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Abstract—Crowdsourcing is a useful and economic approach
to data annotation. To obtain annotation of high quality, various
aggregation approaches have been developed, which take into
account different factors that impact the quality of aggregated
answers. However, existing methods generally focus on single-
label (multi-class and binary) tasks, and they ignore the inter-
correlation between labels, and thus may have compromised qual-
ity. In this paper, we introduce a Multi-Label answer aggregation
approach based on Joint Matrix Factorization (ML-JMF). ML-
JMF selectively and jointly factorizes the sample-label association
matrices collected from different annotators into products of
individual and shared low-rank matrices. As such, it takes
advantage of the robustness of low-rank matrix approximation
to noise, and reduces the impact of unreliable annotators by
assigning small (zero) weights to their annotation matrices. In
addition, it takes advantage of the correlation among labels by
leveraging the shared low-rank matrix, and of the similarity
between annotators using the individual low-rank matrices to
guide the factorization. ML-JMF pursues the low-rank matrices
via a unified objective function, and introduces an iterative
technique to optimize it. ML-JMF finally uses the optimized
low-rank matrices and weights to infer the ground-truth labels.
Our experimental results on multi-label datasets show that ML-
JMF outperforms competitive methods in inferring ground truth
labels. Our approach can identify unreliable annotators, and is
robust against their misleading answers through the assignment
of small (zero) weights to their annotation.

Index Terms—Crowdsourcing, Multi-Label Learning, Joint
Matrix Factorization, Spammers

I. INTRODUCTION

With the emergence of the internet of things, a large
amount of unlabeled data can be easily and cheaply collected.
However, annotating such a vast amount of unlabeled data is
a difficult challenge, because annotating data with correct and
complete labels is time-consuming and often impractical, gen-
erally requiring expert knowledge. Crowdsourcing [1] provides
an effective and economic solution to collect labels for data
from non-expert workers in the open Internet. Label quality
of training data plays a crucial role for the performance of
machine leaning algorithms, and high-quality labels contribute
to reliable performance. Due to significant differences among
the crowders (or workers) in their knowledge levels, dedica-
tions, and evaluation criteria when crowdsourcing, the quality
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of crowdsourced labels (answers) may be quite different [2],
[3]. Furthermore, some workers may simply submit random
answers as a mean to earn easy money. Therefore, how to ag-
gregate high-quality answers is a key pursue in croudsourcing
[4].

To aggregate high-quality answers, one typical solution
is repeated labeling, which involves the annotation of the
same samples by different workers. Preliminary studies [5]
show that the quality of answers can be improved to some
degree by integrating repeated labels. Label integration is
accomplished by a ground-truth answer inference algorithm on
crowdsourced labels, without knowing the features of samples.
Many researchers worked on the development of methods to
derive high-quality answers from different perspectives, such
as the reliability [6], intention [7], difficulty of samples [8],
bias of workers [9], and so on.

The aforementioned answer aggregation methods focus on
single-label tasks, in which a worker is expected to assign
a single label to each sample. However, for many real-
world crowdsourcing applications (i.e., image annotations and
medical diagnosis [10], [11]), it’s common for a sample to be
simultaneously associated with several labels. In other words,
workers are expected to provide a set of relevant labels for each
sample. Assigning several labels to each sample increases the
level of noise and bias of crowdsourced labels. In addition,
workers no longer either completely agree or disagree on the
crowdsourced labels, and thus the consensus becomes partial.
Consequently, it’s difficult to assess the reliability of workers,
since they may provide partially correct and incorrect answers
at the same time [12]. Furthermore, the number of possible
label combinations is affected by a combinatorial explosion
in the case of multi-label samples. For these reasons, multi-
label answer aggregation is intrinsically more challenging
than its single-label counterpart. One simple solution is to
independently treat each label and transform the task into
multiple binary tasks. Such binary solutions completely ignore
the correlation between labels, whose appropriate usage can
significantly improve the performance of multi-label learning
[13], [14].

To the best of our knowledge, the problem of multi-
label answer aggregation in crowdsourcing remains a largely



unexplored topic [12], [15]. In this paper, we propose a Multi-
Label answer aggregation approach based on Joint Matrix
Factorization (ML-JMF). To take advantage of the robustness
of low-rank matrix factorization to noise [16], [17], ML-
JMF jointly factorizes the sample-label association matrices
of respective workers into a set of low-rank matrices for indi-
vidual workers and a shared low-rank matrix for labels. ML-
JMF assigns different weights to these association matrices to
further reduce the impact of low quality workers. In addition,
ML-JMF defines a term on the shared matrix to employ the
correlation between labels and another term on the individual
matrices to employ the similarity between workers. These two
terms and the objective of matrix factorization are integrated
into a unified objective function to guide the factorization.
We introduce an iterative solution to optimize the weights,
individual low-rank matrices of workers, and the shared low-
rank matrix. In the end, ML-JMF uses these weights and
optimized low-rank matrices to infer the ground-truth labels.

The main contributions of this paper are summarized as
follows:
(1) Our proposed ML-JMF can simultaneously take into ac-
count the quality of workers, the noise of crowdsourced labels,
correlations between labels, and connections between workers
for multi-label answer aggregation.
(2) We introduce an iterative technique to optimize the weights
assigned to workers and to pursue the joint matrix factoriza-
tion.
(3) Our empirical study on benchmark datasets shows that ML-
JMF outperforms state-of-the-art competitive methods [18]–
[20] for answer aggregation by up to 95% in accuracy, while
being robust against spammers. In addition, it can automati-
cally identify low quality workers.

The remainder of this paper is organized as follows. We
briefly review related work in Section II, and then elaborate
on the proposed algorithm and its optimization in Section III.
Section IV provides the experimental results and analysis, and
Section VI gives the conclusions and future work.

II. RELATED WORK

The simplest and most efficient answer aggregation method
is majority voting (MV) [21]. MV works very well under
two prerequisites: 1) the overall accuracy of most workers
is larger than 50% in binary labeling tasks, and 2) the error
of each worker is uniformly distributed over all class labels.
However, these prerequisites do not hold in complicated real-
world applications. Due to the lack of expert knowledge, most
workers tend to make shallow answers using common sense
or simply repeat what others say.

Besides the straightforward MV, researchers are dedicated
to many other aggregation solutions from different perspec-
tives [22]. To name a few, Dawid and Skene [23] applied
expectation maximization (EM) to model the confusion matrix
of each worker and to conduct aggregation from a set of
noisy labels. This EM based aggregation algorithm iteratively
estimates the labels that are most likely true classes, and then
uses these labels to estimate the error rate of each worker

and the label distribution. Raykar et al. [24] assumed that
annotators have biases toward the positive class and negative
class, and introduced a Bayesian approach by adding a specific
prior for each class. Whitehill et al. [25] proposed GLAD
(Generative model of Labels, Abilities, and Difficulties) to
model both the expertise levels of workers and the difficulties
of samples using EM. GLAD treats the probability of a sample
being positive as a latent variable, and it can produce high
quality results even with many adversarial labelers. Zhang
et al. [26] proposed a Positive LAbel frequency Threshold
(PLAT) algorithm to solve the imbalanced labeling problem
caused by the bias of workers via dynamically adjusting the
threshold to determine the class membership of an example
[26]. Zhang et al. [20] introduced adaptive weighted majority
voting (AWMV) to utilize the frequency of positive labels in
the multiple noisy label sets of each example to estimate a
bias rate, and then to assign weights derived from the bias
rate to negative and positive labels.

Some researchers have focused on worker behavior or task
assignment to improve label quality. Demartini et al. [6] as-
sumed that workers act independently and aggregated labels by
solving a maximum likelihood estimation problem. Raykar and
Yu [27] developed an empirical Bayesian algorithm based on
EM to iteratively estimate the ground-truth label and eliminate
spammers. Karger et al. [28] proposed a belief propagation
model to decide which tasks to assign to which workers. This
belief model uses task messages to iteratively update worker
messages, and vice versa. Next, the true classes are estimated
from the information contained in the task messages. Ho and
Vaughan [29] developed a two-phase exploration-exploitation
algorithm for assigning heterogeneous items to workers with
different qualities. Wang et al. [30] proposed an approach to
obtain high-quality labels from the crowds by distinguishing
easy and hard items prior to assigning them to workers.

The multi-label answer aggregation problem has been much
less explored [12], [31] than single-label aggregation solutions.
Nowak et al. [31] studied inter-annotator agreement for multi-
label image annotation and found that using the majority vote
strategy to generate one annotation set from several annotation
sets can filter out noisy judgments of non-experts to some
extent. To address the problem of different taxonomies being
used in a multi-label domain, Duan et al. [15] proposed
a probabilistic cascaded method called cascaded estimation
with Dawid-Skene (C-DS). C-DS maps label sets in a source
taxonomy to label sets in a target taxonomy in terms of
the semantic distance between them. Yoshimura et al. [19]
incorporated GLAD [25] into RAkEL (RAndom k-labELsets)
[32] and proposed RAkEL-GLAD to balance the estimation
accuracy and computational complexity in multi-label answer
aggregation. Hung et al. [12] extended the clustering based
Bayesian combination of classifiers method [33] for multi-
label answer aggregation. This extended solution additionally
models the co-occurrence dependency between labels by latent
label clusters and the partial consensus between workers by
grouping workers with similar answers.

The aforementioned single-label aggregation approaches ig-



nore the interdependence between labels; some of them cannot
perform as well as on binary setting, while some other may fail
to adapt to multi-label scenarios [34]. On the other hand, multi-
label aggregation methods do not differentiate among different
types of workers, they do not account for potential noisy
annotations and the different biases of individual workers.
It’s recognized that both label correlation and the types of
workers contribute to answer aggregation [19], [35]. Given
these observations, we propose an approach called ML-JMF
to simultaneously account for label correlations, noisy labels,
and quality of individual workers. ML-JMF can differentiate
the quality of workers by assigning different weights to their
annotation matrices, and reduce noise through low-rank matrix
factorization. It further exploits correlation between labels and
the similarity between workers to guide the low-rank matrix
and weight optimization. Our empirical study shows that ML-
JMF achieves superior aggregated labels than other inference
algorithms [18]–[20]. ML-JMF can also identify spammers
and can selectively aggregate annotations of workers.

III. PROBLEM FORMULATION

In this section, we first discuss an image annotation task to
illustrate the intrinsic challenges of multi-label answer aggre-
gation. Then, we elaborate on ML-JMF and its optimization.

A. Motivation

Table I lists the crowdsourced labels of four images (i1 -
i4) provided by five workers (w1 - w5). For simplicity, these
labels are denoted with numbers from 1 to 5. In particular, ‘-’
denotes the fact that the worker thinks the image should not
be annotated with the corresponding label.

Table I: Annotation collected from five workers on four images

w1 w2 w3 w4 w5 ground truths Majority Voting

i1 {2,3,-4} {2,3} {1} {3} {2} {2} {2,3}
i2 {3,4} {-2,3,4} {2} {3} {1,3,4} {1,3,4} {3}
i3 {3,5} {-1,4} {4} {3} {4,5} {4,5} {4}
i4 {-1,2,3} {3,4} {5} {3} {2,3,4} {2,3,4} {3}

1: grass, 2: lion, 3: sun, 4: tree, 5: river

A straightforward and widely adopted approach to derive
aggregated labels is majority voting (MV) [18], [31], which
separately considers the five labels. If the number of ‘votes’
for a particular label of a sample from all workers is the
largest (or larger than half workers), this label is included
in the aggregated label set. Considering ground truth labels
(in practice, often unknown), we have two observations: the
aggregated results obtained using MV are (i) partially incorrect
(e.g., label 3 should not be assigned to i1); and (ii) partially
incomplete (e.g., labels 1 and 4 should also be assigned to i4).

This is due to the fact that MV considers all answers as
equally important and MV ignores the correlation between
labels. In other words, MV assumes that all workers have
similar biases and produce answers of equal quality. But in
practice, they don’t. Kazai et al. [35] categorized workers into
five groups: (i) Diligent workers (reliable workers) take care
of their tasks and may be characterized by a high ratio of

useful labels; (ii) Normal workers have general knowledge
to give correct answers, but make mistakes occasionally; (iii)
Sloppy workers care little about the quality of their work, they
may still provide a high fraction of useful labels but with low
accuracy; (iv) Incompetent workers lack professional skills or
competence, resulting in low accuracy; (v) Spammers may
come in different shapes and forms, e.g., they give the same
answer to all questions or give random answers. Given the data
in Table I, w5 might be a reliable worker who assigns correct
labels; w1 and w2 may be normal workers who can give some
correct answers; and w3 and w4 are spammers. Unlike single-
label data, labels of multi-label samples are correlated. For
example, we can see that labels 3 and 4 are often assigned to
the same images.

From the illustrative example given in Table I, we can
conclude that: (i) if the spammers (w3 and w4) are removed,
the aggregated results for i1 and i3 will be correct; (ii) label 4
can be assigned to the same image already tagged with label
3, thus image i4 can be annotated correctly with its ground
truth labels. This illustrates that both quality of workers and
correlation among labels should be considered in multi-label
answer aggregation.

B. The Proposed Algorithm

Suppose there are m workers providing labels for n sam-
ples, each of which can be annotated with one or more labels,
and L ∆

= {1, . . . , c} is the label set. Each collection of labels
provided by a worker as annotation for a sample is a subset
of L. Thus, each worker provides a sample-label association
matrix for n samples and c distinct labels as follows:

Aw
∆
=

 aw11 . . . aw1c
...

. . .
...

awn1 · · · awnc

 (1)

where awil ∈ {−1, 0, 1}. awil = 1(−1) states that the w-th
worker annotated the i-th sample with (or without) the l-th
(1 ≤ l ≤ c) label, and awil = 0 means that the worker did not
provide an answer for the corresponding label and sample.

The feature information of the n samples may often be
shielded from the inference algorithm due to privacy issues
[6]. To obtain high-quality aggregated labels from {Aw}mw=1,
we advocate the use of the shared information of workers,
and also the intrinsic characteristics of individual workers. To
this end, and motivated by the robustness to noise of a low-
rank approximation of a matrix [17], [36], we jointly factorize
{Aw}mw=1 as follows:

min
U,V>0

m∑
w=1

µw

∥∥∥Aw −UwSV
T
∥∥∥2
F

(2)

s.t.

m∑
w=1

µw = 1,µw ≥ 0

where ‖·‖2F is the Frobenius norm, Uw ∈ Rn×k and V ∈
Rc×k are the individual matrix for the w-th worker and
the shared low-rank matrix for c labels across m workers;



k < (n, c) is the low-rank size of these two matrices.
S ∈ Rk×k is introduced to ensure that the values of Uw and V
are nonnegative. V partially encodes the dependency between
c distinct labels in the k-dimensional real space. µw ≥ 0 is
the weight assigned to the w-th worker, and it’s introduced to
reduce the impact of low quality workers (e.g. spammers).

Eq. (2) has a trivial solution µw = 1 when
‖Aw −UwSV‖2F gives the smallest approximation loss. To
avoid this trivial solution, we add an l2-norm to Eq. (2) as
follows:

min

m∑
w=1

µw

∥∥∥Aw −UwSV
T
∥∥∥2
F

+ λ ‖µ‖2F

s.t.

m∑
w=1

µw = 1,µw ≥ 0

(3)

where λ > 0 controls the importance of ‖µ‖2F and contributes
to selectively aggregate the answers from workers by assigning
different (possibly zero) weights to {Aw}mw=1. By minimizing
the above equation, a larger weight can be assigned to the
worker whose annotation matrix Aw has a smaller approxi-
mation loss. On the other hand, if a matrix Aw cannot be well
approximated, it means it’s not consistent with the annotations
of other workers and may not be reliable. As such, MF-JMF
has the potential of automatically removing noisy annotation
matrices by crediting zero weights. It can also reduce the
impact of partially noisy annotation matrices by assigning
smaller weights to them, or by low-rank matrix approximation.
Our experimental results confirm the effectiveness of this
process.

Unlike single-label answer aggregation, multi-label answer
aggregation should account for correlations among labels,
since a multi-label sample is often simultaneously annotated
with several related but different labels. For example, in Table
I, tree and sun are often assigned to the same images, so
if a sample is tagged with tree (sun), then it’s quite likely
to be tagged with sun (tree) also. In fact, this co-occurrence
of information is widely adopted in multi-label learning [13].
Given this, we make use of label correlation based on the
low-rank representation of c labels as follows:

min
V≥0

1

2

∑
i,j

Cij ‖vi. − vj.‖22 = tr(VT (D−C)V)

= tr(VTLV)

(4)

where C ∈ Rc×c stores the label correlation between c labels.
vi. is the i-th row of V, tr(·) denotes the matrix trace
operation, D is a diagonal matrix with Dii =

∑c
j=1 Cij , and

L = D−C. For simplicity, we adopt the widely used cosine
similarity to quantify the correlation between labels, based on
the averaged sample-label association matrix

∑m
w=1 Aw/m.

Other more advanced label correlation measurements can also
be adopted [37].

If two workers have similar profiles (levels of knowledge
or background), they are likely to give similar answers to the
same samples. In other words, the profile similarity can be
used to guide the pursue of individual low-rank matrices Uw.

Thus, we define a regularization on individual matrices Uw to
take advantage of worker profiles as follows:

min
Uw≥0

1

2

∑
w 6=p

Rwp||Uw −Up||2F

=
∑
w 6=p

Rwptr((Uw −Up)
T (Uw −Up))

Rwp =
tr(ÃwÃp)√

tr(ÃwÃw)tr(ÃpÃp)

s.t. Ãw = AwA
T
w − diag(AwA

T
w)

(5)

where Rwp is the similarity between worker w and worker
p; it’s measured using the modified RV-coefficient [38]. The
modified RV-coefficient (Rwp) is suggested to measure the
common information of high-dimensional data matrices; it
can probe the similarity between pairs of datasets (or data
matrices) in a simple and comprehensive way [39]. The value
of Rwp is between 0 and 1: the larger the value, the larger
the similarity between the two workers is. Rwp can also be
computed via Pearson correlation or cosine similarity. Our
investigation shows that ML-JMF combined with the RV-
coefficient to estimate worker similarity can achieve a better
accuracy than ML-JMF combined with cosine similarity or
Pearson correlation.

We combine the constraints on V and Uw with the joint
matrix factorization in Eq. (2), and form the objective function
of ML-JMF as follows:

Φ (Uw,S,V,µ) = arg min
U,V>0

m∑
w=1

µw

∥∥∥Aw −UwSV
T
∥∥∥2
F

+ λ ‖µ‖2F + αtr(VTLV)

+ β
∑
w 6=p

Rwptr((Uw −Up)(Uw −Up)
T )

s.t.

m∑
w=1

µw = 1,µw ≥ 0,Uw ≥ 0,V ≥ 0

(6)

where the parameters α and β weight the constraints in Eq. (4)
and Eq. (5), respectively. Besides the joint matrix factorization,
we employ two constraints to guide the pursue of Uw, V,
and µw, and thus to improve the accuracy and reliability of
multi-label answer aggregation. The experiments confirm the
advantage of using these two constraints.

After optimizing µw, Uw, S, and V, ML-JMF selectively
aggregates the annotation matrices of m workers as follows:

A∗ =

m∑
w=1

µwUwSV (7)

The inferred sample-label association matrix A∗ not only
can reduce the impact of too noisy annotation matrices by
assigning µw = 0 to them, but also removes partially noisy
annotations in Aw of selected workers by low-rank matrix
approximation.

C. Optimization

The proposed objective function of ML-JMF in Eq. (6)
is not convex for all variables V, µw, S, and Uw (w =



1, 2, · · · ,m) at the same time. Therefore, it is unrealistic to
expect to find the global optimum simultaneously. Here, we
introduce an alternative update strategy to optimize V, µw,
S, and Uw. Particularly, we will optimize one variable while
fixing the other variables as constants.

1) Optimizing V: By fixing Uw, µw (∀w), and S, we can
optimize V as follows:

min Φ1(V)=

m∑
w=1

µw‖Aw −UwSV
T ‖2F + αtr(VTLV) (8)

s.t. V ≥ 0

The derivative of Φ1(V) with respect to V is

∂Φ1

∂V
=

m∑
w=1

µw(2VSTUT
wUwS−2AT

wUwSV
T )+2αLV (9)

Using the Karush-Kuhn-Tucker (KKT) complementary condi-
tion [40] for the nonnegativity of V, we can obtain:

(
∑m

w=1
µw(VSTUT

wUwS−AT
wUwSV

T ) + αLV)ijVij = 0

(10)
Considering V ≥ 0, S and L may take a positive or negative
sign, we decompose them as AT

wUwS = (AT
wUwS)+ −

(AT
wUwS)− and STUT

wUwS = (STUT
wUwS)+ −

(STUT
wUwS)−, where the matrices with positive and negative

symbols are defined as O+ = |O|+O
2 and O− = |O|−O

2 . Then,
we can obtain the following updating formula for V:

V ← V

√√√√√√√
m∑
w=1

µw(AT
wUwS)+ +

m∑
w=1

µwV(STUT
wUwS)− + αL−V

m∑
w=1

µw(AT
wUwS)− +

m∑
w=1

µwV(STUT
wUwS)+ + αL+V

(11)

2) Optimizing Uw: Similarly, we can update the Uw,
one by one. For a Uw, given V,S, µw, and Up, p ∈
{1, 2, . . . ,m}, w 6= p, the objective function for optimizing
Uw is:

min Φ2 (Uw) = µw

∥∥∥Aw −UwSV
T
∥∥∥2
F

+ β
∑
w 6=p

Rwptr((Uw −Up)(Uw −Up)
T )

s.t. Uw ≥ 0

(12)

The derivative of Φ2 with respect to Uw is
∂Φ2

∂Uw
= µw(2UwSV

TVST − 2AwVST )

+ 2β
∑

w 6=p
Rwp (Uw −Up)

(13)

Using the KKT complementary condition [40] for the nonneg-
ativity of Uw, we can obtain:
(µw(UwSV

T
VS

T −AwVS
T

) + β
∑
w 6=p

Rwp (Uw −Up))ij(Uw)ij = 0

(14)

Since S may take any sign, similarly to the computation of
Eq. (9), we let AwVST = (AwVST )+ − (AwVST )− and
SVTVST = (SVTVST )+ − (SVTVST )−. Thus, Eq. (13)
leads to the following update formula for Uw:

Uw ← Uw

√√√√√√√
µw
(
AwVST

)+ + µw
(
SVTVST

)− + 2β
∑
w 6=p

RwpUp

µw
(
AwVST

)− + µw
(
SVTVST

)+ + 2β
∑
w 6=p

RwpUw

(15)

3) Optimizing S: With Uw, V, and µ known, optimizing
Eq. (6) with respect to S is equivalent to optimize

min Φ3(S) =

m∑
w=1

µw

∥∥∥Aw −UwSV
T
∥∥∥2
F

(16)

Letting ∂Φ3

∂S = 0 leads to the following updating formula:

S = (

m∑
w=1

µw(UT
wUw))−1(

m∑
w=1

µw(UT
wAwV))(VTV)−1 (17)

4) Optimizing µ: Next, we view V, Uw, and S as known,
and define the objective function with respect to µ as follows:

min Φ4(µ) =
∑m

w=1
µw

∥∥∥Aw −UwSV
T
∥∥∥2
F

+ λ ‖µ‖2F

−
∑m

w=1
ζwµw − γ(

∑m

w=1
µw − 1)

(18)

where ζw ≥ 0 and γ ≥ 0 are the introduced Lagrange
multipliers for constraints µw ≥ 0 and

∑m
w=1 µw = 1. Let

hw = ‖Aw −UwSV
T ‖2F be the approximation loss for Aw,

h = [h1,h2, · · · ,hm]. The partial derivative of Φ4(µ) with
respect to µ is:

∂Φ4

∂µ
= h + 2λµ− ζ − γ (19)

The optimal µ should satisfy the following four conditions
[40]:

1) Complementary slackness condition: ζwµw = 0;
2) Stationary condition: hw + 2λµw − ζw − γ = 0;
3) Feasible condition:

∑m
w=1 µw = 1,µw ≥ 0;

4) Dual feasibility condition: ∀ζw ≥ 0.
From the stationary condition, µw can be computed as:

µw =
ζw + γ − hw

2λ
(20)

From Eq. (18), we can see that µw depends on ζw and γ,
both of which can be analyzed via the following cases:

1) if γ > hw, then µw > 0, because of the complementary
slackness ζwµw = 0 and the dual feasibility ∀ζw ≥ 0,
ζw = 0 and µw = γ−hw

2λ .
2) if γ = hw, because of ζwµw = 0 and µw = ζw

2λ , ζw = 0
and µw = 0.

3) if γ < hw, since µw ≥ 0, it requires ζw > 0; because
ζwµw = 0, then µw = 0.

From the above analysis, we can set µw as:

µw =

{
γ−hw

2λ
, γ > hw

0, γ ≤ hw
(21)

Suppose
−→
h stores the entries of h in ascending order. For a

predefined λ not too large, there exists q ∈ {1, 2, · · · ,m}
with

−→
h q < γ and

−→
h q+1 ≥ γ, satisfying

∑m
w=1 µw =∑q

w=1
γ−
−→
hw

2λ = 1. Then µw has the following explicit
solution:

µw =

{
γ−
−→
hw

2λ
, w ≤ q

0, w > q
(22)

From
∑m
w=1 µw =

∑q
w=1

γ−
−→
hw

2λ = 1, we can get the value
for γ as:



γ =
2λ+

∑q
w=1

−→
h w

q
(23)

From the solution of µ, we find that, if
−→
h r >

−→
h p and

γ ≥
−→
h r, the p-th worker will get a larger weight than the

r-th worker. This is the case because the r-th worker may
provide noisy annotations, which are inconsistent with other
workers, and therefore resulting in a large approximation loss.
Therefore, adding an l2 norm to µ in Eq. (2) can not only
remove noisy (irrelevant) answer matrices by assigning zero
weights to them, but also can reduce the impact of partially
noisy annotation matrices by crediting reduced weights to
them. In addition, because of the robustness of low-rank matrix
approximation to noises [17], [36], [41], the joint matrix
factorization can also remove noisy annotations, and thus
further improve the quality of aggregated labels.

From Eq. (22) and Eq. (23), we see that if λ is set to a very
small positive value, γ ≈

∑q
w=1

−→
h q/q, and then ML-JMF will

select at least one annotation matrix. On the other hand, if λ
is fixed to a very large value, then all the annotation matrices
will be used and credited nearly equal weights. To find a value
of q that satisfies Eq. (22), we decrease q from m to 1, step
by step, and specify the search procedure in Algorithm 1. The
whole ML-JMF approach is summarized in Algorithm 2.

Algorithm 1 A method to seek q and compute µw
Input: Sorted

−→
hw, w ∈ {1, 2, . . .m} in ascending order, λ

Output: q,µw
1: Initialize q = m, γ = 0.
2: While q > 0 do

3: γ =
2λ+

∑q
w=1

−→
hw

q

4: If γ −
−→
h q > 0 then

5: break.
6: Else
7: q ← q − 1.
8: End If
9: End While

10: µw ←
γ−
−→
hw

2λ , for w = 1, · · · , q.
11: µw ← 0, for w = q + 1, · · · ,m.

Algorithm 2 ML-JMF: Multi-label Answer Aggregation based
on Joint Matrix Factorization
Input:
{Aw}mw=1: Annotation matrices of m workers;
α, β, λ: input parameters of ML-JMF;
tol: tolerance threshold for iterative optimization;
maxIter: maximum number of iterations.

Output:
µ: weights assigned to m workers;
A∗: the aggregated sample-label association matrix;

1: Initialize Uw , S, V and µ in random;
2: Compute R via Eq. (5) and C via cosine similarity;
3: Compute the initial value of Φ1(Uw,S,V,µ) via Eq. (6);
4: t = 0, Φ0 = 0;
5: While |Φt − Φt+1| > tol & t < maxIter
6: t = t+ 1;
7: Update the matrix Uw ,V, S via Eq. (15), Eq. (11), Eq. (17), respectively;
8: Update µ using Algorithm 1;
9: Compute the value of Φt+1(Uw,S,V,µ);

10: End While
11: Return the aggregated label matrix A∗ via Eq. (7)

IV. EXPERIMENTAL SETUP

Datasets: To study the performance of ML-JMF in aggre-
gating crowdsourced labels of multi-label samples, we carry

out experiments on five real-world datasets. The statistics
of these datasets are listed in Table II. Movie is a movie
category classification dataset used in [19]. The other four
real-world datasets were used by Duan et al. [42] in emotion
classification. The candidate label sets are taken from the
Ekman’s taxonomy [43] and the Nakamura’s taxonomy [44].

Comparing Algorithms: We compare ML-JMF against
two state-of-the-art multi-label methods RAkEL-GLAD [19]
and C-DS [15], the classifical MV [18], and two represen-
tative single-label methods AWMV [20] and PLAT [26] (all
discussed in the related work Section). RAkEL-GLAD has
two parameters: k (number of labels in a label subset) and
M (number of random label subsets); we set k = 2 and
M = c×(c−1)

2 for the experiments. To facilitate the comparison
with AWMV and PLAT, we decompose the multi-label answer
aggregation problem into multiple binary-label aggregation
problems. For example, the “Apple” Ekman dataset has six
labels, AWMV is separately applied on each label and each
label has 2340 tasks (30 workers/Instance × 78 Instances).
In addition, we introduce ML-JMF(A), a variant of ML-JMF,
which uses the optimized weights, but also the original anno-
tation matrices to infer labels; namely, A∗ =

∑m
w=1 µwAw.

The input parameters of MV, AWMV and PLAT, and C-DS are
specified or optimized as the authors suggested in their code
or papers. ML-JMF and its variant set α = 103, β = 0.01,
λ = 104, and k = dc/2e+1. The parameter sensitivity analysis
for ML-JMF is also presented.

Evaluation Metrics: In multi-label answer aggregation,
results can be partially correct. We therefore rely on the
set-based definition of Accuracy to evaluate the individual
correctness on n samples. The accuracy is defined as follows
[12], [45]:

Accuracy =
1

n

n∑
i=1

|Ti
⋂
T ∗i |

|T ∗| , (24)

where Ti and T ∗i are the set of true labels and the set of
aggregated labels of the i-th sample, respectively.

We also use the RankingLoss, a representative evaluation
metric in multi-label learning, to evaluate the average fraction
of label pairs that are not correctly ranked for the sample. The
formal definition of RankingLoss is:

Rankingloss =

n∑
j=1

1

c

c∑
i=1

|Ri|
|Ti||T i|

(25)

where Ri = {(c1, c2) ∈ Ti × T i|A∗(i, c1) ≤ A∗(i, c2)},
Ti ∈ L is the set of labels associated with the i-th sample,
T i is the complementary set of Ti in L. c1 ∈ Li, c2 ∈ T i
are the relevant labels and irrelevant labels, respectively. The
smaller the RankingLoss is, the better the performance is. The
performance is perfect when the RankingLoss is zero [13].

To be consistent with Accuracy, we report the 1-
RankingLoss in the following experiments. The initially ob-
tained aggregated labels are expressed as real-numbers and
need to be converted into binary labels for computing the
Accuracy. In the experiments, we choose the labels with the
highest probabilities as the aggregated labels of the sample



Table II: Statistics of five real-world datasets used in the experiments

Dataset Workers Instances Labels Tasks Annotations workers/Instance Label per instance

Movie 89 100 19 3500 6811 35 1.95
AppleEkman 68 78 6 2340 2978 30 1.27

AppleNakamura 57 78 10 2340 2768 30 1.18
LoveEkman 54 63 6 1890 1890 30 1.05

LoveNakamura 41 63 10 2583 3965 41 1.53

according to the number of ground truth labels per sample
for all methods. For example, if the i-th sample has two
true labels, all the methods consider the two labels with the
highest values of their respective label likelihood vectors as the
aggregated labels. The RankingLoss directly uses the initially
aggregated labels without such conversion.

A. Results of Multi-Label Answer Aggregation

Table III shows the results of different answer aggregation
methods on five real-world datasets. Since ML-JMF initializes
the matrices Uw, S, and V randomly, we independently run
ML-JMF ten times and report the average results and variance.
The five comparing methods are deterministic.

From Table III, we can clearly see that ML-JMF generally
outperforms the comparing methods on different datasets. Both
RAkEL-GLAD and ML-JMF consider label correlation of
multi-label samples while C-DS not. RAkEL-GLAD generally
obtains a better Accuracy than C-DS, but they all lose to
ML-JMF. This is because ML-JMF takes into account the
quality variance of workers and reduces the impact of noisy
annotations via matrix factorization. This result corroborates
the fact that the quality of workers should be considered
when aggregating crowdsourcing labels. ML-JMF(A) assigns
different weights to Aw; it outperforms MV, but always loses
to ML-JMF. The achieved performance margin between ML-
JMF and ML-JMF(A) provides support to the robustness of a
low-rank matrix approximation, corroborating its use.

MV, PLAT, and AWMV convert the multi-label answer
aggregation problem into multiple single-label problems. They
ignore the correlation between labels; as such they are out-
performed by ML-JMF and RAkEL-GLAD, which take ad-
vantage of label correlations. This comparison suggests that
label correlations should be considered in multi-label answer
aggregation. Although AWMV and PLAT are signal-label
methods, AWMV achieves a better performance than PLAT.
A possible reason is that AWMV assigns different weights to
different types of labels. We also report the 1-RankingLoss of
ML-JMF, RAkEL-GLAD, and C-DS in Table IV. We can see
that ML-JMF generally has a larger 1-RankingLoss than these
two comparing methods and ML-JMF(A).

In summary, these experimental results not only prove the
effectiveness of ML-JMF in aggregating labels of multi-label
samples in crowdsourcing, but also confirms that both label
correlation and quality of workers should be considered in
fusing crowdsourcing labels.
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Figure 1: Accuracy of ML-JMF under different input values of λ.

B. Component Analysis of µ

To account for the quality variance of different workers,
ML-JMF attaches a weight µw to the w-th worker, which is
expected to be small for a low-quality worker and large for a
high-quality one. From the explicit solution of µ in Eq. (22),
we can see that once λ is specified, the weight assigned to µw
can be derived from the approximation loss of Aw. To find a
feasible value of λ, we vary λ in {10−5, 10−4, · · · , 106, 107}.
Furthermore, to investigate the capability of ML-JMF of iden-
tifying spammers, we additionally append 20 spam workers,
who randomly select a label for all the samples of AppleEk-
man and AppleNakamura datasets. The Accuracy of ML-JMF
under each value of λ is revealed in Figure 1. In practice,
we also separately investigated the 20 spammers who assign
a random label to each sample, and the 20 spammers who
randomly assign the average number of annotations of all
workers to samples of the dataset. These two investigations
give the similar results as revealed in Figure 1.

ML-JMF has the highest Accuracy when λ ≈ 104, the
lowest Accuracy when λ < 10, and gradually reduced Ac-
curacy when λ ≥ 105. To further investigate these results,
we take the AppleEkman dataset, and report the weights
(µw) assigned to all the annotation matrices when λ = 10,
λ = 104, and λ = 105 in Figure 2. We have several interesting
observations. (i) When λ = 10, only a very small portion of
annotation matrices are selected; when λ = 105, all annotation
matrices are selected and assigned nearly equal weights. This
is expected from Eq. (6); a (too) small λ value does not have
a sufficient regularization effect on the weights assigned to
individual matrices, and thus only few data matrices are se-
lected. On the other hand, a (too) large λ value inflicts a strong
regularization effect and forces similar weight assignments to
all matrices. (ii) Since complementary information is spread
across the annotation matrices of different workers, ML-JMF
with λ = 105 and with λ = 104 obtains a significantly better



Table III: Accuracy of ML-JMF and comparing methods

Movie LoveNakamura LoveEkman AppleNakamura AppleEkman

MV 0.9275 0.8726 0.8697 0.8510 0.8622
PLAT 0.8968 0.8839 0.8818 0.8662 0.8868

AWMV 0.9326 0.9126 0.8857 0.8703 0.8953
RAkEL-GLAD 0.9430 0.9363 0.9202 0.9317 0.9295

C-DS 0.9423 0.9267 0.9023 0.9276 0.9363
ML-JMF(A) 0.9317±0.0017 0.8396±0.0021 0.8427±0.0000 0.8313±0.0124 0.8617±0.0031

ML-JMF 0.9458 ± 0.0028 0.9505 ± 0.0127 0.9235 ± 0.0121 0.9530 ± 0.0208 0.9513 ± 0.0228

Table IV: 1-RankingLoss of ML-JMF and comparing methods

Movie LoveNakamura LoveEkman AppleNakamura AppleEkman

RAkEL-GLAD 0.9978 0.9911 0.7249 0.9681 0.9701
C-DS 0.9932 0.9729 0.8174 0.9694 0.9687

ML-JMF(A) 0.9879 ± 0.0000 0.9519 ± 0.0000 0.9127 ± 0.0017 0.9656 ± 0.0001 0.9577 ± 0.0000
ML-JMF 0.9979 ± 0.0000 0.9791 ± 0.0017 0.9358 ± 0.0000 0.9703 ± 0.0013 0.9716 ± 0.0000

1 11 21 31 41 51 61 71 77
workers

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

µ
w

AppleNakamura

4

5

1 11 21 31 41 51 61 7177
workers

0

0.1

0.2

0.3

0.4

0.5

µ
w

AppleNakamura

Figure 2: Weights assigned to 77 (57 workers + 20 spammers)
annotation matrices of AppleNakamura dataset.

performance than with λ = 10. (iii) Even if ML-JMF with
λ = 105 combines the annotations of 20 spammers, it still
obtains a better performance than ML-JMF with λ = 10; this
is because the low-rank matrix approximation can eliminate
the noise of annotation matrices. For a similar reason, ML-
JMF with λ = 104 occasionally does not assign zero weights
to several spammers.

In summary, these experimental results corroborate the
fact that ML-JMF can identify spammers and can selectively
integrate different annotation matrices via joint matrix factor-
ization. Based on these experimental results, we adopt λ = 104

for the experiments.

C. Robustness to Spammers

Spammers always exist in crowdsourcing platforms. Previ-
ous studies show that the proportion of spammers could be up
to 40% [3], [46]. As a result, it is important to investigate how
each aggregation technique performs when the workers are
not trustworthy. For this investigation, we artificially injected
{10%, 20%, 30%, 40%} spammers into the worker population
and report the performance of the comparing methods under
different ratios of spammers in Figure 3. Here, each spammer
randomly selects a label from the label space, and then assigns
the chosen label to all the samples of the dataset.

As the ratio of spammers increases, all the aggregation
methods have reduced Accuracy. This pattern is expected,
since more spammers bring in more noisy annotations, which
may even surpass the correct ones and make the aggrega-
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Figure 3: Accuracy under different ratios of spammers on Ap-
pleEkamn, AppleNakamura and LoveEkman.

tion task more difficult. ML-JMF generally outperforms the
other five methods, especially on the AppleEkman dataset.
MV is the most sensitive to spammers, since it assumes
that all workers (including spammers) provide answers of
equal quality, and ignores label correlation. When adding
40% spammers, ML-JMF can still hold an accuracy > 80%
and is more robust to spammers than the other comparing
methods. This advantage can be attributed to three factors: (i)
unlike existing aggregation approaches, ML-JMF makes use of
the robustness of low-rank matrix factorization to reduce the
impact of noisy annotations of respective workers (including
spammers); (ii) ML-JMF can jointly and selectively integrate
the annotation matrices of workers, and can explicitly reduce
the impact of spammers by assigning lower (or zero) weights
to spammers; (iii) ML-JMF explicitly uses label correlation
and worker profile similarity to optimize the weights and the
approximation of the respective annotation matrices. For these
reasons, RAkEL-GLAD has a lower Accuracy than ML-JMF,
although it also takes into account label correlation.

D. Parameter sensitivity analysis

The four parameters α, β, λ, and the rank k of S may
affect the performance of ML-JMF. We conduct additional
experiments to study the sensitivity of ML-JMF with respect



to α, β, and k. The sensitivity of λ was studied in Subsection
V-B (see Figure 1 and Figure 2).
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Figure 4: Accuracy of ML-JMF under different combinations of α
and β.
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Figure 5: Accuracy of ML-JMF under different low-rank sizes (k).

Figure 4 shows the results of ML-JMF under different
combinations of α and β with k set to dc/2e+1. Under a fixed
α, ML-JMF with β ∈ [10−3, 10] has a superior performance
than ML-JMF with β in other intervals. This is because a
too small value of β underweights the contribution of profile
similarity of workers, and a too large value of β overweights
the profile similarity of workers. In fact, the annotation matrix
Aw is very sparse. To save costs, the repeated labels of the
samples are still very scarce, and thus the user profile matrix
Uw is sparse and share low similarity with other workers. For
this reason, the setting of β to a large value drags down the
performance of ML-JMF. With a fixed β, ML-JMF achieves a
relatively stable performance when α > 102 and has reduced
performance when α ∈ [10−5, 102]. This is because a small
α does not make sufficient usage of label correlation, which
can often boost the performance of multi-label learning. We
can conclude that both label correlation and profile similarity
of workers can boost the accuracy of multi-label answer
aggregation. Based on the above analysis, we set α = 104

and β = 0.01 for experiments.
Figure 5 shows the results for ML-JMF under different

values of k. As k increases, the performance of ML-JMF
increases at first, and then turns to be stable or decreased
when k > dc/2e+1. ML-JMF with k ≈ dc/2e+1 often holds
comparable (or better) performance to MJ-JMF with k = c.
This fact suggests that it’s feasible to encode c labels via a
low-rank (k < c) matrix. Based on the above analysis, we set
k = dc/2e+ 1 for the experiments.

E. Complexity analysis
We plot the overall loss of Φ(Uw,S,V,µ) in each iteration

(see Eq. (6)) for the AppleEkman dataset in Figure 6. We can
clearly see that ML-JMF converges quickly in no more than
20 iterations. The overall loss in each iteration on the other
datasets also provide similar results.

ML-JMF and the other comparing methods (whose code
was provided by the authors) are implemented using different
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Figure 6: Convergence curve of ML-JMF on the AppleEkman dataset.

languages; as such, it’s not meaningful to compare their em-
pirical runtime costs. Therefore, we give the theoretical com-
putational complexity of three multi-label answer aggregation
approaches (ML-JMF, RAkEL-GLAD, and C-DS). RAkEL-
GLAD takes O(mnc) to create a power set of each label and
O(mnM2k) (where k is the number of labels in a label subset,
and M is the number of random label subsets) to calculate
the average likelihood of each label, so its complexity is
O(mnc+mnM2k). The computational complexity of C-DS is
O(mnc2 +mc3 +c3). C-DS takes O(mnc2 +mc3) to compute
the joint distribution over the source label vectors and target
labels, and O(c3) to compute the probability of each label for
each sample. ML-JMF takes O(mnk2), O(nck), O(mnck)
to iteratively update the low-rank matrices V,Uw,S, re-
spectively, and O(tm) to update µ. Thus, the computational
complexity of ML-JMF is O(tmnk2 + tmnck + tm), where
t is the number of iterations. The three single-label answer
aggregation methods (MV, PLAT, and AWMV) have a lower
complexity than multi-label methods, since they separately
aggregate answers for each label. Since k < {c, n}, ML-JMF
has a lower complexity than RAkEL-GLAD and C-DS. The
code of ML-JMF will be made publicly available.

V. CONCLUSION

This paper studies how to aggregate the labels of multi-
label samples collected via crowdsourcing, and introduces
a Multi-Label answer aggregation approach based on Joint
Matrix Factorization (ML-JMF). ML-JMF jointly factorizes
the sample-label association matrices obtained from different
workers into the product of individual low-rank matrices and
a shared low-rank matrix, and selectively integrates them by
assigning different weights to their answer data matrices. It
further integrates the correlation between labels based on the
shared matrix and connections between workers by individual
matrices to guide the matrix factorization and weights. Ex-
perimental results on five real-world datasets show that ML-
JMF can identify spammers and achieve higher accuracy than
related methods. Our study suggests that both label correlation
and quality of workers should be considered in aggregating
the labels of multi-label samples. The code of ML-JMF is
available at http://mlda.swu.edu.cn/codes.php?name=MLJMF.

Like existing solutions, ML-JMF currently depends on
the input parameters; how to reduce the number of input
parameters, and how to automatically determine their optimal
values are future issues to be pursued.

http://mlda.swu.edu.cn/codes.php?name=MLJMF
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