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Abstract—The goal of multiple clusterings is to discover
multiple independent ways of organizing a dataset into clus-
ters. Current approaches to this problem just focus on one-
way clustering. In many real-world applications, though, it’s
meaningful and desirable to explore alternative two-way clus-
tering (or co-clusterings), where both samples and features are
clustered. To tackle this challenge and unexplored problem,
in this paper we introduce an approach, called Multiple Co-
Clusterings (MultiCC), to discover non-redundant alternative co-
clusterings. MultiCC makes use of matrix tri-factorization to
optimize the sample-wise and feature-wise co-clustering indicator
matrices, and introduces two non-redundancy terms to enforce
diversity among co-clusterings. We then combine the objective
of matrix tri-factorization and two non-redundancy terms into a
unified objective function and introduce an iterative solution to
optimize the function. Experimental results show that MultiCC
outperforms existing multiple clustering methods, and it can find
interesting co-clusters which cannot be discovered by current
solutions.

Index Terms—multiple clusterings, co-clustering, matrix tri-
factorization, redundancy.

I. INTRODUCTION

Clustering is a fundamental problem in unsupervised ma-
chine learning. Traditional clustering methods just find a single
data partition. However, when clustering complex data, many
solutions may exist, and each one may provide a reasonable
grouping of the data [1]. Given that, multiple clustering solu-
tions have been developed to explore alternative clusterings.
Naive solutions explore alternative clusterings by (i) running a
clustering algorithm multiple times, using different parameter
values each time; or (ii) running different clustering algorithm-
s; or (iii) running a combination of the above two strategies
[2]. These approaches may generate multiple clusterings with
high redundancy, since they do not take into account the
already explored clusterings. To overcome this drawback, two
general strategies are introduced. The first one simultaneously
generates multiple clusterings, which are required to be dif-
ferent from each other [3]. The second one generates multiple
clusterings in a greedy manner, and forces the new clusterings
to be different from the previously generated ones [4]–[6].

However, typically multiple clustering algorithms only con-
sider one-way clustering, i.e., they cluster samples based on
their feature similarity. But in many real-world applications,
it is meaningful and desirable to explore alternative two-
way clusterings (or co-clusterings) [7], where both samples
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and features are simultaneously clustered. For example, in
collaborative filtering [8], [9], the aim is to produce multiple
groups of “users” and “items”, while in gene expression data
analysis, the goal is to output groups of “samples” and “genes”
[10].

To uncover multiple co-clusterings from data, we propose a
solution called Multiple Co-Clusterings (MultiCC). Motivated
by the use of semi-nonnegative matrix factorization in co-
clustering [8], [11], MultiCC repeatedly factorizes the data ma-
trix X into RhSh(Ch)T to obtain alternative co-clusterings,
where Rh ≥ 0 and Ch ≥ 0 correspond to the row-cluster and
column-cluster indicator matrices of the h-th co-clustering.
Sh plays the role of absorbing the different scaling factors
of Rh and Ch to minimize the squared error. MultiCC also
defines redundancy measurement terms based on Rh and Ch,
and minimizes them to enforce diversity among alternative co-
clusterings. To ensure high quality and diverse co-clusterings,
MultiCC integrates the matrix factorization and the terms
measuring redundancy into a unified objective function, and
uses an iterative solution to optimize Rh and Ch.

The paper makes the following contributions:
• We study the multiple co-clustering problem to uncover

co-clusters of data from different perspectives. To the best
of our knowledge, this is a largely unexplored topic, and
has meaningful applications in real life scenarios.

• We introduce a matrix factorization based approach called
MultiCC to find alternative co-clusterings of high quality
and diversity.

• Experimental results show that MultiCC significantly
outperforms related approaches [3], [5], [6], [12], [13] in
the discovery of multiple clusterings, and it can uncover
co-clusterings which are more diverse from one another.

The remainder of this paper is organized as follows. We
briefly review related work in Section II, and then elaborate
on the proposed algorithm and its optimization in Section III.
Section IV provides the experimental results and Section V
gives the conclusion and future work.

II. RELATED WORK

The problem of multiple clusterings has been studied for
one decade [2]. Existing solutions for multiple clustering
can be roughly categorized into two groups: unsupervised
and semi-supervised. The unsupervised algorithms attempt to
seek multiple diverse clusterings without reference to existing



clusterings, while semi-supervised ones sequentially generate
multiple clusterings with reference to existing clusterings.

Within the semi-supervised category, COALA (Constrained
Orthogonal Average Link Algorithm) [12] uses the existing
clusterings to generate a “cannot-link” constraint for each pair
of samples in the same cluster, and attempts to achieve a
tradeoff between satisfying these cannot-links and ensuring
high quality within a hierarchical clustering, but the result
heavily depends on the quality of the generated “cannot-link”
constraints. MSC (Multiple Stable Clusterings) [5] uses a sim-
plex constraint to generate different sparse weights assigned
to features, and then uses spectral clustering [14] to produce
multiple stable clusterings. MNMF (Multiple clustering by
Nonnegative Matrix Factorization) [6] integrates a diversity
regularization term, constructed using the existing clusterings,
with the objective function of NMF, to explore multiple
clusterings in a sequential manner. Some researchers have
explored alternative clusterings from the perspective of feature
spaces [4], [13]. ADFT (Alternative Distance Function Trans-
formation) [13] uses must-link and cannot-link constraints
between instances to learn a distance function [15]. It then uses
the distance function to compute a transformation matrix, and
hence a subset of features to produce alternative clusterings.

Meta Clustering [16] is a well-known approach within the
category of unsupervised multiple clusterings. It first assigns
different weights to features based on the Zipf distribution
[17], and then obtains multiple clusterings by applying k-
means on the weighted features. This approach often generates
redundant clusterings. Other methods attempt to seek alterna-
tive clusterings simultaneously by minimizing the correlation
between two distinct clusterings. For example, Dec-kmeans
(Decorrelated k-means) [3] generates alternative clusterings by
minimizing the error terms of two individual k-means, and it
uses the dot products of the mean vectors of the two respective
clusterings to quantify their dissimilarity.

The aforementioned multiple clustering algorithms focus on
finding multiple clusterings from a sample-wise or a feature-
wise perspective, and some of them can only explore two
alternative clusterings [3], [13]. In many practical applications,
e.g. cancer genomic data analysis [10] and collaborative filter-
ing [8], [9]), it is desirable to present multiple alternative co-
clusterings to uncover the hidden patterns of the data matrix.
We want to remark that exploring multiple co-clusterings is
significantly more challenging than the widely studied multiple
clustering scenario, since co-clustering must be simultaneously
performed along both samples and features, instead of on
samples or features alone. To address this challenge, we
propose a novel Multiple Co-Clustering (MultiCC) solution.
Our empirical study shows that MultiCC can uncover multiple
diverse co-clusterings of good quality.

III. METHODOLOGY

A. Multiple Co-Clusterings

MultiCC aims at exploring multiple co-clusterings by si-
multaneously grouping the elements of a matrix along both
samples and features, while enforcing the quality and diversity

among the co-clusterings as much as possible. As such, there
are two questions to be addressed in MultiCC: (1) how to
find multiple co-clusterings with good quality, and (2) how to
reduce the redundancy among the co-clusterings.

For the first question, to obtain multiple co-clusterings,
MultiCC repeats semi-nonnegative matrix tri-factorization [11]
on the data matrix. Co-clusterings are represented by the
respective sample-wise and feature-wise co-clustering indi-
cator matrices (Rh and Ch, h = 1, 2, · · · ,m, where m
is the target number of alternative co-clusterings) [18]–[20].
MultiCC pursues the relatively good quality by minimizing
the residues of matrix factorization. For the second question,
MultiCC quantifies the redundancy using the respective sample
and feature co-clusters, so that it will keep the diversity among
different co-clusterings.

Let X = {x·1, · · · ,x·n} ∈ Rd×n be the data matrix
for n samples represented by d numeric features. MultiCC
repeatedly factorizes X into the product of three matrices as
follows:

Ψ1({Rh}mh=1, {Ch}mh=1) =
1

m

m∑
h=1

‖ X−RhSh(Ch)
T ‖2

s.t. Rh ≥ 0; Ch ≥ 0
(1)

where Rh ∈ Rd×kh is the row-cluster indicator matrix, stating
that the h-th co-clustering groups the d features into kh row-
clusters. If feature xi· belongs to the k

′

h-th row-cluster of
the h-th co-clustering, Rh

ik
′
h

= 1; otherwise, Rh
ik

′
h

= 0.

Similarly, Ch ∈ Rn×lh is the column-cluster indicator matrix,
stating that the h-th co-clustering groups the n samples into lh
column-clusters. If x·j belongs to the l

′

h-th cluster, Ch
jl

′
h

= 1;

otherwise, Ch
jl

′
h

= 0. Sh ∈ Rkh×lh is introduced to account for
the different number of row-clusters and column-clusters and
to minimize the squared error induced by matrix factorization.
To enable datasets which include negative values, MultiCC
does not require Sh to be nonnegative.

To enforce dissimilarity among the various co-clusterings,
we first define a co-association matrix Wh

r = Rh ∗ (Rh)T

based on Rh, where T denotes a matrix transpose. (Wh
r )ij

is the inner product between the i-th and the j-th rows of
Rh. Clearly, Wh

r (i, j) = 1 if xi· and xj· are in the same row-
cluster, and Wh

r (i, j) = 0 otherwise. We can measure the total
feature-wise redundancy, for each pair of row-clusterings, as
follows:

Ψ2({Rh}mh=1) =

m∑
h1,h2=1
h1 6=h2

d∑
i,j=1

ΘrW
h1
r (i, j)Wh2

r (i, j) (2)

where Θr = 1
d2 × 1

kh1
kh2

is the normalization factor aimed at
reducing the influence of different numbers of features (d) and
clusters (kh1

and kh2
) of two row clusterings. Eq. (2) measures

the redundancy for all pairs of row-clusterings: the smaller
the resulting value is, the smaller the frequency at which two
features are grouped in the same row-cluster, and therefore
the larger the diversity among row-clusterings is. From the



properties of the trace operation, we can reformulate Eq. (2)
as follows:

Ψ2({Rh}mh=1) =

m∑
h1,h2=1
h1 6=h2

Θrtr((R
h1)TRh1Wh2

r )

=

m∑
h1,h2=1
h1 6=h2

Θr ‖ (Rh1)TRh2 ‖2
(3)

Similarly, we can measure the total sample-wise redundancy
for each pair of column-clusterings as follows:

Ψ3({Ch}mh=1) =

m∑
h1,h2=1
h1 6=h2

Θc ‖ (Ch1)TCh2 ‖2 (4)

where Wh
c ∈ Rn×n is the co-association matrix based on Ch,

Θc = 1
n2 × 1

lh1
lh2

is the normalization factor.
Based on the above, MultiCC integrates Eq. (1) with Eq.

(3) and Eq. (4) to pursue m different co-clusterings via the
following unified objective function:

J({Rh}mh=1, {Ch}mh=1) =
1

m

m∑
h=1

‖ X−RhSh(Ch)T ‖2

+
λ

C2
m

m∑
h1,h2=1
h1 6=h2

(Θr ‖ (Rh1)TRh2 ‖2 +Θc ‖ (Ch1)TCh2 ‖2)

s.t. R(h) ≥ 0; C(h) ≥ 0
(5)

where the regularization parameter λ ≥ 0 controls the tradeoff
between the quality of the m co-clusterings, which is pursued
by the matrix tri-factorization, and the dissimilarity among
these co-clusterings, which is pursued by the last two terms.
To reduce the scale issue, the factors 1/C2

m and 1/m are
introduced, where C2

m = m(m− 1)/2 is the total number
of pairwise co-clusterings.

B. Optimization Algorithm

Rh and Ch are binary matrices, so directly minimizing Eq.
(5) to find m alternative co-clusterings is very difficult. To
address this issue, we relax the elements of Rh and Ch to have
continuous nonnegative values. Under this relaxed condition,
the above equations still hold. Eq. (5) is non-convex with
respect to Rh, Sh, and Ch altogether. As such, it’s unrealistic
to expect to concurrently find the global optimal values for
all variables. Leveraging the multiplicative updating technique
[11], [21], which was used in nonnegative matrix factorization
and has been proved to converge, we introduce an iterative
solution that alternatively optimizes one variable, while fixing
the other variables, until convergence. The iterative process is
detailed below.

Optimizing J with respect to Sh is equivalent to optimizing
the following function:

J1(Sh) =
1

m
‖ X−RhSh(Ch)T ‖2

s.t. Rh ≥ 0; Ch ≥ 0
(6)

Setting the partial derivative ∂J1

∂Sh = 0, leads to the following
updating formula for Sh:

Sh = [(Rh)TRh]−1(Rh)TXCh[(Ch)TCh]−1 (7)

Optimizing J with respect to Rh is equivalent to optimizing
the following function:

J2(Rh) =
1

m
‖ X−RhSh(Ch)T ‖2

+
λ

C2
m

m∑
h2=1
h2 6=h

Θr ‖ (Rh)TRh2 ‖2

s.t. Rh ≥ 0;

(8)

For the constraint Rh ≥ 0 ,we introduce the Lagrangian
multiplier α ∈ Rd×kh , thus the Lagrangian function is as
follows:

L(Rh) =
1

m
‖ X−RhSh(Ch)T ‖2

+
λ

C2
m

m∑
h2=1
h2 6=h

Θr ‖ (Rh)TRh2 ‖2 −tr(α(Rh)T )
(9)

Setting the partial derivative ∂L(Rh)
∂Rh = 0, we can get

α = −2A + 2RhB + 2λΓr (10)

where A = XCh(Sh)T /m, B = Sh(Ch)TCh(Sh)T /m
and Γr = (

∑m
h2=1;h2 6=h Θr(Rh2(Rh2)TRh))/C2

m. Using the
Karush-Kuhn-Tucker (KKT) [22] complementarity condition
αijR

h
ij = 0, we obtain:

[λΓr −A + RhB]ijR
h
ij = 0 (11)

Introducing Γr = Γ+
r −Γ−r , A = A+−A−, B = B+−B−,

where A+
ij = (|Aij | + Aij)/2 and A−ij = (|Aij | − Aij)/2,

we can rewrite Eq. (11) as follows:

[λ(Γ+
r −Γ−r )−A+ +A−+RhB+−RhB−]ijR

h
ij = 0 (12)

Eq. (12) leads to the following updating formula for Rh

Rh
ij ← Rh

ij

√
[λΓ−r + A+ + RhB−]ij

[λΓ+
r + A− + RhB+]ij

(13)

Similarly, we can update Ch as follows:

Ch
ij ← Ch

ij

√
[λΓ−c + P+ + ChQ−]ij

[λΓ+
c + P− + ChQ+]ij

(14)

where P = XTRhSh/m, Q = (Sh)T (Rh)TRhSh/m and
Γc = (

∑m
h2=1;h2 6=h Θc(C

h2(Ch2)TCh))/C2
m.



IV. EXPERIMENTS

A. Experimental Protocol

To study the performance of MultiCC, we measure the
quality and diversity of the discovered clusterings. To measure
quality, we adopt the widely used Silhouette Index (SI) and
Dunn Index (DI) as the internal index [1]. A large values of
SI and DI indicate a high quality clustering. To measure the
diversity between alternative clusterings, we adopt Normalized
Mutual Information (NMI) and Jaccard Index (JI) as the
external index. The smaller the values of NMI and JI, the
more diverse the clusterings are. As such, smaller values are
to be preferred.

Since no prior work exists on multiple co-clusterings, we
study the performance of MultiCC from two view-points:
(1) Finding multiple sample-wise clusterings, and comparing
MultiCC against representative and related multi-clustering
algorithms; and (2) Finding multiple co-clusterings, and visu-
alizing these co-clusterings. Five datasets collected from the
UCI machine learning repository are used for the experiments.
These datasets were widely used for multiple clusterings [4],
[6] and their statistics is summarized in Table I.

TABLE I
CHARACTERISTICS OF THE DATASETS.

Datasets Samples Features Classes
Glass 214 9 7
Ionosphere 351 34 2
CMUface 640 15360 20\4
Vehicle 846 17 4
Vowel 528 10 10

Besides specifying the target number of alternative co-
clusterings (m), MultiCC also needs to choose the number of
row-clusters (k) and the number of column-clusters (l) for each
co-clustering. For simplicity, we adopt the same values for k
and l in each alternative co-clustering. Here we adopt a widely
used technique to determine the number of clusters [23], which
runs k-means multiple times and then computes the cophenetic
correlation coefficient. The larger the coefficient is, the more
stable the clustering results are. After applying this technique
with m = 2 and λ = 100, MultiCC chooses l = 3 for
Glass, l = 7 for Ionosphere, l = 6 for CMUface, l = 3
for Vehicle, and l = 5 for Vowel, and it directly specifies k
as the number of true classes in each dataset listed in Table I.
For the CMUface dataset, since the number of persons is 20
and the number of poses is 4, we set k1 = 20 and k2 = 4 for
the first and the second co-clusterings, respectively.

B. Parameter Analysis

The regularization parameter λ controls the tradeoff be-
tween the quality and the diversity of m alternative clusterings.
We investigate the effect by varying λ between [10−4, 104]
for the six UCI datasets under different input values of λ.
As λ increases from 1 to 102, quality decreases and diversity
increases. Due to the known tradeoff between quality and
diversity [6], [24], this trend is expected. Increasing λ enforces
more stringent non-redundancy between alternative clusterings

and consequently sacrifices the quality of alternative cluster-
ings. The increase in diversity shows that integrating the two
non-redundancy terms with matrix tri-factorization indeed con-
tributes to diverse alternative clusterings. With λ ∈ [10, 103],
we achieve a good and stable tradeoff between quality and
diversity; as such, we set λ = 102 in the experiments.

C. Finding Multiple One-way Clusterings

Since no prior work on multiple co-clusterings exists, we
compare MultiCC with multiple clustering algorithms from
the perspective of clustering data sample-wise. Particularly,
we compare MultiCC with COALA [12], ADFT [13], MNMF
[6], MSC [5], MetaClustering [16] and Dec-kmeans [3] (all
discussed in the related work Section). The first four methods
are semi-supervised, and the last two are unsupervised. For
COALA, ADFT and MNMF, we use k-means to generate the
first clustering (C1), and then apply their respective solutions
to generate the second alternative clustering (C2). Parameters
were specified or optimized as suggested by the authors.
Following the experimental protocol adopted by these methods
[6], we measure clustering quality on C2. Table II reports the
average results and standard deviation of ten independent runs.

From Table II, we can see that MultiCC achieves at least
one best result for both quality and diversity on the first three
datasets. MultiCC also obtains the best performance (except
for SI on the MetaClustering) on CMUface. MultiCC looses
against some of the comparing methods on Vehicle, possibly
because MultiCC enforces a high degree of diversity between
C1 and C2. Similarly, due to the overemphasis of quality on
Vowel, MNMF obtains more dissimilar alternative clusterings
than MultiCC on Vowel, but its second clustering has lower
quality than that of MultiCC. The reason is that MNMF finds
multiple clusterings in a greedy manner, and its performance
on C2 heavily depends on C1. Similarly to MultiCC, Dec-
kmeans can also simultaneously find two dissimilar alternative
clusterings, but it frequently has lower quality values and
higher diversity values than MultiCC. In summary, overall
MultiCC holds a good balance between dissimilarity and
quality of alternative clusterings (C1 and C2).

To verify that MultiCC can group data according to dif-
ferent perspectives, we visualize the clustering results for the
CMUface dataset. CMUface contains 640 grey face images
of 20 individuals with varying poses (up, straight, right, left),
and so it can be clustered either by person or by pose. Fig. 1
shows the respective mean image of 20 individual clusters
and 4 different poses. We observe that the first clustering
indeed groups the images by person, and the second clustering
groups the images according to the pose. These two clusterings
provide two meaningful interpretations of the same data. This
visual example can also explain why MultiCC obtains a better
quality and diversity than the other competing algorithms on
the CMUface dataset in Table II. This example suggests that
MultiCC can explore meaningful and different clusterings.



TABLE II
RESULTS OF QUALITY AND DIVERSITY OF THE VARIOUS COMPETING METHODS. ↓ (↑) INDICATES THE DIRECTION OF PREFERRED VALUES FOR THE

CORRESPONDING MEASURE. •/◦ INDICATES WHETHER MULTICC IS STATISTICALLY (ACCORDING TO PAIRWISE t-TEST AT 95% SIGNIFICANCE LEVEL)
SUPERIOR/INFERIOR TO THE OTHER METHOD.

MetaClustering COALA Dec-kmeans ADFT MNMF MSC MultiCC

Glass

SI 0.150±0.018• 0.667±0.000◦ 0.539±0.101◦ 0.560±0.004◦ -0.156±0.058• 0.671±0.010◦ 0.164±0.009
DI 0.025±0.009• 0.209±0.000• 0.051±0.014• 0.026±0.004• 0.013±0.003• 0.128±0.013• 0.264±0.012

NMI 0.533±0.018• 0.176±0.000• 0.023±0.035◦ 0.887±0.012• 0.082±0.012• 0.314±0.032• 0.041±0.010
JI 0.473±0.012• 0.446±0.000• 0.405±0.041• 0.885±0.010• 0.181±0.010• 0.748±0.013• 0.082±0.006

Ionosphere

SI 0.372±0.051• 0.393±0.000• 0.259±0.020• 0.414±0.008 0.099±0.016• 0.401±0.007 0.406±0.012
DI 0.071±0.016 0.041±0.000• 0.090±0.014◦ 0.071±0.008 0.015±0.007• 0.038±0.014• 0.065±0.010

NMI 0.276±0.014• 0.363±0.000• 0.554±0.014• 0.803±0.013• 0.315±0.004• 0.594±0.038• 0.110±0.009
JI 0.564±0.013• 0.501±0.000• 0.584±0.028• 0.782±0.011• 0.342±0.006◦ 0.748±0.029• 0.457±0.014

CMUface

SI 0.204±0.018◦ 0.048±0.000• 0.018±0.012• 0.063±0.005• -0.022±0.013• 0.018±0.010• 0.076±0.013
DI 0.102±0.015• 0.117±0.000• 0.096±0.026• 0.012±0.003• 0.031±0.011• 0.029±0.005• 0.130±0.008

NMI 0.509±0.020• 0.088±0.000• 0.038±0.016• 0.640±0.013• 0.051±0.019• 0.554±0.013• 0.020±0.006
JI 0.181±0.024• 0.167±0.000• 0.158±0.003• 0.531±0.011• 0.158±0.005• 0.523±0.011• 0.046±0.010

Vehicle

SI 0.401±0.022◦ 0.663±0.000◦ 0.136±0.055 0.721±0.002◦ -0.181±0.013• 0.790±0.011◦ 0.115±0.012
DI 0.024±0.011• 0.064±0.000◦ 0.008±0.001• 0.038±0.001• 0.008±0.002• 0.025±0.006• 0.054±0.006

NMI 0.471±0.017• 0.701±0.000• 0.178±0.010• 0.980±0.021• 0.135±0.003◦ 0.910±0.027• 0.142±0.010
JI 0.442±0.013• 0.724±0.000• 0.293±0.024• 0.991±0.010• 0.247±0.005• 0.952±0.033• 0.144±0.008

Vowel

SI 0.190±0.012• 0.135±0.000• 0.072±0.032• 0.223±0.018 0.005±0.023• 0.243±0.040◦ 0.222±0.013
DI 0.030±0.012• 0.082±0.000 0.026±0.003• 0.051±0.014• 0.020±0.004• 0.028±0.003• 0.080±0.004

NMI 0.364±0.023◦ 0.167±0.000◦ 0.031±0.007◦ 0.605±0.051• 0.005±0.002◦ 0.436±0.012• 0.416±0.012
JI 0.165±0.019• 0.215±0.000• 0.130±0.006◦ 0.332±0.048• 0.117±0.006◦ 0.406±0.017• 0.147±0.012

(a) Clustering by persons

Up Straight

Right Left

(b) Clustering by poses

Fig. 1. The mean image of 20 clusters in the first clustering explored by
MultiCC from the perspective of 20 persons (a), and 4 clusters in the second
clustering from the perspective of 4 different poses (b).

D. Finding Multiple Co-Clusterings

We apply MultiCC on the Diffuse Large B Cell Lymphoma
(DLBCL) gene expression data [25] to investigate the discov-
ery of alternative co-clusterings. We preprocess the DLBCL
data by removing the genes that are not expressed or have a
small variance, and finally obtain a data matrix with 360 genes
and 180 samples (cancer patients). For this investigation, we
set the number of alternative co-clusterings to m = 4, the
regularization parameter to λ = 100, the number of gene-
clusters to k = 5, and the number of sample-clusters to l = 3.
We visualize the results by plotting the heatmap of each co-
clustering in Fig. 2. We also measure the diversity between co-
clusterings, both gene-wise and sample-wise, using the average
co-cluster relevance score [26], and report it in Table III.
CSh1h2

is the average co-cluster relevance score (CS) between
the h1-th and h2-th co-clusterings. The smaller CSh1h2

is, the
larger the diversity between the two co-clusterings is.

In the heatmap, red points indicate that the gene expression
is up-regulated (high expression value), while green points
indicate down-regulation (low expression values). From the

(a) First co-clustering (b) Second co-clustering

(c) Third co-clustering (d) Fourth co-clustering

Fig. 2. Heatmaps of co-clusters for four different co-clusterings.

TABLE III
AVERAGE CO-CLUSTER RELEVANCE SCORE (CS) OF FOUR

CO-CLUSTERINGS FOUND BY MULTICC.

CS12 CS13 CS14 CS23 CS24 CS34

Gene-wise 0.43 0.38 0.49 0.29 0.34 0.39
Sample-wise 0.28 0.29 0.34 0.29 0.33 0.34

heatmaps of the four alternative co-clusterings, we can clearly
see that MultiCC groups genes and samples in multiple red
and green blocks, which implies that MultiCC can find co-
expression patterns of genes across specific samples. In other
words, MultiCC can find multiple high quality co-clusters. In
addition, the co-clusters of these co-clusterings contain a dif-
ferent number of samples. For example, the first co-clustering
partitions 180 samples into three clusters of sizes 40, 70, and
70, and the second co-clustering groups the samples into three
clusters of sizes 100, 40, and 40. From the gene perspective,



the co-clusters manifest diverse expression profiles in different
co-clusterings. This phenomenon can be visually observed in
the heatmaps, through the variation of size and distribution
of red and green blocks across co-clusterings. In addition,
from the CS scores given in Table III, we can observe a low
redundancy between co-clusters across co-clusterings, since
both gene-wise and sample-wise scores are less than 0.5. Both
the visualization and quantitative analyses demonstrate that
MultiCC is able to discover multiple diverse co-clusterings of
good quality. These alternative co-clusterings provide options
for analyzing the same cancer data from different perspectives.

To conclude, we emphasize the two features that contribute
to the competitive performance of MultiCC: (i) Simultaneously
grouping features and samples via matrix factorization enables
the finding of co-clusterings (clusterings) of high quality; (ii)
The integration of two terms that measure row-cluster and
column-cluster redundancy enforces the exploration of diverse
co-clusterings.

V. CONCLUSIONS

In this paper, we study how to find multiple co-clusterings in
data. The problem is relevant from an application standpoint,
is challenging, and seldom studied. We introduce an approach
called MultiCC to generate multiple diverse co-clusterings
of quality. MultiCC repeatedly factorizes the data matrix to
obtain multiple co-clusterings, and it enforces diversity by
minimizing the redundancy between row-clusters and column-
clusters. Our experimental results demonstrate that MultiCC
outperforms state-of-the-art multiple clustering methods, and
has the capability of finding multiple diverse co-clusterings. In
the future, we will further investigate its potential for cancer
subtype categorization. The codes of MultiCC are available at
http://mlda.swu.edu.cn/codes.php?name=MultiCC.
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