
Cost Effective Multi-label Active Learning via
Querying Subexamples

Xia Chen1,3, Guoxian Yu1,∗, Carlotta Domeniconi2, Jun Wang1, Zhao Li3, Zili Zhang1,4
1College of Computer and Information Sciences, Southwest University, China

2Department of Computer Science, George Mason University, USA
3Alibaba Group, Hangzhou, China

4School of Information Technology, Deakin University, Australia
Email: 1{xchen, gxyu, kingjun, zhangzl}@swu.edu.cn; 2carlotta@cs.gmu.edu; 3lizhao.lz@alibaba-inc.com

Abstract—Multi-label active learning addresses the scarce la-
beled example problem by querying the most valuable unlabeled
examples, or example-label pairs, to achieve a better performance
with limited query cost. Current multi-label active learning
methods require the scrutiny of the whole example in order to
obtain its annotation. In contrast, one can find positive evidence
with respect to a label by examining specific patterns (i.e.,
subexample), rather than the whole example, thus making the
annotation process more efficient. Based on this observation, we
propose a novel two-stage cost effective multi-label active learning
framework, called CMAL. In the first stage, a novel example-
label pair selection strategy is introduced. Our strategy leverages
label correlation and label space sparsity of multi-label examples
to select the most uncertain example-label pairs. Specifically, the
unknown relevant label of an example can be inferred from the
correlated labels that are already assigned to the example, thus
reducing the uncertainty of the unknown label. In addition, the
larger the number of relevant examples of a particular label, the
smaller the uncertainty of the label is. In the second stage, CMAL
queries the most plausible positive subexample-label pairs of
the selected example-label pairs. Comprehensive experiments on
multi-label datasets collected from different domains demonstrate
the effectiveness of our proposed approach on cost effective
queries. We also show that leveraging label correlation and label
sparsity contribute to saving costs.

Index Terms—multi-label learning, active learning, cost effec-
tive, label correlations

I. INTRODUCTION

Multi-label active learning, which is more challenging than
single-label active learning, has attracted an enormous amount
of research. Some multi-label active learning approaches
follow the standard example-based selection criteria, and
simultaneously query all labels of the selected examples [1],
[2]. If the label space is large, querying all relevant labels
of an example becomes expensive and time-consuming, since
the annotator needs to traverse the whole label space. Other
approaches attempt to select specific example-label pairs and
then query their relevance [3], [4], [5]. It is recognized that an
appropriate example-label pair selection strategy can save the
labeling cost to a great extent.

Whether or not a particular label is relevant for an example
depends on the characteristics of the example itself [6], [7].
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For example, documents are typically organized in paragraphs.
Current active learning approaches query a document with
respect to a particular category or topic, requiring the annotator
to go through the whole document (i.e., all paragraphs). How-
ever, the annotator could more easily annotate the document by
browsing one (or selected) paragraph(s), instead of the whole
document, once the paragraph more likely to be relevant to the
topic has been selected. It’s obvious that annotating a paragraph
is more cost-saving than annotating the whole document. In
other words, querying the whole example-label pair may result
in information redundancy and in a waste of resources, if
its subexamples (i.e., paragraphs) related to the label can be
selected. Thus, we consider querying the most likely positive
subexample-label pairs instead of the example-label pair. In
addition, label correlation and sparsity of the label space are
crucial to multi-label learning [8], [9]. By leveraging label
correlation, the unknown relevant labels of an example can be
inferred from the correlated labels that are already assigned
to the example. Label space sparsity implies that a label is
usually relevant to a small number of examples, or in other
words, only a small number of labels is relevant to an example.

In light of the above observations, in this paper, we propose
a novel multi-label active learning framework, called CMAL.
CMAL makes use of label correlation and label space sparsity,
and it iteratively queries the most likely positive subexample-
label pairs, instead of the whole example-label pairs. We simply
assume that the cost (e.g., effort) of querying an example-label
pair is larger than that of querying its subexample-label pair. In
each iteration, CMAL first measures how uncertain the example-
label pairs are, by leveraging label correlation and label space
sparsity. Then, CMAL queries the most uncertain example-label
pair by querying its most likely positive subexample-label pairs,
thus reducing the query cost. Experimental results on publicly
available datasets show that CMAL achieves a performance
comparable to other related methods at a smaller cost [5], [10],
[11].

II. RELATED WORK

Although traditional active learning has been widely studied
in many application domains and gives good classification
models at a small cost, in recent years, many researchers have



investigated effective active learning which can further reduce
the annotation cost. Some methods [13], [14], [15] assume that
multiple annotators are available to provide labels of different
quality and cost, and then focus on designing active learning
criteria to select example-labeler pairs. Unlike traditional active
learning methods, which only focus on querying uncertain ex-
amples with low prediction confidence, some methods identify
the majority of examples with highly confident predictions
from the unlabeled set, and then automatically assign pseudo-
labels to them without any human effort [16], [17]. Instead of
querying the example or example-label pairs, Huang et al. [18]
introduced a novel query type, where the relevance ordering of
target label pairs with respect to a selected example is queried.
This strategy has the advantage of obtaining richer information
and requires less expertise from the annotator. In contrast, in
this paper, we study cost effective active learning based on the
cost margin between querying an example and its subexamples.

Considering the multiple subexamples of an example, our
work is closely related to multi-instance learning, where each
example is represented as a bag that contains multiple instances
(or subexamples) [19]. In multi-instance learning, a bag is
positive with respect to a particular label if at least one of its
instances is positive, while the bag is negative if all its instances
are negative for that label [19], [20]. Although active learning
has been heavily studied for the single-instance scenario, only
few methods have been proposed to address the multi-instance
active learning problem, and our approach is different from all
of them. Some methods assume that all bags are labeled and
the learner is allowed to query the labels of instances from
the positive bags to train an instance classifier [21] or a bag
classifier [22]. In contrast, our method tries to query the labels
of unlabeled bags (i.e., examples) for bag classification. The
learning scenarios in [23], [24] also aim at querying the labels
of unlabeled bags for bag classification. However, these two
methods query the labels of unlabeled bags based on all its
instances, while our proposed method queries bag labels by
querying some instance-label pairs of unlabeled bags and has a
significantly reduced query cost. In [25], only one query round
is used, and the annotator is required to annotate a region (not
an example), which is the group of the most valuable instances.
In addition, the aforementioned multi-instance active learning
methods study binary classification, which is a special case
of the multi-label classification problem studied in this paper.
Although [10] and [11] investigated multi-label active learning
under the case of multi-instances, they focus on querying all
possible labels of unlabeled bags or the relevance of bag-label
pairs based on all its instances, and have a cost that is higher
than our solution.

III. COST EFFECTIVE MULTI-LABEL ACTIVE LEARNING

A. Problem Formulation

Let L = {(Xi,Yi)}li=1 be a small training set with l labeled
examples, where Xi ∈ Rd is the feature vector for the i-
th example in the d-dimensional feature space, and Yi ∈
{−1,+1}q encodes the ground-truth labels of the i-th example
in the q-dimensional label space. The value Yic = +1 means

that the example Xi is relevant to the c-th label, otherwise
Yic = −1. Let U = {Xj}l+u

j=l+1 be a large pool of u unlabeled
examples, where typically l << u. Bi = {xi1,xi2, · · · ,xini}
is the set of subexamples (or instances) of Xi, where ni =
|Bi| is the number of subexamples of Xi. Each subexample
xik ∈ Rd′ of an example Xi ∈ L is associated with labels
yik ∈ {−1,+1}q . As before, the value yikc = +1 means that
the subexample xik is relevant to the c-th label, otherwise
yikc = −1. Lsub represents the set of training subexamples
from L, and Usub represents the unlabeled subexamples from
U . As in standard multiple instance learning, an example (or
bag) is positive if it has at least one positive subexamples (or
instances), while an example is negative if all its subexamples
are negative.

A simple and effective solution for multi-label classification
is to transform a multi-label classification problem into q
independent binary classification problems (one per label) via
the “one-vs-all” scheme. In this work, we conduct multi-label
classification under such a scheme by utilizing SVM and multi-
instance SVM (mi-SVM) [26] for example classification and
instance classification, respectively. We train q SVM classifiers,
f1, f2,..., fq , and q mi-SVM classifiers, g1, g2,..., gq , for exam-
ples and subexamples, respectively. Each classifier corresponds
to a particular label. Eventually, Ŷic = sign(fc(Xi)) and
ŷikc = sign(gc(xik)) are the predictions of example Xi and
subexample xik for the c-th label, respectively.

B. Example and Subexample Selection Strategy

In this section, we introduce how the example-label pairs
and subexample-label pairs are selected for asking queries.
CMAL adopts the widely used uncertainty criterion to select
an example-label pair, where the uncertainty reflects the
confidence of the current classifier in classifying the example.
A larger uncertainty value implies a lower confidence, and
it indicates a larger informativeness of the selected example-
label pair towards improving the classifier [27]. For SVMs, the
uncertainty on the prediction of an example-label pair can be
measured by the distance between the example and the decision
boundary; a smaller distance implies a larger uncertainty. For
the example-level SVM, the decision boundary with respect
to the c-th label is defined as fc(X) = 0, and the distance
between Xi and that label is defined as |fc(Xi)|. We convert
the distance to a measure of uncertainty as follows:

U(Xi, c) =
1

|fc(Xi)|
(1)

Label correlation plays an important role in multi-label
learning [8], [9]. Under the multi-label active learning scenario,
the information embedded in a unknown label of an example
can be inferred from its correlated labels that have been queried
as relevant for the same example. Thus, incorporating label
correlation into multi-label active learning, can reduce the
number of queries and save cost. In addition, multi-label
datasets are generally affected by the label space sparsity
problem, i.e., only a small fraction of examples are relevant
for a given label. Given these observations, we propose



a weighted uncertainty based example-label pair selection
strategy, which leverages both label correlation and label space
sparsity. Specifically, the pairwise label correlation matrix W
is estimated as follows:

W(c1, c2) =

∑l+u
i=1 [Yic1 = +1,Yic2 = +1]∑l+u

i=1 [Yic1 = +1 or Yic1 = −1,Yic2 = +1] (2)

where [x] = 1 if x is true, [x] = 0 otherwise. W ∈ Rq×q

measures the empirical conditional probability that an example
is relevant to label c1, given that the example was already
found to be relevant to label c2. Note that the estimation of the
conditional probability W(c1, c2) is based on the examples
whose relevance towards c1 and c2 is already known. This
label correlation is widely adopted in multi-label learning for
its simplicity and intuitiveness [28], [29]. Other estimations
of label correlation can also be adopted [8]. To mitigate the
impact of limited labels, W is iteratively updated as labels are
queried during active learning.

The weighted uncertainty function is defined as:

Ũ(Xi, c) = w1(Xi, c) ∗ w2(c) ∗ U(Xi, c) (3)

where

w1(Xi, c) = 1−
∑

c1∈Y+(Xi)
W(c, c1)

q
, w2(c) = 1− n+

c

n
(4)

w1(Xi, c) ∈ [0, 1] denotes the weight of the example-label
pair (Xi, c), and w2(c) ∈ [0, 1] is the weight of the c-th label.
Y+(Xi) is the set of queried relevant labels of Xi; n = l+ u
is the total number of examples in the training set and in the
unlabeled pool; and n+c is the number of positive examples of
label c. w1(Xi, c) is driven by the fact that a large W(c, c1)
means that c is correlated with c1, and therefore c is also
possibly relevant to Xi, given that Xi is already annotated
with c1. As a consequence, the larger the correlation between
c and labels that have been deemed relevant to Xi is, the
less uncertain (Xi, c) is. Furthermore, the larger the number
of labels that have been queried for an example is, the less
uncertain the example is. From the definition of w2(c) we can
see that, the larger the number of positive examples of label c,
the smaller the uncertainty associated to c is.

Based on the definition of weighted uncertainty given in
Eq. (3), CMAL selects the most uncertain example-label pair
(Xi∗ , c

∗) as follows:

(Xi∗ , c
∗) = argmaxXi∈U,c∈Ql(Xi) Ũ(Xi, c) (5)

where i∗ and c∗ are the selected example and label indeces,
respectively; and Ql(Xi) is the set of not-queried labels for
Xi.

After this step, CMAL selects the most likely positive
subexample-label pair of the selected example-label pair as
follows:

(xi∗k∗ , c
∗) = argmaxxi∗k∈Qsub(Bi∗ )

gc∗(xi∗k) (6)

where k∗ is the selected subexample index of example Xi∗

and Qsub(Bi∗) denotes the set of not-queried subexamples

of the example-label pair (Xi∗ , c
∗). CMAL then queries the

relevance of the selected subexample-label pair (xi∗k∗ , c
∗).

C. Updating Strategy

In each iteration, after querying the subexample-label pair
(xi∗k∗ , c

∗), the response is either positive (relevant, +1) or
negative (irrelevant, -1). If the feedback is positive, CMAL
executes the following operations:

(i) (Xi∗ , c
∗) is annotated with +1, removed from U and added

to the labeled example set L.
(ii) (xi∗k∗ , c

∗) is annotated with +1, removed from Usub and
added to the training example set Lsub.

(iii) The current two classification models fc∗(X) and gc∗(x)
are updated with the new L and Lsub, respectively.

The example-label pair (Xi∗ , c
∗) is negative if all its

subexample-label pairs have been queried and in each case the
feedback was negative. Thus, for negative feedback, CMAL
executes the following operations:

(i) If (xi∗k∗ , c
∗) is the last being queried, and in each case

the feedback was negative, then (Xi∗ , c
∗) is annotated

with -1, removed from U and added to L.
(ii) (xi∗k∗ , c

∗) is annotated with -1, removed from Usub and
added to Lsub.

(iii) gc∗(x) is updated based on the new Lsub. If (i) is executed,
then fc∗(X) is updated based on the new L.

CMAL iteratively selects the most uncertain example-label
pair and then queries the most likely positive subexample-label
pair of the selected example-label pair. A positive example-
label pair has at least one positive subexample-label pair.
If the selected example-label pair is positive, it’s expected
that the learner will find the positive subexample-label pair
early in the process, thus greatly reducing the query cost. If
the selected example-label pair is negative, the learner can
uncover the negative relationship by iteratively querying all
its subexample-label pairs. Additional query strategies for
subexample-label pairs of the selected negative example-label
pair will be investigated in Section IV-D.

IV. EXPERIMENTS

A. Experimental Setup

Datasets: To examine the effectiveness of the proposed
method, we need the instance-level labels to simulate the
oracle (annotator). Among the publicly available multi-instance
multi-label datasets, four eligible datasets can be used for our
experiments (summarized in Table I). They were previously
used in multi-instance multi-label learning and active learning
[30], [11]. Since the feature vectors of examples are unavailable
for the four datasets, we followed the widely-adopted solution
in [7] to generate them. In this paper, bags and instances are
called examples and subexamples respectively.
Comparing Methods: We compare CMAL against the follow-
ing methods:

(i) QUIRE [5] selects the most valuable example-label pair
based on both informativeness and representativeness.



TABLE I
SUMMARY OF BENCHMARK DATASETS. AVGLABELS IS THE AVERAGE NUMBER OF LABELS PER BAG.

Subexamples of each example
Dataset Example Subexamples Features Labels AvgLabels Min Avg Max
Birds 548 10232 38 13 2.1 2 18.7 43
MSRC-v2 591 1758 48 23 2.5 1 3.0 17
Letter carroll 166 717 16 26 3.9 1 4.3 12
Letter frost 144 565 16 26 3.6 1 3.9 11

(ii) MidSelect [10] first transforms multi-instance multi-label
examples into single-instance representations, and then
applies the multi-label active learning strategy that selects
the most uncertain examples to be queried.

(iii) MIML-AL [11] first selects the most valuable example-
label pair based on diversity and uncertainty. To receive
more specific supervision, it additionally requires the
annotator to indicate the key subexample of this example-
label pair once the pair is deemed positive.

(iv) CMAL-RM is a variant of CMAL; it randomly selects
the example-label pair, and then selects the most likely
positive subexample-label pair of the selected example-
label pair for the query. This variant is used to study the
effectiveness of selecting uncertain example-label pairs.

(v) CMAL-RR is another variant of CMAL; it first randomly
selects the example-label pair and then randomly chooses
subexample-label pairs of the selected example-label pair
for the query.

To enable quantitative comparison, we follow the widely used
assumption that querying all q labels for one example is
equivalent to querying q example-label pairs [3], [4], [5].
Similarly, we assume that querying all subexamples of one
example is equivalent to querying the whole example. This
assumption is meaningful in crowdsourcing, where one divides
a complex task into multiple simple micro tasks, and then
distributes these tasks to crowdsourced workers. The total cost
for addressing the micro tasks can be considered equal to the
cost for addressing the overall complex task, which is hard or
even infeasible to address as a whole. For a fair comparison,
q one-vs-rest SVM (implemented with LIBSVM [31]) is used
as the basic classification model to evaluate all the approaches.
The parameters C (penalty of the error term) and γ (RBF kernel
parameter) of SVMs used in our experiments are selected via
5-fold cross-validation on the initial set. For each experiment,
we randomly divide the dataset into three parts: the test set
with 50% of the examples, the initial labeled set with 5% of the
examples, and the unlabeled pool with the rest of the examples.
The subexamples of all the examples are also accordingly
divided into three parts. We repeat the random data partition
10 times, and report the average results. After each query, we
update the classification model on the extended labeled data
and evaluate its performance on the holdout test set. The query
process is stopped when all the examples in the unlabeled pool
have been labeled.
Evaluation Metrics: We adopt the representative and widely-
used multi-label learning evaluation metrics: AveragePrecision
[8]. The larger the values of AveragePrecision, the better the

performance is.

B. Comparison against State-of-the-art Methods

Figure 1 shows the AveragePrecision of all the methods
on the four datasets, as a function of the number of queried
subexample-label pairs (also equal to the total query cost).

From the figures, we can make the following observations.
(i) CMAL significantly outperforms the other methods. This
demonstrates the effectiveness of our proposed multi-label
active learning strategy. (ii) CMAL-RM outperforms CMAL-
RR in most cases, which demonstrates the effectiveness of
selecting the most likely positive instance for saving query cost.
In most cases, CMAL-RM and CMAL-RR achieve superior or
comparable performance with respect to Quire, MidSelect, and
MIML-AL. This observation further suggests that querying
the relevance of instance-label pairs is more effective than
querying the examples, or example-label pairs. (iii) MIML-AL
often gives the lowest AveragePrecision values. The reason is
that MIML-AL is a multi-instance multi-label active learning
method, and it doesn’t leverage feature information at the
example level, while all the other methods do. (iv) To obtain a
detailed supervision, MIML-AL asks the annotator to identify
the key instance for the queried example-label pair which
received positive feedback, but it mainly focuses on example-
label pair queries, so it is also outperformed by CMAL. From
these results, we can conclude that performing multi-label active
learning by querying subexamples of the selected example-label
pair can achieve a superior or comparable performance with less
cost than other methods that query examples or example-label
pairs.

C. Study on the Impact of Label Correlation and Label Space
Sparsity

In this section, we conduct another experiment to study
the contribution of label correlation and label space sparsity
on multi-label active learning. To this end, we introduce
three variants of CMAL: CMAL-nC, CMAL-nS and CMAL-
nCS. CMAL-nC only employs label space sparsity to weight
uncertainty, without considering label correlation. CMAL-nS
only employs label correlation to weight uncertainty, without
considering label space sparsity. CMAL-nCS directly uses
the original uncertainty of example-label pairs without any
weighting. Figure 2 gives the AveragePrecision of CMAL and
the three variants on two datasets.

From the figure, we observe the following: (i) CMAL
generally achieves a performance superior to CMAL-nS
and CMAL-nCS. This shows that incorporating label space
sparsity and label correlation helps the selection of more
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Fig. 1. AveragePrecision vs. total number of queries of subexample-label pairs.

valuable example-label pairs. (ii) CMAL-nS often outperforms
CMAL-nCS, which further demonstrates the effectiveness of
incorporating label correlation for multi-label active learning.
In Figure 2, although there is no clear contribution of label
correlation at the beginning of the curves (few example-label
pairs are queried), no loss of performance is incurred. As
more and more example-label pairs are queried, the label
correlation can be more accurately estimated, and thus its
contribution becomes evident. (iii) CMAL and CMAL-nC have
a similar performance in some cases. The reason is that the
datasets used in our experiments only have a small number
of examples, and the average number of labels per example
is small. As a consequence, the correlation between labels
cannot be well estimated, and the contribution of this estimation
is not prominent. But due to the contribution of label space
sparsity, CMAL-nC can obtain a performance similar to CMAL.
This observation motivates us to pursue more reliable label
correlation measures in the future.

D. Study on Alternative Querying Strategies

In the previous experiments, we strictly followed the multi-
instance learning assumption that an example-label pair is
deemed as negative if all its subexample-label pairs have been
queried and received a negative feedback. Here we consider
avoiding querying all subexamples of a negative example-label
pair. As we gather more evidence of negative subexample-label
pairs for a given example-label pair, the likelihood that the
example itself is negative, with respect to the queried label,
increases. In addition, if the subexample-level classifier gc(x)
consistently predicts all not-yet-queried subexample-label pairs
of the example in question as negative, then the example-
label pair is even more likely to be negative. Given these
observations, we introduce five variants of CMAL: CMAL(ni

4 ),
CMAL(ni

2 ), CMAL(ni

4 +C), CMAL(ni

2 +C) and CMAL(ni+C).
In CMAL(ni

4 ), the learner annotates the selected example-label
pair as negative if

∑ni∗
k=1[yi∗kc∗ = −1] ≥ dni∗

4 e, namely the
first quarter of subexamples of the example are all negative
for the target label. In CMAL(ni

4 +C), the learner annotates
the selected example-label pair as negative if

∑ni∗
k=1[yi∗kc∗ =

−1] ≥ dni∗
4 e, or yi∗kc∗ = −1 for all queried subexample-label

pairs and gc(x) < 0 for all not-queried subexample-label pairs
(consensus prediction). The other variants follow the same
naming rules. Figure 3 gives the AveragePrecision of CMAL

and these five variants on two datasets. The end of a curve
means all the example-label pairs in the pool are queried.
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Fig. 2. AveragePrecision of CMAL and its variants.
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Fig. 3. AveragePrecision of CMAL and its five variants. The number of
misjudged example-label pairs for the five variants (ordered as in the legend
above) are as follows. Birds: 192, 193, 162, 40, 37; MSRC-v2: 266, 243, 245,
231, 124, respectively.

From Figure 3, we observe the following. (i) The five variants
stop earlier than CMAL, and they make a smaller number of
queries of subexample-label pairs than CMAL. This is because
the five variants do not query all subexample-label pairs to
select a negative example-label pair, and thus greatly reduce
the number of queries, but can misjudge positive example-label
pairs as negative. (ii) Although CMAL has a lower performance
than its variants at the beginning, it often achieves the best
performance as the query budget increases. (iii) The use of
the consensus prediction of the subexample-level classifier
greatly saves the query cost (i.e., the number of queries for
subexample-label pair) of an example-label pair, but results in
more misjudged positive example-label pairs and also lower
performance. (iv) With or without the use of the consensus of
the subexample-level classifier, these variants misjudge more
positive example-label pairs as θ = {1, 2, 4} (ni/θ) increases



(decreases). The reason is that as θ increases, the example-label
pair can be more quickly deemed as negative and this saves cost,
but at the price of increasing the risk of misjudging a positive
example-label pair as negative. This leads to a degenerated
performance.

Overall, the query cost and performance margin between
CMAL and its variants provide options for the user to select
an appropriate query strategy for subexample-label pairs based
on the budget. For a small budget, the variant with a larger θ
is more suitable; otherwise, the variant with a smaller θ should
be preferred.

V. CONCLUSION

We study active learning on multi-label examples that can be
segmented (or naturally represented) in multiple subexamples.
We observe that the annotators can more easily annotate an
example-label pair by annotating subexamples of the target
example. Based on this observation, we propose a cost-effective
multi-label active learning approach called CMAL. CMAL first
selects the most uncertain example-label pair and then queries
its most likely positive subexample-label pair. Experimental
results on multi-instance datasets demonstrate that CMAL is
able to achieve higher accuracy than other related methods,
and at an inferior cost. The code of CMAL is available at
http://mlda.swu.edu.cn/codes.php?name=CMAL.

The assumption that all subexamples of negative examples
are negative may not hold true in some domains. For example,
in document classification, some paragraphs may be negative
for the topic of the document, but some other paragraphs may
be postive. In addition, the assumption that the query cost of
all subexample-label pairs is equal to that of the example-label
pair is too optimistic. These two assumptions will be relaxed
in our future work.
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