. Hence,
we set Diff,5x(X) = k when S = .

4.3.2. Hubs classification and evaluation

To evaluate the effectiveness of the defined meta-features to
classify hubs, we train a support vector machine (SVM) with an
RBF kernel. The training and test data consist of hubs represented
by the meta-features described in Table 2. As such, each hub
becomes a 12-dimensional vector h;. Labels of hubs are obtained
using auxiliary data designed for supervised learning. Bad or
boundary hubs are assigned class label 1, and the remaining good
hubs are given class label —1. This gives a training dataset
T = {(h;,y;)}, where y; € {—1,1} and h; € %'?. The trained classifier
can then be used to predict the nature of a hub point in an unsu-
pervised setting.

We use the real datasets given in Table 5 for training and eval-
uation. For each of the 12 datasets, we construct a training dataset
using the hubs of the remaining 11. We then perform testing on
the hubs of the left out dataset. For example, when we test the
classifier on COIL, we train the model using the hubs of the other
datasets (Diabetes, Letter, Pen, Image, Waveform1, Sonar, Musk1,
Musk2, mfeat-factors, mfeat-pixels, and ISOLET). For the purpose
of evaluation, we assume that while testing on a given dataset,
the labels of the remaining datasets are known. However, our clas-
sifier can be trained on any sets of data whose ground truth labels
are available, i.e. any repository of datasets for supervised learning.
In practice, the classifier needs to be trained just once, and can then
be deployed to identify bad hubs in data for unsupervised learning.
The computation of hub meta-features is unsupervised. The
parameters of the classifier are tuned by cross-validation within
the training data. Thus, the label information of hubs in test data
is not used to train or fine-tune the classifier, and is not required.

The meta-features derived from each dataset are rank-
normalized. Each meta-feature value is replaced by its rank among
the observed values, and is normalized to the range (0,1) so that
the values sum to 1. Rank-normalization enables the comparison
of data generated from different domains, and have been used to
normalize gene expression data (e.g., [20]. The best values of the
soft-margin parameter v and of the kernel coefficient y of the
SVM are selected using a grid search with 5-fold cross validation
on the training data T, where ve{0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8,0.9} and y € [i;. agrery)» Where var(T) is the variance
of the data obtained by flattening T into a vector. In order to handle
any class imbalance that may occur in different combinations of
training data, we under-sample the majority class. We evaluate
the performance of the classifier using the weighted F1-score, as
the class distribution of hubs in the test data can be imbalanced.
The weighted F1-score is defined as the weighted average of the
F1-scores of each class, where the weight of a class is the propor-
tion of instances belonging to that class [36].

Table 3 shows the mean weighted F1-score obtained using 5-
fold cross-validation on the training data, the F1-score on the test
set, and the recall of positive (bad/boundary) and negative (good)
classes. The Fl-scores on validation and test sets indicate that
our designed meta-features are indeed useful for the task. Note
that this classifier is designed primarily to identify bad/boundary
hubs, as they constitute bad subspace seeds. Table 3 also shows a
good recall for both bad/boundary and good hubs for most data-
sets. We further demonstrate that our classifier can be pre-
trained and deployed to classify hubs in previously unseen test
data. To this end, we evaluate one of the pre-trained classifiers
from Table 3 to classify hubs in the datasets summarized in Table 5,
specifically Abalone, Pen-10, Caltech-20, Caltech-100, DrivFace,
and OVA_ Colon. The presence or absence of label information in
test data does not affect the classifier predictions, as the classifier
parameters are not fine-tuned using the test data. In particular,
we use the classifier tested on Sonar (i.e., the classifier trained on
the datasets of Table 3, Sonar excluded), since it has the largest
training data. Note that this classifier includes the hubs of Pen-3
as part of its training data. Hence, in order to classify the hubs of
Pen-10, we use the classifier tested on Pen-3. Table 4 shows the
results. Our design of the classifier using meta-features facilitates
easy access to labeled data needed for its training. One can collect
as much hub data as needed from labeled synthetic or real data-
sets. Further evaluation in Section 6.3 demonstrates the effective-
ness of this classifier in improving the seeding for subspace
clustering.

5. Hubness-driven weighted adaptive mean shift

Subspace clustering in high-dimensional data is negatively
affected by the curse of dimensionality by which distance and den-
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Table 4
Evaluation of the SVM classifier as a stand-alone model on test data. In Abalone,
Caltech-20, and Caltech-100 all hubs are labeled as bad/boundary.

Test Data F1-score Recall Recall
(Test) (Bad/Boundary) (Good)

Abalone 0.62 0.44 N/A
Pen-10 0.73 0.45 0.75
Caltech-20 0.61 0.44 N/A
Caltech-100 0.81 0.68 N/A
DrivFace 0.57 0.44 0.53
OVA_ Colon 0.70 0.89 0.44

Table 5

Summary of datasets.
Data # instances # dimensions # classes
Toy1 2000 100 2
Toy2 2000 100 2
Diabetes 768 8 2
Abalone 4177 8 29
Letter 2263 16 3
Pen-3 3165 16 3
Pen-10 10992 16 10
Image 2310 19 7
Waveform1 5000 21 3
Sonar 208 60 2
Musk1 476 168 2
Musk2 6598 168 2
mfeat-factors 2000 216 10
mfeat-pixels 2000 240 10
ISOLET 1200 617 5
COIL 360 1024 5
Caltech-20 1067 1066 20
Caltech-100 5233 5232 100
DrivFace 606 6400 3
OVA_ Colon 1545 10935 2

sity measurements become less meaningful. In this work we
exploit an inherent characteristic of high-dimensional data known
as the hubness phenomenon, to improve the quality of subspace
clustering in high-dimensional spaces. Building on the characteri-
zations of hubs presented in Section 4, we propose a selective sam-
pling method and an algorithmic framework to leverage hubs as
seeds for mode-seeking subspace clustering algorithms that rely
on distance or density measurements. We observe that the inher-
ent geometric properties of hubs makes them good seeds for sub-
space clusters and facilitates discriminative distance
measurements. We propose a hub-based subspace clustering algo-
rithm, namely, Hubness-driven Weighted Adaptive Mean Shift (H-
WAMS), to estimate subspace clusters. H-WAMS adapts Weighted
Adaptive Mean Shift (WAMS) [35], which is a non-parametric,
mean shift based subspace clustering algorithm, to leverage a
hub-based seed sample. Section 3.2 provides the background
details for WAMS.

5.1. Selective sampling

In this section we describe our proposed hub-based seeding
strategy. The characterizations provided by [29] suggest that global
hubs are not effective to uniformly represent classes with variation
in densities. Local hubness ranking is required to identify hubs
with high centrality within their respective classes. However, the
true local hubness ranking cannot be observed in unsupervised
learning, as the data labels are not available. In view of the above
challenges, we design a ranking and selection strategy to serve as
a proxy for the true local hubness ranking. We consider an initial
seed pool of data (Phase 0 of Fig. 2), from which seeds are selected.
The seed pool includes the data points whose global hubness score

N is above a certain threshold. The threshold is set to u + 2o for
simulated data and to u + o for real data. The threshold is lowered
for real data due to a larger presence of bad hubs. The value of k for
nearest neighbor computation is set to k = \/n, where n is the num-
ber of instances in the data. Our seed selection consists of the fol-
lowing steps (Phase 1 of Fig. 2):

1. Prediction of bad/boundary hubs: As discussed, using bad hubs as
seeds is detrimental to clustering. Hence, we apply the classifi-
cation framework presented in Section 4.3 to the hubs in the
seed pool, and thus predict bad/boundary hubs.

2. Replacement of predicted bad/boundary hubs: Some classes in the
data may only contain bad/boundary hubs, and hence may not
be represented in the pool after the removal of such hubs.
Therefore we use a heuristic to represent such classes in the
pool. We replace a predicted bad/boundary hub by one of its
k-nearest neighbors, which is not already in the pool and has
the lowest local intrinsic dimensionality (LID) among the neigh-
bors. Ideally, the selected point belongs to the same class as the
bad/boundary hub, and is located far from the class boundary.
We leverage the locality assumption which states that the
neighborhood of a data point share the same class as the data
point. In order to ensure inlierness of the replacing point, we
select the neighbor with the smallest LID score (Eq. (1)).

3. Ranking and selection: We rank the samples in the seed pool in
descending order using a new score, the local hubness strength,
denoted as Loc-N,. The Loc-N; of a point X measures the per-
centage of its reverse k-nearest neighbors with global hubness
score lower than that of x:

-~ > yeraneol (Nk(X), Ni(¥))
Loc — Ne(X) = == b N

1 p=gq

Itp.q) = {O otherwise

Loc — Ny € [0,1]. This score ensures that data points with high
hubness score within their local neighborhood are ranked
higher, even if their global hubness score is not among the high-
est. Since hubs are expected to emerge near centroids of data
clusters [37], hubs with a high Loc-N, value are likely to be
found in each cluster. Thus, ranking by the local hubness
strength increases the probability of representing all classes in
the seed sample. This process is useful for data with unequal
class densities.

5.2. Subspace estimation

We now describe the estimation of subspace clusters using the
hub-based seed sample. In Phase 2 (see Fig. 2), local latent sub-
spaces are computed for each seed point. We apply the Weighted
Bandwidth algorithm introduced in [35] to find local subspaces.
A feature weight distribution is learned locally at each seed point
to minimize the dispersion within its k-nearest neighbors. We con-
struct an adaptive k-neighborhood graph over the seed sample (de-
scribed in Section 5.2.1), to define the neighbors of each seed point.
The resulting feature weights are in the range (0,1) and they sum
to one. Weighted adaptive mean shift (WAMS, [35] is then per-
formed on the seed sample to find density modes. The adaptive
bandwidth for a each seed point is computed as the distance to
the farthest neighbor within its local subspace. The modes result-
ing from mean-shift are grouped to form a clustering of the seed
sample, such that if two seed points have the same mode, they
belong to the same cluster. In the final phase, a greedy assignment
is used to cluster the remaining data points. Each data point which
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is not in the seed sample is assigned to the subspace cluster of its
nearest seed point. The final clustering uses weighted distances
between data points, computed with the feature weight distribu-
tions learned on the seed sample. The pseudo code for our algo-
rithm is provided in Algorithm 1.

H-WAMS addresses the following challenges posed by the curse
of dimensionality:

for density estimation in mean-shift. Weighted distances and
bandwidths take into account the feature relevance between data
points. Hence, they are informative of the subspace structure of
the data, and result in more reliable estimates of distance and
density. Furthermore, our method leverages hubs, which emerge
in high-dimensional data and have useful clustering properties
[34,37]. Performing mean-shift only on the seed sample com-
prised of hubs also facilitates more discriminative distance mea-
surements, as discussed in Section 4.

Algorithm 1 H-WAMS

: output: Clustering C ,'1\_/lodes M, Cluster weights W

S

Phase 0: Hubness Computation
k1= sqrt(n)
: Ny, Loc-N, := computeHubs(D, k)

[N

Phase 1: Seeding
: seedPool: = {x| N, (x) > u(N}) + o(N}) }
8: metaF := extractMetaFeatures(seedPool)
9: badOrBoundary := SVM(metaF)
10: replaceList :=
11: for b € badOrBoundary do
12: candidates : = kNN(b) \ seedPool
13: replaceList : = replaceList Uarg min {LID(c)|c € candidates}
14: end for

N

16: seedPool := seedPool \ badOrBoundary

17: seedPool : = seedPool U replaceList

: seedSample :=

19: while size(seedSample) < seedSize do

nextSeed := arg max {Loc—Nk(s)|s (<] seedPool}

oo

B

21: seedSample : = seedSample U nextSeed
22: seedPool := seedPool \ nextSeed

23: end while

24:

Phase 2: Weighted Adaptive Mean Shift
25: for s € seedSample do
26: Kagapt - = adaptiveNeighborCount(s, seedSample)
27: w;, h; 1= WeightedBandwidth(s, k,g,p,)
28: end for
29: (M, C) := WAMS(seedSample, W, h, maxIter)
30:
Phase 3: Clustering
31: forr ¢ seedSample do

32: for s € seedSample do

33: d,(r,8) = Dyy(5(s,1)

34: end for

35: C(r) := C(argmin {dw(r,s)|s € seedSample})
36: end for

- input: Data D = {x;}_| € R, size of seed sample seedSize, # mean shift iterations maxlrer

> Initialize seed pool

> Detect bad/boundary hubs

> Replace bad/boundary hubs

> Rank and select seed sample

> Compute feature weights and bandwidth

> Compute modes and seed clusters

> Compute weighted distances

> Cluster remaining data

1. High-dimensional data is often embedded as clusters within sub-
spaces, with different combinations of features being relevant to
different clusters. Our proposed subspace clustering algorithm
handles this challenge by learning a clustering of the data, as
well as feature relevance for each cluster. The feature relevance
for a cluster is computed as the mean of the feature weight dis-
tributions learned for data points belonging to the cluster. H-
WAMS uses weighted distances to assign data points to clus-
ters. This enables the clustering of data points according to their
feature relevance, and the discovery of latent subspaces.

2. Distance and density estimation are less reliable in high dimensional
spaces. H-WAMS computes weighted distances between data
points, and weighted adaptive bandwidths of the Gaussian kernel

5.2.1. Adaptive k-neighborhood

The feature weight distribution learned for a seed point is
affected by the purity of its k-neighborhood, which in turn is
affected by the class imbalance in the seed sample. Hence we com-
pute adaptive k-neighborhoods for each seed point. An initial set of
k-neighbors is computed for each seed point, by setting k = v/n. Let
D, denote the set of average k-neighbor distances of seed points. A
radius r = u + o is computed, where p and o denote the mean and
standard deviation of Dy, respectively. Each seed point is assigned
those neighbors which are at a distance less than r. This process is
useful to prevent the selection of distant neighbors belonging to
another class for seed points situated in a low density region. We
further refine the adaptive neighbors of a seed point using infor-
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Table 6

Evaluation on simulated datasets. Standard deviations are given in parantheses. WAMS on Toy2 did not find any meaningful subspace clusters.
Evaluation Measures Toy1 Toy2

H-WAMS F-WAMS WAMS H-WAMS F-WAMS WAMS

Clustering Purity 1.00 0.79 (0.2) 1.00 1.00 0.57 (0.2) 0.50
NMI 1.00 0.56 (0.5) 1.00 1.00 0.12 (0.3) 0
KL Divergence 0.29 0.33 (0.1) 0.05 0.24 0.26 (0.04) 0.03
Avg. # Mean Shift Iterations 8.2 5.79 (3.0) 5.28 6.75 7.24 (4.7) 8.1
Avg. Length of Mean Shift 6.00 12.34 (32) 8.14 7.83 14.38 (1.2) 13.81
# Clusters 2 1.6 (0.5) 2 2 1.18 (0.4) 1
Running time (sec) 0.48 0.14 (0.01) 168.63 0.45 0.21 (0.02) 210.15

Table 7

Clustering purity on real datasets.
Data H-WAMS HP-WAMS F-WAMS WAMS ESC-FFS SSC-OMP s8c BDR-B BDR-Z LRR
Diabetes 0.69 0.68 (0.01) 0.66 (0.01) 0.67 0.65 (0.004) 0.65 0.65 0.65 0.65 0.65
Abalone 0.26 0.27 (0.003) 0.24 (0.001) 0.23 0.25 (0.003) 0.22 0.24 0.26 0.26 0.23
Letter 0.88 0.87 (0.01) 0.70 (0.04) 0.81 0.67 (0.04) 0.42 0.54 0.74 0.73 0.44
Pen-3 0.95 0.95 (0.001) 0.80 (0.04) 0.69 0.95 (0.004) 0.43 0.74 0.90 0.90 0.70
Pen-10 0.88 0.84 (0.02) 0.63 (0.04) 0.69 0.84 (0.005) 0.26 0.68 0.77 0.77 0.69
Image 0.73 0.74 (0.02) 0.66 (0.03) 0.74 0.77 (0.02) 0.40 0.69 0.77 0.77 0.55
Waveform1 0.61 0.55 (0.03) 0.57 (0.05) 0.61 0.50 (0.003) 0.35 0.34 0.51 0.51 0.35
Sonar 0.64 0.57 (0.04) 0.56 (0.04) 0.53 0.57 (0.03) 0.55 0.55 0.61 0.61 0.53
Musk1 0.60 0.60 (0.01) 0.58 (0.02) 0.58 0.57 (8e-16) 0.59 0.57 0.58 0.57 0.57
Musk2 0.86 0.87 (0.01) 0.85 (0.002) 0.85 0.85 (3e-16) 0.85 0.85 0.85 0.85 0.85
mfeat-factors 0.78 0.77 (0.01) 0.11 (0.02) 0.23 0.89 (0.03) 0.63 0.83 0.67 0.67 0.60
mfeat-pixels 0.86 0.83 (0.01) 0.41 (0.05) 0.71 0.84 (0.05) 0.63 0.74 0.70 0.70 0.52
ISOLET 0.57 0.57 (0.01) 0.23 (0.04) 0.21 0.61 (0.02) 0.51 0.64 0.55 0.56 0.20
COIL 0.82 0.82 (0.01) 0.58 (0.1) 0.84 0.81 (0.03) 0.79 0.80 0.80 0.80 0.21
Caltech-20 0.14 0.13 (0.004) 0.14 (0.01) 0.11 0.12 (0.01) 0.15 0.15 0.07 0.12 0.12
Caltech-100 0.06 0.05 (0.005) 0.08 (0.005) - 0.06 (0.001) 0.06 0.06 0.03 0.06 0.05
DrivFace 0.92 0.92 (0.001) 0.90 (0.01) 0.90 0.90 (1e-15) 0.90 0.90 0.90 0.91 0.90
OVA_ Colon 0.94 0.94 (0.002) 0.83 (0.04) - 0.81 (2e-16) 0.81 0.81 0.81 0.81 0.81
Mean 0.68 0.67 0.53 0.59 0.65 0.51 0.60 0.62 0.62 0.50

Table 8

NMI on real datasets.
Data H-WAMS HP-WAMS F-WAMS WAMS ESC-FFS SSC-OMP s3c BDR-B BDR-Z LRR
Diabetes 0.06 0.04 (0.006) 0.02 (0.01) 0.04 0.05 (0.01) 0.001 9e-05 0.02 0.02 0.003
Abalone 0.18 0.17 (0.002) 0.15 (0.01) 0.17 0.15 (0.002) 0.10 0.1 0.15 0.16 0.13
Letter 0.41 0.39 (0.01) 0.28 (0.03) 0.33 0.40 (0.05) 0.04 0.26 0.37 0.36 0.18
Pen-3 0.54 0.54 (0.01) 0.43 (0.03) 0.44 0.81 (0.01) 0.05 0.43 0.67 0.69 0.42
Pen-10 0.72 0.72 (0.01) 0.56 (0.02) 0.54 0.76 (0.01) 0.13 0.64 0.70 0.70 0.67
Image 0.60 0.60 (0.01) 0.57 (0.03) 0.62 0.73 (0.01) 0.23 0.58 0.70 0.69 0.52
Waveform1 0.34 0.36 (0.01) 0.26 (0.05) 0.32 0.30 (0.01) 7e-04 2e-04 0.36 0.37 4e-04
Sonar 0.05 0.02 (0.02) 0.02 (0.04) 0.01 0.02 (0.01) 0.02 0.03 0.10 0.08 0.01
Musk1 0.03 0.03 (0.01) 0.02 (0.01) 0.02 0.01 (0.01) 0.02 3e-05 0.02 0.003 0.003
Musk2 0.07 0.07 (0.01) 0.03 (0.01) 0.05 0.02 (0.01) 0.004 0.01 2e-05 0.007 0.01
mfeat-factors 0.75 0.74 (0.01) 0.01 (0.04) 0.22 0.81 (0.02) 0.54 0.82 0.60 0.59 0.68
mfeat-pixels 0.72 0.70 (0.01) 0.40 (0.04) 0.62 0.78 (0.03) 0.59 0.78 0.57 0.57 0.59
ISOLET 0.62 0.61 (0.02) 0.01 (0.04) 0.004 0.55 (0.02) 0.26 0.53 0.37 0.41 0.01
COIL 0.70 0.69 (0.02) 0.66 (0.18) 0.88 0.76 (0.02) 0.83 0.79 0.87 0.87 0.03
Caltech-20 0.11 0.11 (0.01) 0.08 (0.01) 0.08 0.07 (0.004) 0.09 0.10 0.03 0.07 0.08
Caltech-100 0.21 0.18 (0.01) 0.25 (0.02) - 0.21 (0.002) 0.21 0.19 0.04 0.20 0.13
DrivFace 0.11 0.11 (0.01) 0.05 (0.04) 0.07 0.01 (0.004) 0.07 0.05 0.06 0.22 0.01
OVA_ Colon 0.27 0.27 (0.02) 0.14 (0.08) - 0.02 (0.005) 0.002 0.07 5e-04 3e-06 0.002
Mean 0.36 0.35 0.22 0.28 0.36 0.18 0.30 0.31 0.33 0.19

mation from the meta-feature-based classifier. The classifier com- tion. This filtering process is useful to refine the neighborhoods of

putes confidence values for each hub being in the good hub class seed points near the boundary.

(for an SVM classifier, the margin is converted to a confidence

value by Platt scaling [33]. Confidence values are available for each 6. Empirical evaluation

seed hub; the seed points which replace a bad/boundary hub

inherit the confidence value of the replaced hub. Neighbors with 6.1. Datasets

low confidence values likely belong to a different class than that

of the seed point. For each seed point, we filter neighbors whose We evaluate our proposed algorithm on two simulated datasets
confidence value is less than y — @, where ¢ denotes the mean con- and 18 real datasets. A summary of the datasets is given in Table 5.
fidence value of its adaptive neighbors and ¢ their standard devia- The simulated datasets are described in Section 4.



202 P. Mani, C. Domeniconi/Neurocomputing 413 (2020) 193-209

Table 9

Clustering purity and statistical significance results on real datasets across varying sample sizes.

Sample Size

Data Algorithm 1% 2% 3% 4% 5% 10% 15%
Diabetes HP-WAMS 0.67 (0.02) 0.67 (0.01) 0.68 (0.01) ' 0.68 (0.01) 0.68 (0.01) 0.68 (0.01) 0.68 (0.01) '
ESC-FFS 0.65 (0.01) 0.65 (0.002) 0.65 (0.003) 0.65 (0.002) 0.65 (5e-16) 0.65 (5e-16) 0.65 (5e-16)
F-WAMS 0.65 (0.01) 0.66 (0.02) * 0.66 (0.01) * 0.66 (0.01) * 0.66 (0.01) * 0.66 (0.01) 0.66 (0.01)
Abalone HP-WAMS 0.25 (0.01)" 0.25 (0.01) ' 0.25 (0.01)" 0.26 (0.01) *f 0.26 (0.01) *f 0.26 (0.01) *f 0.27 (0.003) *
ESC-FFS 0.26 (0.004) ** 0.25 (0.004) § 0.25 (0.003) § 0.25 (0.003) } 0.25 (0.003) t 0.25 (0.003) t 0.24 (0.003)
F-WAMS 0.22 (0.01) 0.23 (0.01) 0.23 (0.01) 0.24 (0.01) 0.24 (0.01) 0.24 (0.01) 0.24 (0.01)
Letter HP-WAMS 0.63 (0.1) 0.73 (0.1) * 0.80 (0.03) 0.81 (0.03) 0.83 (0.02) 0.85 (0.01) 0.87 (0.01)
ESC-FFS 0.66 (0.04) 0.68 (0.04) * 0.67 (0.04) ¥ 0.65 (0.03) * 0.64 (0.02) * 0.65 (0.01) 0.70 (0.02)
F-WAMS 0.46 (0.1) 0.51(0.1) 0.57 (0.1) 057 (0.1) 0.61(0.1) 0.66 (0.1) * 0.70 (0.04)
Pen-3 HP-WAMS 0.83(0.1) F 0.90 (0.1) 0.89 (0.1) ' 0.90 (0.1) ' 0.92 (0.1) 0.94 (0.03) 0.95 (0.001) *
ESC-FFS 0.95 (0.01) * 0.93 (0.1) * 0.95 (0.003) 0.95 (0.003) * 0.95 (0.002) * 0.93 (0.01) * 0.91 (0.01) *
F-WAMS 0.74 (0.1) 0.78 (0.1) 0.78 (0.1) 0.78 (0.1) 0.78 (0.04) 0.80 (0.1) 0.80 (0.04)
Pen-10 HP-WAMS 0.76 (0.04) 0.81(0.03) 0.80 (0.02) 0.81 (0.03)" 0.82 (0.03) 0.84 (0.02) * 0.84 (0.02) *
ESC-FFS 0.79 (0.003) ** 0.84 (0.001) ** 0.84 (0.01) ** 0.83 (0.003) ** 0.83 (0.01) 0.76 (0.01) £ 0.76 (0.004)
F-WAMS 0.45 (0.05) 0.49 (0.05) 0.49 (0.05) 0.53 (0.05) 0.54 (0.05) 0.60 (0.03) 0.63 (0.04)
Image HP-WAMS 053 (0.1) F 0.59 (0.04) 0.63 (0.04) 0.63 (0.04) 0.66 (0.03) 1 0.71 (0.02) 0.74 (0.02) '
ESC-FFS 0.76 (0.02) * 0.77 (0.01) * 0.77 (0.02) * 0.77 (0.01) * 0.78 (0.02) * 0.74 (0.01) * 0.74 (0.003) *
F-WAMS 0.35 (0.1) 0.43 (0.1) 0.50 (0.1) 0.50 (0.1) 0.53 (0.1) 0.63 (0.04) 0.66 (0.03)
Waveform1 HP-WAMS 0.55 (0.1) 0.56 (0.1) 0.58 (0.1) ' 0.56 (0.1) " 0.55 (0.04) 0.55 (0.03) * -
ESC-FFS 0.49 (0.02) 0.50 (0.01) 0.50 (0.002) 0.50 (0.003) 0.50 (0.003) 0.50 (0.002) 0.50 (0.002)
F-WAMS 0.49 (0.1) 0.52 (0.1) 0.53(0.1) * 0.54 (0.1) * 0.53 (0.1) 0.55 (0.1) * 0.57 (0.1) *
Sonar HP-WAMS 0.59 (0.1) "t 0.56 (0.04) ' 0.58 (0.1) 1 0.58 (0.1) 0.57 (0.04) * 0.57 (0.04) * -
ESC-FFS 0.56 (0.04) * 0.56 (0.03) * 0.57 (0.03) 0.57 (0.03) 0.55 (0.03) 0.54 (0.01) 0.55 (0.03)
F-WAMS 0.53 (3e-16) 0.54 (0.02) 0.56 (0.04) 0.56 (0.04) 0.55 (0.03) 0.55 (0.03) 0.56 (0.04) *
Musk1 HP-WAMS 0.57 (0.02) 0.59 (0.02) " 0.60 (0.02) "t 0.60 (0.02) ' 0.60 (0.02) ' 0.61 (0.02) 0.60 (0.01) "
ESC-FFS 0.57 (0.01) * 0.57 (3e-16) 0.57 (3e-16) * 0.57 (3e-16) * 0.57 (3e-16) * 0.57 (0.01) * 0.57 (0.002)
F-WAMS 0.57 (0.01) ! 0.57 (0.003) 0.57 (0.01) 0.57 (0.01) 0.57 (0.01) 0.57 (0.01) 0.58 (0.02)
Musk2 HP-WAMS 0.85 (0.003) 0.86 (0.01) " 0.86 (0.01) " 0.86 (0.01) " 0.86 (0.01) " 0.87 (0.01) " 0.87 (0.01) "
ESC-FFS 0.85 (8e-16) * 0.85 (8e-16) 0.85 (8e-16) 0.85 (8e-16) 0.85 (8e-16) 0.85 (8e-16) 0.85 (9e-16)
F-WAMS 0.85 (8e-16) 0.85 (8e-16) 0.85 (4e-16) 0.85 (8e-16) 0.85 (8e-16) 0.85 (0.003) 0.85 (0.002)
mfeat-factors HP-WAMS 0.32(0.1) " 0.52(0.1) " 0.61(0.1) " 0.59 (0.2) 0.63(0.2) 0.76 (0.03) 0.77 (0.01) °
ESC-FFS 0.89 (0.03) 0.90 (0.03) 0.89 (0.03) 0.88 (0.03) * 0.86 (0.03) 0.74 (0.03) ¢ 0.82 (0.04)
F-WAMS 0.11 (0.03) 0.12 (0.03) 0.11 (0.03) 0.11 (0.03) 0.11 (0.03) 0.11 (0.03) 0.11 (0.02)
mfeat-pixels HP-WAMS 0.48 (0.1) ! 0.63 (0.1) 0.72 (0.04) | 0.76 (0.04) | 0.79 (0.04) ' 0.83 (0.03) ' 0.83 (0.01) *
ESC-FFS 0.81 (0.1) * 0.86 (0.1) * 0.84 (0.1) 0.80 (0.04) * 0.75 (0.04) ¢ 0.34 (0.03) 0.33 (0.03)
F-WAMS 0.29 (0.1) 0.29 (0.1) 0.31(0.1) 0.33 (0.1) 0.34 (0.1) 037 (0.1) * 0.41(0.1) *
ISOLET H-WAMS 048 (0.1)F 0.55(0.1) 049 (0.1) 0.55(0.1) F 0.51(0.1) " 0.53 (0.1) * 0.57 (0.01)
ESC-FFS 0.60 (0.01) * 0.61 (0.01) * 0.61 (0.02) * 0.62 (0.02) 0.62 (0.04) * 0.64 (0.04) 0.60 (0.1) *
F-WAMS 0.21 (0.03) 0.21 (0.04) 0.21 (0.03) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.22 (0.04)
COIL HP-WAMS 048 (0.1) 0.57 (0.1) 0.61(0.1)F 0.71 (0.1) 0.74 (0.1) f 0.82 (0.002) 1 -
ESC-FFS 0.75 (0.1) * 0.80 (0.03) 0.81(0.03) 0.79 (0.02) * 0.79 (0.02) * 0.65(0.1) * 0.60 (0.004)
F-WAMS 0.29 (0.1) 0.27 (0.1) 0.25 (0.1) 0.39 (0.2) 0.39 (0.2) 0.52 (0.1) 0.58 (0.1)
Caltech-20 HP-WAMS 0.09 (0.01) 0.10 (0.01) 0.11 (0.01) 0.11 (0.01) 0.12 (0.01) ' 0.13 (0.004) * -
ESC-FFS 0.12 (0.01) * 0.12(0.01) * 0.12 (0.01)* 0.12 (0.01) ™ 0.12 (0.01) * 0.12 (0.01) 0.12 (0.01)
F-WAMS 0.09 (0.01) 0.09 (0.01) 0.10 (0.01) 0.11 (0.01) 0.11 (0.01) 0.12 (0.01) 0.14 (0.01). *
Caltech-100 HP-WAMS 0.03 (0.001) 0.04 (0.002) 0.04 (0.002) 0.05 (0.003) ' 0.05 (0.004) * - -
ESC-FFS 0.06(0.002) * 0.06 (0.002) 0.06 (0.002) 0.06 (0.001) * 0.06 (0.001) 0.06 (0.001) 0.06 (0.001)
F-WAMS 0.03 (0.003) 0.03 (0.003) 0.04 (0.003) 0.04 (0.003) 0.05 (0.004) 0.07 (0.004) * 0.08 (0.01) *
DrivFace HP-WAMS 0.90 (1e-15) 0.90 (0.01) ' 0.91 (0.01) * 0.90 (0.01) ' 0.91 (0.01) *f 0.91 (0.01) ** 0.92 (0.01) *
ESC-FFS 0.90 (1e-15) 0.90 (1e-15) * 0.90 (1e-15) 0.90 (1e-15) * 0.90 (1e-15) * 0.90 (1e-15) * 0.90 (1e-15) *
F-WAMS 0.90 (1e-15) 0.90 (0.002) 0.90 (0.001) 0.90 (0.003) 0.90 (0.004) 0.90 (0.001) 0.90 (0.001)
OVA_ Colon HP-WAMS 0.84 (0.04)" 0.87 (0.05)* 0.90 (0.05)* 0.90 (0.04)* 0.92 (0.04)* 0.94 (0.002)" -
ESC-FFS 0.82 (0.01) 0.81 (2e-16) 0.81 (2e-16) 0.81 (2e-16) 0.81 (2e-16) 0.81 (2e-16) 0.81 (2e-16)
F-WAMS 0.90 (1e-15)¢ 0.90 (0.002)F 0.90 (9e-4) 0.90 (0.003)% 0.90 (0.004)* 0.90 (0.005)* 0.90 (0.006)*
Mean HP-WAMS 0.55 (0.3) 0.60 (0.3) 0.61(0.3) 0.63 (0.3) 0.64 (0.3) 0.66 (0.3) 0.67 (0.3)
across ESC-FFS 0.64 (0.3) 0.65 (0.3) 0.65 (0.3) 0.64 (0.3) 0.64 (0.3) 0.59 (0.3) 0.59 (0.3)
datasets F-WAMS 0.45 (0.3) 0.46 (0.3) 0.47 (0.3) 0.49 (0.3) 0.49 (0.3) 0.51(0.3) 0.53 (0.3)

We chose real datasets with sufficient variation in density, class
distribution, and dimensionality. Except for COIL!, Caltech?, Dia-
betes®, and OVA_ Colon®, the remaining datasets are obtained from
the UCI Machine Learning Repository [9]. COIL, Letter, and Pen-3
are sub-sampled as described in [35]. COIL originally consists of
100 classes, out of which the first 5 classes are selected, with 72
images in each class. Three digit classes (3, 8, and 9) are chosen

www.cad.zju.edu.cn/home/dengcai
www.vision.caltech.edu/Image_ Datasets/Caltech101.
www.kaggle.com/uciml/pima-indians-diabetes-database
www.openml.org/d/1161

for Pen-3, and letter classes (I, ] and L) are chosen for Letter. Pen-
10 comprises of the all samples in UCI Pen dataset. For ISOLET, the
training data (isolet1 + 2+3 + 4 in the UCI repository) of five classes
(A,B,C,D,E) are selected. The attributes ‘musk name’ and ‘conforma-
tion name’ are omitted for Musk1 and Musk2. The Caltech images
are converted to 240x240 grayscale, and transformed by kernel
PCA with Gaussian kernel. The number of images from each class
is restricted to a maximum of 100. For Caltech-100, the classes
{Background, Faces_Easy} are left out. The following classes are
selected for Caltech-20: {dollar_ bill, pizza, stop _ sign, lamp, ceiling_
fan, soccer_ ball, metronome, watch, sunflower, yin_ yang, airplanes,
strawberry, barrel, camera, brain, umbrella, accordion, scissors,
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Table 10
Running times (in seconds) on real datasets.
Data H-WAMS HP-WAMS F-WAMS WAMS ESC-FFS SSC-OMP s3c BDR-B BDR-Z LRR
Diabetes 0.49 0.45 (0.02) 0.23 (0.02) 430 0.12 (0.004) 0.30 14.68 0.86 0.85 0.47
Abalone 6.78 7.22 (0.24) 2.47 (0.43) 142.61 1.97 (0.07) 1.72 3e+03 489.78 483.72 3148
Letter 1.79 1.73 (0.03) 0.62 (0.08) 17.67 0.60 (0.02) 0.38 104.68 7.70 6.88 3.66
Pen-3 5.65 5.52 (0.3) 1.60 (0.20) 73.54 1.22 (0.03) 0.60 556.75 35.84 36.15 13.90
Pen-10 93.42 91.13 (0.96) 18.32 (1.76) 1.4e+03 17.31 (0.29) 4.71 1.2e+04 Te+03 le+03 656.39
Image 3.54 3.49 (0.06) 2.28 (0.08) 21.07 2.17 (0.05) 1.96 175.78 117.21 117.89 6.62
Waveform1 18.37 21.31 (0.90) 7.43 (2.30) 382.68 3.52 (0.06) 149 le+03 81.02 81.83 55.54
Sonar 0.14 0.10 (0.01) 0.06 (0.01) 0.70 0.04 (0.001) 0.07 0.98 0.70 0.69 0.35
Musk1 1.15 0.62 (0.10) 0.23 (0.03) 9.79 0.05 (0.002) 0.18 3.56 244 2.86 2.15
Musk2 94.60 69.25 (9.20) 68.93 (5.80) - 97.50 (2.40) 5.73 4e+03 le+03 le+03 140.21
mfeat-factors 21.65 14.14 (2.30) 5.53 (0.80) 354.08 1.42 (0.04) 0.53 217.33 31.89 31.90 11.43
mfeat-pixels 25.11 17.00 (2.90) 6.06 (0.40) 449.53 1.28 (0.04) 0.52 257.56 15.73 15.77 8.53
ISOLET 16.45 10.72 (0.70) 5.45 (0.70) 323.25 0.45 (0.01) 1.50 81.92 8.79 8.78 28.95
COIL 0.91 0.64 (0.07) 0.82 (0.30) 71.03 0.08 (0.003) 0.22 2249 1.91 1.91 8.76
Caltech-20 3.91 4.20 (0.35) 6.77 (0.79) 3e+03 0.30 (0.11) 0.85 326.05 0.73 1.45 37.01
Caltech-100 259.23 270.91 (17.18) 1e+03 (110.68) - 6.70 (0.14) 90.46 2e+05 48.03 48.36 5e+03
DrivFace 25.61 21.84 (2.23) 29.73 (5.12) 3e+03 0.44 (0.02) 0.88 1e+03 0.48 0.57 27.35
OVA_ Colon 209.05 211.38 (25.27) 632.94 (171.76) - 2.17 (0.04) 8.20 2e+04 2.81 342 284.98
Mean 43.29 41.72 105.86 616.68 7.63 6.68 1.3e+04 186.63 186.85 325.92
1.00 == Diabetes
\ ) == Abalone
0.89 \\ /§< /~ ‘ Letter
— S~ = == Pen-3
078 /\/’J
== Pen-10
0.67 —— —_— Image
> M Waveform1
kS —— —
n:_ 0.56 = ~ == Sonar
E’ mfeat-factors
g 044 _
@ mfeat-pixels
=
o 0.33 Musk1
Musk2
0.22 ISOLET
COIL
0.11 Caltech-20
0.00 Caltech-100
1% 2% 3% 5% 10% 15% All-hubs DrivFace
OVA_Colon
Seed Sample Size
Fig. 3. Clustering purity vs. seed sample size for H-WAMS (best viewed in color).
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Fig. 5. Running time (in log scale) vs. seed sample size for H-WAMS (best viewed in color).

chair, cup}. OVA_ Colon is a benchmark gene expression data having
286 instances with colon tumor and 1259 instances without tumor.
The features of the datasets are standardized using the Z-score,
except for Sonar, COIL, and ISOLET, whose features did not vary in
scale. Duplicate instances and invariant features are removed from
each dataset.

6.2. Evaluation on simulated data

We evaluate the quality of clusterings and subspaces computed
by H-WAMS on the simulated datasets. We compare H-WAMS
against WAMS and F-WAMS algorithms. WAMS applies mean shift
to all data points. FF-WAMS [35] selects seed points randomly to
approximate WAMS. For H-WAMS, the threshold for the seed pool
is set to p+ 20. We evaluate the algorithms using the following
criteria: (1) Clustering purity [42]; (2) Normalized Mutual Informa-
tion (NMI, [22]; (3) KL divergence between the learned feature
weight distributions of clusters and their ideal feature weight dis-
tributions; (4) average number of mean shift iterations needed for
the seed data points; (5) average length of mean shift for the seed
points; (6) number of clusters found; and (7) running time.

Table 6 shows the results obtained for a seed sample size of 1%
for Toy1 and 2% for Toy2, which are the respective minimum sam-
ple sizes that resulted in a perfect clustering for H-WAMS. Results
of F-WAMS are averaged across 50 runs, and the corresponding
standard deviations are reported. H-WAMS, instead, is determinis-
tic. H-WAMS outperforms F-WAMS and achieves perfect clustering
on the simulated data, while using a small sample of hubs.

To evaluate the quality of the estimated subspaces we proceed
as follows. For each true cluster in the data, we compute the KL
divergence between the learned feature weight and the ideal fea-
ture weight distributions. An ideal feature weight distribution for
a cluster has weights inversely proportional to the variance of
the features. We compute the learned feature weights for a true
cluster as the average of the feature weights learned by an algo-
rithm for the data points of the cluster. In the case of H-WAMS
and F-WAMS, the learned weight distribution is averaged across
the seed points of a cluster. The weight values learned by H-
WAMS and F-WAMS are in the range (0,1) and sum to one. We
then compute the KL divergence between the ideal and the learned
weight distributions across clusters, as follows:

S»Y Il

c=1 i

KL= "KL(P|Q.)
c=1

where n, is the number of true clusters, P, is the ideal weight distri-
bution for cluster ¢, and Q. is the learned weight distribution for
cluster c.

Table 6 shows that the KL divergence values for the weight dis-
tributions learned by H-WAMS are smaller than those learned by
F-WAMS. This shows that H-WAMS can learn weight distributions
which are closer to the ideal ones compared to those found by F-
WAMS. WAMS has the overall lowest KL divergence. This is
because it uses all the data to compute the learned weight distribu-
tion. In contrast, the learned weight distribution for H-WAMS is
averaged across the seed hubs only. Hence its KL divergence is
higher than that of WAMS, but, as WAMS, it achieves a perfect clus-
tering purity. Compared to F-WAMS, H-WAMS has smaller average
length of mean shift, and finds the actual number of clusters in the
data. This indicates that hubs are close to their respective modes
(i.e., centroids of subspace clusters), and this enables the finding
of more accurate clusters. The average number of mean shift iter-
ations of the seed sample is lower for F-WAMS on Toy1. However,
due to the lower clustering quality and higher average mean shift
length, it’s possible that mean shift on a random sample gets stuck
in local maxima. Both WAMS and H-WAMS achieve perfect cluster-
ing on Toy1, but H-WAMS is significantly faster. We observe that
WAMS on Toy2 did not find any meaningful clusters, hence its
NMI is 0. This latter result indicates that mean-shift applied on
selected data can achieve improved performance on noisy data.

6.3. Evaluation on real data

We evaluate the clustering quality of hub-based seeding on real
datasets using clustering purity and NMI. Due to a large presence
of bad/boundary hubs in real data, for H-WAMS we set the thresh-
old to choose the pool of hubs to 1 + ¢. To evaluate the robustness
of H-WAMS, we also consider a probabilistic variant of hub-based
seeding; in this approach, each data point in the seed pool is
assigned a weight equal to its local hubness strength (Loc-Ni). A
seed sample is selected from the pool by weighted random sampling
using Loc-N,. We name this algorithm Hubness Proportional
Weighted Adaptive Mean Shift (HP-WAMS). We compare our pro-
posed hub-based methods, H-WAMS and HP-WAMS, with F-
WAMS, WAMS, subspace segmentation based on low-rank repre-
sentation (LRR, [25], and several state-of-the-art subspace cluster-
ing algorithms: ESC-FFS [39], SSC-OMP [40], S*C [23], and BDR [27].

Since the methods H-WAMS, HP-WAMS, F-WAMS, and ESC-FFS
require a sample of data, we run these algorithms for different
sample sizes, namely (1%, 2%, 3%, 4%, 5%, 10%, 15%), and report
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Table 11
Characterizing the usefulness of hubs in real datasets.

Data Sy, (k=+/m) % Hubs in the seed % Inlier hubs in seed
pool predicted as pool (Loc-IS > 0.5)
bad/boundary

Diabetes 0.44 0.42 0.90

Abalone 0.06 0.44 0.99

Letter 0.43 041 0.88

Pen-3 0.51 0.28 0.92

Pen-10 0.39 0.28 0.96

Image 0.07 0.29 0.88

Waveform1 1.82 0.72 0.87

Sonar 1.10 0.71 0.93

Musk1 1.12 0.59 0.93

Musk2 141 0.46 0.93

mfeat-factors 0.67 0.38 0.98

mfeat-pixels 0.67 0.46 0.96

ISOLET 1.15 0.54 0.87

COIL 1.07 0.41 0.68

Caltech-20 2.86 0.75 0.74

Caltech-100 5.48 0.68 0.58

DrivFace 0.51 0.46 0.93

OVA_ Colon 2.83 0.76 1.00

results for the sample size with best average across the datasets.
The reported sample sizes are 15% for H-WAMS, HP-WAMS, and
F-WAMS, and 3 % for ESC-FFS. Wave, Sonar, COIL, Caltech-20, and
OVA_ Colon have fewer global hubs, thus no results are available
for them for a seed sample size of 15%. We report the results for
Wave, Sonar, COIL, Caltech-20, and OVA_ Colon at 10%. Caltech-
100 has fewer than 10% global hubs, hence we report results for
Caltech-100 using all hubs. HP-WAMS, F-WAMS, and ESC-FFS use
probabilistic sampling and hence their results are averaged across
50 iterations. In order to learn a good weight distribution, features
with low variance (< 0.01) on the seed sample are removed for all
the seeding based algorithms. H-WAMS and HP-WAMS use the
SVM classifier described in Section 4.3.2 to predict and filter bad
and boundary hubs. To predict bad/boundary hubs on the datasets
which are not evaluated in Table 3, we use the following classifiers,
as described in Section 4.3.2: for Abalone, Caltech-20, Caltech-100,
DrivFace, and OVA_ Colon, we use the classifier tested on Sonar
(i.e., the classifier trained on the datasets shown in Table 3 exclud-
ing Sonar). For Pen-10, we use the classifier tested on Pen-3. The
parameter /4 for ESC-FFS is set to 100 as suggested by the authors
in their paper [39]. For SSC-OMP, we tune the parameter kmq in
the range {5,10,15,20}. We use default values for $3C, as sug-
gested by the authors in their paper [23]: v=1.2,Tp = 10, and
the parameter o is tuned in the range {0.1,0.3,0.5,0.7,1.0}. For
BDR we fix y = 0.01 and vary 1 in the range
{0.001,0.01,0.1,1,10,100}. Note that BDR-B and BDR-Z use the
same parameters. The regularization parameter / for LRR is chan-
ged in the range {0.5,1.0,1.5,2.0}. We set the number of subspace
clusters equal to the number of classes in the data in spectral and
low-rank based algorithms.

Table 7 gives the clustering purity values obtained for all algo-
rithms under comparison. WAMS resulted in an out-of-memory
error on Caltech-100 and OVA_ Colon, hence the evaluation of
WAMS on these datasets are not reported. We observe from the
Table that H-WAMS is the most robust approach among the com-
petitors. H-WAMS achieves the best average purity value across all
datasets, and performs better than its competitors on the majority
of the datasets. HP-WAMS is the overall second-best. Table 8
shows the NMI for all algorithms. H-WAMS and ESC-FFS have the
highest NMI on average. Both H-WAMS and HP-WAMS outperform
F-WAMS in clustering purity and NMI across the datasets, with the
exception of Caltech-100. This can be explained by the fact that
Caltech-100 has fewer than 10% global hubs, while F-WAMS is

evaluated at sample size 15% in the given tables. Overall, the supe-
rior performance of hub-based algorithms shows that a hub-based
sample finds more accurate modes than a random sample. Among
the non-hub based algorithms, ESC-FFS is the most competitive.
However, our method has the advantage of finding the subspace
of each cluster via weighting the features, while the subspaces of
clusters found by spectral-based methods are not explicit. For
example, the knowledge pertaining the subspace of a cluster
enables automated topic assignments and is useful in applications
such as document retrieval.

We further analyze the statistical significance of the results of
the probabilistic algorithms across the sample sizes. We ran a
two-sided, two-sample t-test with o« = 0.05 to compute the statis-
tical significance between each pair of algorithms. Table 9 gives the
clustering purity values and their statistical significance for HP-
WAMS, ESC, and F-WAMS. We report the mean clustering purity
and standard deviations computed across 50 runs. The symbol (*)
denotes the result which is statistically superior between HP-
WAMS and ESC-FFS; the symbol (") denotes the result which is sta-
tistically superior between HP-WAMS and F-WAMS; and ()
denotes the statistically superior result between ESC-FFS and F-
WANMS. The highest clustering purity values across the three algo-
rithms is bold-faced. We observe that HP-WAMS and ESC-FFS are
statistically superior to F-WAMS in general. ESC-FFS achieves bet-
ter clustering purity at lower sample sizes; its clustering quality
degrades with increasing sample size, while HP-WAMS has the
opposite trend. We observe that HP-WAMS is statistically superior
to ESC-FFS across sample sizes on several datasets, and achieves
the highest mean clustering purity across the datasets.

6.4. Time complexity and trend plots

Table 10 compares the running times (in seconds) of all the
algorithms. All experiments are run on a 2.3 GHz Intel Core i5 pro-
cessor with 16 GB RAM. WAMS could not complete on Musk2,
Caltech-100, and OVA_ Colon using the above resources, hence
their running time is not reported. This is because WAMS uses all
the data to compute the weighted bandwidth and mean-shift,
and resulted in an out-of-memory error on these datasets. We
ran WAMS on these datasets using a larger computational resource
to obtain results on clustering purity and NMI. However Caltech-
100 and OVAL_ Colon still resulted in an out-of-memory error.
Hence we do not report the clustering purity and NMI for
Caltech-100 and OVA_ Colon. We observe that SSC-OMP is the fast-
est. Comparing the mean-shift algorithms, we see that H-WAMS
and HP-WAMS are significantly faster than WAMS. The computa-
tion of hubness scores largely contributes to the running time of
H-WAMS and HP-WAMS. However, the time complexity of hub-
ness computation can be significantly reduced by computing
approximate nearest neighbors, as in Locality Sensitive Hashing
[12].

We also analyze the theoretical complexity of H-WAMS. Let n
be the number of instances, m the seed sample size, and d the
dimensionality of a dataset. Phase 0 of Algorithm 1 has a time com-
plexity of ¢(n?d) to compute hubness scores. Phase 1 consists of
initializing the seed pool of hubs (¢(n)), meta-feature extraction
and hubs classification (¢(m?)), and local ranking and selection
from the seed pool (©)(m?)). Thus, the time complexity of Phase
1 is ¢(n) + 0(m?). Phase 2 performs weighted adaptive mean-
shift. Suppose each seed point requires at most ty steps to esti-
mate its feature weight distribution, and at most tys steps for
mean-shift to converge. Then, the time complexity of the weighted
bandwidth algorithm is ¢(m?dty); the complexity of mean-shift is
0(m2dty;s); and the complexity of grouping mean-shift modes into
clusters is ¢(m?d). Phase 3 clusters non-seed data points with
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complexity ¢((n —m)md). The combined time complexity of
Phases 2 and 3 is ¢(m?dtw) + O(m?dtys) + ¢(nmd). The time com-
plexity of Phase 1 is subsumed within that of Phase 0. Hence, the
overall time complexity of H-WAMS is 0(n?d)+ O0(m?dtw)+
0(m*dtys). On the other hand, the time complexity of WAMS is
O(n?dty) + O(n*dtys) + 0(n*d), where the additive components
represent the weighted bandwidth computation, and mean-shift
and clustering of mean-shift modes, respectively. Typically the
value of tys for hubs is smaller than the value for non-hubs, due
to the hubs’ geometric property of occurring near the center of
compact sub-clusters. Given m < n, and due to the faster conver-
gence of mean-shift on hubs, H-WAMS achieves a significant
improvement in running time over WAMS.

The trends of clustering purity, NMI, and running time of H-
WAMS across sample sizes are shown in Figs. 3-5 respectively.
We observe a general upward trend for the purity, NMI, and the
running times as the sample size increases. However, using all
the hubs for seeding reduced the clustering purity and NMI for
most of the datasets. Hence, we find that 15% is the best sample
size for H-WAMS. In general, H-WAMS is superior to WAMS in run-
ning time and clustering quality for the majority of the datasets. In
cases where H-WAMS does not outperform WAMS in clustering
quality (Image, Waveform1, and COIL), it is still faster and sacri-
fices the clustering quality only mildly.

7. Discussion: when should hubs be leveraged?

Comparing the results in Table 7, we observe that H-WAMS and
HP-WAMS does not outperform WAMS across all datasets. There-
fore, it's important to understand when hubs should or should
not be leveraged. In order for hubs to have a positive impact on
clustering, they must be good and inlier hubs. To analyze this phe-
nomenon, we compare the characteristics of datasets using scatter
plots. In Fig. 6, we plot three representative datasets with different
performance compared to WAMS, namely, Pen-3, Waveform1, and
COIL. Pen-3 is representative of an ideal dataset having good hubs
and distinct density modes corresponding to each class. Hub-based
methods on Pen perform better than WAMS by a large margin,
while they had similar or lower performance than WAMS on
Waveform1 and COIL. In Fig. 6, each dataset depicts four subplots,
each representing local density vs. LID. LID measures the inlierness
of a point; the local density of a point is computed as the inverse
distance to its k™ nearest neighbor. Each subplot represents a dif-
ferent attribute, whose values are color-coded: class distribution,
global hubness, local hubness strength (Loc-Ny), and Local inlierness
strength (Loc-IS). All the data points are plotted in each subplot
and are ranked by color-coding. We define the local inlierness
strength of a point as the percentage of its reverse k-nearest neigh-
bors with higher LID values than itself.

_ > eRkNN(x)I(LID(X)w LID(y))
Loc —15() = = R NN )|

1 p<yq
0 otherwise

10.0) = {

The scatter plot of class distribution for Pen-3 (Fig. 6 (a)) shows
three classes with distinct density modes. The seed pool for this
data can be viewed from the plot of global hubness score (stan-
dardized Ny > 1). The global hubs are located near the local density
modes and have high inlierness. The plot of Loc-N;, depicts the
order in which seed selection would be performed from the seed
pool. Comparing this plot with the plot of Loc-IS, we observe that

hubs with high local hubness also have high local inlierness, and
hence form good seeds. The results of H-WAMS for Pen-3 support
this claim.

The subplots for Waveform1 in Fig. 6 (b) depicts a different pat-
tern. All the classes have a similar distribution of local density and
LID and do not exhibit density modes. From the plot of global hub-
ness, we observe that the data points with high local density or
high hubness are not the most pronounced inliers. Comparing
the plots of Loc-N; and Loc-IS, we observe that these measures
have very different distributions, i.e., the strong local hubs are
not strong local inliers and vice versa. Hence, H-WAMS may not
find accurate density peaks through mean-shift. This also explains
why HP-WAMS performed worse than WAMS on Waveform1, as a
probabilistic selection from the seed pool may select hubs which
are not inliers for this data.

In Fig. 6 (c), the class distribution of COIL shows five classes
with widely varying density. Comparing the plots of global hub-
ness and Loc-Ni, we see that hubs with high Loc-N, emerge in all
classes, while the low density classes did not have strong global
hubs. Hence seed selection based on Loc-N; ensures a better repre-
sentation of classes. This is confirmed by the superior peformance
of H-WAMS and HP-WAMS over F-WAMS on COIL and across the
datasets. However, comparing the plots of Loc-N; and Loc-IS, we
observe that there are data points with high Loc-IS and high local
density, which do not have a corresponding high Loc-Ny. This sug-
gests that there could be data points other than hubs which form
better seeds.

Table 11 quantifies additional indicators on the usefulness of
hubs. The first column measures the skewness of hubness. The
skewness of hubness is higher for intrinsically high dimensional
data [34], and the geometric properties of hubs are more pro-
nounced on such data. Hub-based methods are less effective on
data with very low skewness (e.g., Image). Abalone has a very
low skewness as well, however, it also has a very high percentage
of inlier hubs, which contributes to a better performance compared
to Image. Datasets with extreme skewness are also less suitable for
hub-based methods, as this suggests that there are very few hubs
in the data. For example, Caltech-100 has only 7% hubs which
was not sufficient to represent 100 classes. The second column
measures the percentage of hubs in the seed pool which are pre-
dicted as bad/boundary. A large percentage of predicted bad/
boundary hubs for a dataset indicates lower utility of hub-based
seeding (e.g., Waveform1). The third column measures the per-
centage of hubs in the seed pool which are also inliers (i.e., with
Loc-IS > 0.5). Hub-based methods are effective when the percent-
age of inlier seed hubs is high.

Note that in Fig. 6, the label information is used only for the
class distribution subplots. Hence, the visualizations of Loc-Nj,
Loc-IS, and global hubness can be used, along with the combination
of measures in Table 11, to decide whether hub-based seeding
should be leveraged for clustering.

8. Conclusion

We presented a new characterization of hubs in relation to sub-
spaces, and proposed meta-features to identify bad and boundary
hubs. Based on our findings, we introduced a hubness-driven algo-
rithm to find subspace clusters. Our experimental results show the
effectiveness of our technique, both in terms of accuracy and
speed. The analysis and results presented in this work shed light
on the role of hubs for subspace clustering. In the future, we plan
to further investigate the use of hubs in manifold regularization
and deep learning.
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