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Abstract—Current efforts on multi-label learning generally
assume that the given labels of training instances are noise-free.
However, obtaining noise-free labels is quite difficult and often
impractical, and the presence of noisy labels may compromise the
performance of multi-label learning. Partial multi-label learning
(PML) addresses the scenario in which each instance is annotated
with a set of candidate labels, of which only a subset corresponds
to the ground-truth. The PML problem is more challenging than
partial-label learning, since the latter assumes that only one label
is valid and may ignore the correlation among candidate labels.
To tackle the PML challenge, we introduce a feature induced
PML approach called fPML, which simultaneously estimates
noisy labels and trains multi-label classifiers. In particular, fPML
simultaneously factorizes the observed instance-label association
matrix and the instance-feature matrix into low-rank matrices to
achieve coherent low-rank matrices from the label and the feature
spaces, and a low-rank label correlation matrix as well. The
low-rank approximation of the instance-label association matrix
is leveraged to estimate the association confidence. To predict
the labels of unlabeled instances, fPML learns a matrix that
maps the instances to labels based on the estimated association
confidence. An empirical study on public multi-label datasets with
injected noisy labels, and on archived proteomic datasets, shows
that fPML can more accurately identify noisy labels than related
solutions, and consequently can achieve better performance on
predicting labels of instances than competitive methods.

Index Terms—multi-label learning, low-rank matrix factoriza-
tion, noisy labels, label correlations

I. INTRODUCTION

Multi-label learning aims at learning from instances asso-
ciated with multiple semantic labels and has attracted ever-
increasing research interest in various domains [1], [2]. Recent
years have witnessed the proliferation and success of multi-label
learning in assigning a set of appropriate labels to unlabeled
instances [3], [4], and replenishing missing labels for weakly-
labeled instances [5], [6]. It’s known that labels of multi-label
instances are semantically correlated, and incorporating the
correlations into multi-label learning can boost the performance
[7], [8], [9], [6].

However, the performance of multi-label learning may be
compromised by noisy (or incorrect) labels of training instances.
Most existing multi-label learning methods, in fact, generally
assume that the given labels are noise-free. But noisy labels
often exist in practical applications, since multi-label instances

are annotated by humans with a wide-range of expertise levels,
different backgrounds and dedication [10]. For example, the
multi-label image in Figure 1 is tagged as ‘seaside’, ‘sunset’,
‘sky’, ‘cloud’, ‘sandbeach’, ‘ship’, and ‘people’, but it should
not be tagged as ‘sandbeach’, ‘ship’, and ‘people’. In other
words, ‘sandbeach’, ‘ship’, and ‘people’ are noisy (or irrelevant)
labels of this image.

Fig. 1. An illustrative example of a multi-label instance with noisy labels. The
multi-label image is tagged as ‘seaside’, ‘sunset’, ‘sky’, ‘cloud’, ‘sandbeach’,
‘ship’ and ‘people’, but the labels ‘sandbeach’, ‘ship’, and ‘people’ do not
apply.

Despite the vast progress achieved in multi-label learning,
how to identify relevant labels in a candidate label set assigned
to multi-label instances remains a largely unexplored topic. The
identification task becomes much more challenging because
the ground-truth labels are concealed in a set of candidate
noisy labels, and the number of ground-truth labels is also
unknown. Xie et al. [11] formalized this problem in a new
partial multi-label learning (PML) framework, and proposed
two approaches (PML-fp and PML-lc) to optimize the label
confidence values and the relevance ordering of labels of each
instance by exploiting structural information in feature and label
spaces, and by minimizing the confidence weighted ranking
loss.

Since labels are correlated, the label correlation and the
ground-truth instance-label association matrices have a linear
dependence structure, and thus they are low-rank [12], [6].
More importantly, the low-rank approximation of a noisy
matrix is robust to noise [13], [14]. Thus, we seek the ground-
truth instance-label association matrix via learning the low-
rank approximation of the observed association matrix, which
contains noisy associations. In addition, the labels of an instance



depend on its features, and thus the features of instances
should be used to estimate noisy labels. As such, to tackle
the PML problem, in this paper we introduce a novel f eature-
induced Partial Multi-label Learning approach called fPML,
which leverages a low-rank matrix approximation and latent
dependencies between labels and features to simultaneously
identify the noisy labels and train a multi-label predictor.
More specifically, fPML simultaneously factorizes the observed
instance-label association matrix and the instance-feature matrix
into low-rank matrices to achieve coherent low-rank matrices
from label and feature spaces, and also a low-rank label
correlation matrix. The low-rank approximation of the observed
instance-label association matrix is leveraged to estimate the
association confidence. Furthermore, to map input instances to
output labels, fPML learns a matrix that maps instances to labels
based on the estimated label confidence. An empirical study
on public multi-label datasets with randomly injected noisy
labels, as well as on archived proteomic datasets, demonstrates
the effectiveness of fPML in identifying noisy labels of labeled
instances, and in predicting labels of unlabeled instances.

II. RELATED WORK

Partial multi-label learning deals with training instances
annotated with a set of candidate labels, among which only a
subset is relevant. It is closely related to partial-label learning,
but the latter learning paradigm deals with the scenario in
which only one label among the candidate labels is valid for
the instance [15], [16], [17], [18], [19], [20], [21], [22], [23].
Another distinction is that partial multi-label learning should
account for label correlation, whereas partial-label learning
does not. Therefore, partial-label learning can be viewed as a
special case of partial multi-label learning.

These partial-label learning approaches only work for single-
label learning scenarios. They neglect the fact that multiple
candidate labels might be all relevant for a given instance.
Furthermore, they do not make concrete use of correlations
among labels. Partial-label learning on multi-label instances
was recently studied, and a framework called partial multi-
label learning (PML) was proposed [11]. In [11], the authors
assume that each candidate label has a confidence value of
being the ground-truth label of an instance, and optimizes the
classification model and the confidence values by minimizing
the weighted confidence ranking loss in a unified framework.
However, it has to simultaneously optimize multiple binary
predictors and a very large number of confidence rankings of
candidate label pairs; hence, suffers from heavy computational
costs.

Label space dimensionality reduction (LSDR) is homologous
to feature space dimensionality reduction and shares similar
advantages: improving performance by removing irrelevant,
redundant, or noisy information [24]. LSDR-based methods
aim to tackle the multi-label classification problem with a large
number of labels [25], [26]. These methods first compress the
label space into a low-dimensional subspace, make prediction
in the subspace, and then perform a mapping back into the
original label space. Although these methods do not explicitly

consider noisy labels assigned to training instances, they have
the potential of removing noisy labels and make prediction
based on annotated multi-label instances with noisy labels. In
essence, these LSDR-based methods generally assume that
the label correlation can be embedded and explored in the
subspace spanned by a low-rank matrix [6], [4]. However, the
widely-witnessed tail labels, which are assigned to only few
samples but occupy the vast majority of labels, breakdown this
assumption. To reuse the low-rank assumption to encode and
explore label correlation, a robust extreme multi-label learning
(REML) approach was introduced [4]. REML separately
enforces sparsity on tail labels and low-rankness on non-tail
labels for robust multi-label classification.

The label correlation matrix and the ground-truth instance-
label association matrix are naturally low-rank [6], [12], and
a low-rank approximation of a noisy matrix can be robust to
noise [13], [14]. In addition, labels of instances depend on
the features of instances. Given this, fPML simultaneously
factorizes the observed instance-label association matrix with
noisy associations and the instance-feature matrix into a
coherent low-rank matrix and a low-rank label correlation
matrix. fPML then estimates the label confidence based on
the low-rank approximation of the observed instance-label
association matrix, and learns the predictive matrix that maps
the input instances to output labels via the estimated label
confidence. Our empirical study shows that fPML not only
can accurately identify irrelevant labels of labeled instances,
but also assigns relevant labels to unlabeled instances more
accurately than other competitive approaches [25], [26], [16],
[21], [4], [11].

III. PROPOSED METHOD

Let X = [x1,x2, · · · ,xn] ∈ Rd×n be the instance-feature
data matrix for n multi-label instances in the d-dimensional
feature space, and Y ∈ {0, 1}q×n be the observed instance-
label association matrix (or label matrix) with noisy labels,
where each column corresponds to an instance and each row
corresponds to a distinct label. If xi is associated with the c-th
label, Yci = 1; otherwise, Yci = 0. The goal of fPML is to
identify noisy labels of labeled multi-label instances, and to
predict labels of unlabeled instances.

Suppose Ŷ ∈ {0, 1}q×n is the ground-truth label matrix.
Since labels are correlated in multi-label learning, the label
matrix is often assumed to be low-rank [27], [12]. Intuitively,
the low-rank ground-truth label matrix Ŷ can be approximated
as the product of two matrices:

Ŷ ' SGT (1)

where S ∈ Rq×k and G ∈ Rn×k. G and S respectively encode
the new representation of n instances, and q labels in the k-
dimensional semantic space. Note that also S aims at encoding
label correlations between the q labels and the k new semantic
labels. Each of the original q labels may be affected by all the
k new semantic labels, which implies a high-order one-to-all
label correlation [28], [7].



To learn Ŷ, we minimize the reconstruction error between
the observed label matrix Y and the product of G and S as
follows:

min
S,G
‖Y − SGT ‖2F (2)

From the perspective of matrix factorization, Eq. (2) decom-
poses Y into two low-rank matrices G and S. The product
of G and S gives the low-rank approximation of Y. A
low-rank approximation (SGT ) of the original matrix (Y)
with a low reconstruction error is able to eliminate noisy
entries of the original matrix [13]. In multi-label learning,
common techniques to measure label correlations include co-
occurrence rate [29], [11] and cosine distance [30]. However,
these measures become unreliable in the presence of noisy
labels, as the observed label distribution is different from
the ground-truth. A unreliable label correlation measurement
may even compromise the performance of multi-label learning.
Given this, we use S to encode low-rank label correlations,
and fix k = q.

The labels of a multi-label instance depend on the features
of the instance. In addition, matrix factorization techniques
have became popular in recent years for data representation in
a semantic space [31]. Given these observations, to pursue a
coherent low-rank representation of instances (G) and to iden-
tify noisy entries of the association matrix, we collaboratively
factorize X and Y into an identical k-dimensional semantic
space by minimizing the objective function as follows:

min
S,F,G

‖Y − SGT ‖2F + λ1‖X− FGT ‖2F (3)

where F ∈ Rd×k explores and captures the interrelationships
among features. λ1 > 0 is a positive scalar parameter that
balances the importance of the instance-feature data matrix
and the instance-label association matrix. As such, noisy
associations that are inconsistent with the latent relationship
between features and labels are more likely to be identified
as irrelevant labels. If λ1 = 0, the low-rank representation of
n instances is solely pursued by the observed label matrix,
disregarding the feature information of these instances. This
extreme setting is not expected, so λ1 > 0. Different from
G and S in Eq. (2), G in Eq. (3) coherently encodes the
low-rank representation of n instances by simultaneously
considering the instance-label association information and
feature information, and S encodes the label correlation by
additionally leveraging the latent dependency between labels
and features. The coherence is pursued by sharing G with the
data matrix and the association matrix.

To predict the relevant labels of unlabeled instances, we
need to learn a matrix W ∈ Rd×q to map the instances to
the labels. Intuitively, W can be optimized by minimizing the
square loss as follows:

min
W
‖Y −WTX‖2F (4)

However, Eq. (4) is biased because of the noisy associations
which exist in Y. Thus, we learn the mapping matrix W via
minimizing the square loss between the instance-label mapping

and the low-rank approximated instance-label matrix, which
eliminates noisy labels. As a result, Eq. (4) is modified as
follows:

min
W
‖SGT −WTX‖2F (5)

To simultaneously identify the noisy labels and train the
multi-label classifiers, the unified objective function of fPML
is defined as follows:

min
S,F,G,W

‖Y − SGT ‖2F + λ1‖X− FGT ‖2F

+ λ2‖SGT −WTX‖2F + λ3‖W‖1
s.t. S ≥ 0, G ≥ 0

(6)

where ‖W‖1 controls the complexity of the induced prediction
model. λ1, λ2, and λ3 are tradeoff parameters. Eq. (6) simul-
taneously factorizes the observed instance-label association
matrix and the instance-feature matrix into low-rank matrices
to achieve the coherent low-rank matrix G, and also a low-
rank label correlation matrix S. The low-rank approximation
(SGT ) of the original instance-label association matrix reflects
the label confidence, and is leveraged to learn the mapping
matrix W. If λ1 = 0, we can also simultaneously achieve
the identification of noisy labels and the multi-label predictor,
but G is not pursued in a coherent feature and label space.
Our investigation shows that λ1 > 0 generally gives a more
prominent performance for the identification of noisy labels.
In other words, the feature induced information can boost the
performance of partial multi-label learning.

The optimization problem in Eq. (6) is non-convex with
respect to S, F, G, and W together. It is therefore unrealistic
to expect to find the global optimal solutions for all the variables
at the same time. In addition, the optimization of W is an l1-
norm regularization problem. From these observations, we use
an iterative algorithm to optimize {G,S,F,W}. Particularly,
{G,S,F} are optimized by leveraging the techniques used
in standard NMF [32], and W is optimized by using the
Accelerated Gradient Descent (AGD) algorithm [33], [34].
Leveraging the robustness of low-rank representations to
noisy features [13], [32], [14], fPML reconstructs the numeric
instance-label association matrix as: Ỹ = SGT . Each entry
of Ỹ reflects the association confidence between a particular
label and a particular instance. The associations available in
Y but with low confidence values in Ỹ are more likely to
be noisy labels, since they are not consistent with the latent
relationship between features and labels of instances, and they
are also not consistent with the correlation between labels.
fPML then predicts the label distribution of unlabeled instances
as f(x) = WTx.

IV. EXPERIMENTS

A. Experimental setup

Datasets: For a comprehensive performance evaluation, we
conduct experiments on six real-world datasets as listed in
Table I. Enron and Yeast are two multi-label datasets collected



from Mulan1. Slashdot is a widely used multi-label text dataset2.
Since there are no off-the-shelf multi-label datasets that can be
directly used to validate the performance of identifying noisy
labels in multi-label partial-label learning, we assume that the
available labels of multi-label instances in these datasets are
noise-free, and randomly inject additional 3 labels to each
instance as noisy labels. The other three datasets, YeastBP,
YeastCC, and YeastMF, are protein-protein interaction dataset-
s collected from BioGrid3. We downloaded the functional
annotations of Yeast proteins archived on different periods
(historical: 2016-03-14, recent: 2017-03-13) from the Gene
Ontology4, and took the annotations available in history but
absent in more recent times as noisy labels. Functional labels
of proteins are divided in three orthogonal branches of the
Gene Ontology: cellular component (CC), molecular function
(MF), and biological process (BP). These functional labels
are rather unbalanced. Many labels are associated to no more
than 30 proteins, and few labels are associated to more than
300 proteins. To mitigate the imbalance impact, we consider
labels that are associated to at least 100 proteins and at most
300 proteins for the experiments. As a result, we consider
50 CC labels, 39 MF labels, and 217 BP labels for YeastCC,
YeastMF, and YeastBP, respectively. The numbers of noisy
annotations of these three datasets are 260, 234, and 2385,
respectively. These datasets are from different domains, have
different feature representations, average numbers of labels per
instance, and numbers of distinct labels.

TABLE I
CHARACTERISTICS OF THE DATASETS USED FOR THE EXPERIMENTS.

Dataset Instances Features Labels Avg Noise
Enron 1702 1001 53 3.378 -

Slashdot 3782 1079 22 0.893 -
Yeast 2417 103 14 4.237 -

YeastBP 6139 6139 217 5.537 2385
YeastCC 6139 6139 50 1.348 260
YeastMF 6139 6139 39 1.005 234

Comparing methods: We compare fPML against PLST
[25], ML-CSSP [26], REML [4], IPAL [16], PL-LEAF [21],
and PML-fp [11]. PLST and ML-CSSP are LSDR-based
multi-label learning methods that can be directly adopted
to identify noisy labels of multi-label instances. REML is
a robust multi-label learning method that uses the low-rankness
assumption to explore label correlation. REML can also be
adopted to estimate the association confidence between labels
and instances, and thus to identify noisy labels. IPAL and
PL-LEAF are representative partial-label learning methods. We
extend them for multi-label learning by choosing the most
confident labels as the ground-truth. PML-fp is a partial multi-
label learning method introduced in [11]; it optimizes the
ground-truth confidence values of candidate labels by exploiting
the structure information from feature space. All these methods
were introduced in Section II.

1http://mulan.sourceforge.net/datasets-mlc.html
2http://cse.seu.edu.cn/PersonalPage/zhangml/
3https://thebiogrid.org/
4http://www.geneontology.org

Evaluation metrics: We use three representative multi-
label learning and partial-label learning evaluation metrics:
RankingLoss (RankLoss), OneError, and AveragePrecision
(AvgPrec)[1]. The smaller the values of RankLoss and OneEr-
ror, the better the performance is. The larger the value of
AvgPrec, the better the performance is. We report 1-RankLoss
and 1-OneError in the following experiments. As such, a larger
value implies a better performance.

B. Identification of noisy labels

Following the experimental protocol in [5], [16], we consid-
ered all instances in each dataset as both training and testing
data, and performed experiments to investigate the performance
of fPML on identifying noisy labels of labeled instances.
Specifically, the labels training instances involve randomly
injected noisy labels, while the labels of testing instances are
the ground-truth labels without injected noisy labels.

The noisy labels of an instance are typically unknown
in advance, thus the input parameters of fPML and of the
competing methods cannot be tuned based on the unknown
number of noisy labels. One possible tuning protocol is to
assume that the multi-label instances with randomly injected
noisy labels are noise-free, and inject an additional random
label. Next, we can tune the optimal parameters, including
values for λ1, λ2, and λ3, over the task of identifying the
added label, and then adopt the tuned parameter values for
identifying the noisy labels. To simplify the implementation,
λ2 is fixed to 1 on all datasets for fPML. fPML may achieve
a better performance on these datasets when the parameters
are tuned. The input parameters of the competitive methods
are fixed (or optimized) as suggested by the authors in their
code, or respective papers. Table II reports the average results
over 10 independent runs for all methods on the multi-label
and archived proteomic datasets. Since PML-fp has a high
time-complexity on datasets with a large number of labels, and
the computation of PML-fp in one round on YeastBP could
not complete after three days, its results on YeastBP cannot
be reported.

From Table II, we can observe the following: (i) On all
datasets, fPML significantly outperforms PLST and ML-CSSP
across all evaluation metrics; (ii) fPML frequently outperforms
REML, IPAL, PL-LEAF, and PML-fp on most cases; (iii)
Although 1-OneError is biased towards partial-label learning,
IPAL and PL-LEAF often lose to fPML when the 1-OneError
measure is used. These observations show that correlations
among labels should be exploited in partial multi-label learning
and also demonstrate the effectiveness of fPML on identifying
noisy labels.

C. Prediction of unlabeled instances

We performed another set of experiments to study the
performance of fPML in predicting the labels of unlabeled
instances. The parameter settings are kept the same as in the
previous experiments. We independently repeat the experiments
10 times on each dataset and report the average results in
Table III. A protein-protein interaction network is too sparse

http://mulan.sourceforge.net/datasets-mlc.html
http://cse.seu.edu.cn/PersonalPage/zhangml/
https://thebiogrid.org/
http://www.geneontology.org


TABLE II
PERFORMANCE FOR THE IDENTIFICATION OF NOISY LABELS AS THE NUMBER OF RANDOMLY INJECTED NOISY LABELS INCREASES. GROUND-TRUTH NOISY
LABELS OF YEASTCC, YEASTMF, AND YEASTBP ARE KNOWN (NO LABELS ARE INJECTED FOR THESE DATASETS). •/◦ INDICATES WHETHER FPML IS

STATISTICALLY (ACCORDING TO PAIRWISE t-TEST AT 95% SIGNIFICANCE LEVEL) SUPERIOR/INFERIOR TO THE OTHER METHOD.

Dataset Metric PLST ML-CSSP REML IPAL PL-LEAF PML-fp fPML

Enron
1-RankLoss 0.811 ± 0.006• 0.675 ± 0.092• 0.989 ± 0.000• 0.981 ± 0.000• 0.987 ± 0.000• 0.993 ± 0.000• 0.994 ± 0.000
1-OneError 0.930 ± 0.008• 0.768 ± 0.070• 0.937 ± 0.004• 0.822 ± 0.005• 0.939 ± 0.003• 0.957 ± 0.002◦ 0.954 ± 0.006
AvgPrec 0.788 ± 0.007• 0.621 ± 0.090• 0.917 ± 0.002• 0.802 ± 0.003• 0.875 ± 0.003• 0.922 ± 0.000• 0.933 ± 0.004

Slashdot
1-RankLoss 0.873 ± 0.005• 0.685 ± 0.069• 0.971 ± 0.001• 0.969 ± 0.000• 0.974 ± 0.001• 0.977 ± 0.000• 0.979 ± 0.002
1-OneError 0.508 ± 0.010• 0.392 ± 0.048• 0.769 ± 0.006 0.681 ± 0.004• 0.732 ± 0.007• 0.739 ± 0.004• 0.767 ± 0.009
AvgPrec 0.678 ± 0.007• 0.528 ± 0.054• 0.845 ± 0.004• 0.791 ± 0.002• 0.822 ± 0.004• 0.833 ± 0.001• 0.850 ± 0.009

Yeast
1-RankLoss 0.882 ± 0.005• 0.816 ± 0.046• 0.934 ± 0.001• 0.904 ± 0.002• 0.930 ± 0.001• 0.836 ± 0.000• 0.945 ± 0.001
1-OneError 0.773 ± 0.015• 0.567 ± 0.179• 0.839 ± 0.004• 0.776 ± 0.005• 0.853 ± 0.003• 0.862 ± 0.003• 0.898 ± 0.012
AvgPrec 0.760 ± 0.007• 0.673 ± 0.068• 0.860 ± 0.003• 0.808 ± 0.004• 0.860 ± 0.001• 0.829 ± 0.000• 0.893 ± 0.003

YeastMF
1-RankLoss 0.720 ± 0.000• 0.507 ± 0.174• 0.974 ± 0.001◦ 0.978 ± 0.000◦ 0.982 ± 0.000◦ 0.980 ± 0.000◦ 0.964 ± 0.027
1-OneError 0.575 ± 0.000• 0.448 ± 0.188• 0.704 ± 0.040• 0.550 ± 0.000• 0.638 ± 0.000• 0.702 ± 0.000• 0.717 ± 0.058
AvegPrec 0.645 ± 0.000• 0.467 ± 0.162• 0.835 ± 0.018◦ 0.753 ± 0.000• 0.806 ± 0.000• 0.815 ± 0.000◦ 0.810 ± 0.046

YeastCC
1-RankLoss 0.540 ± 0.000• 0.412 ± 0.076• 0.971 ± 0.001 0.990 ± 0.000 0.990 ± 0.000 0.984 ± 0.000• 0.991 ± 0.001
1-OneError 0.623 ± 0.000• 0.396 ± 0.126• 0.732 ± 0.025• 0.736 ± 0.000• 0.717 ± 0.000• 0.763 ± 0.000• 0.824 ± 0.029
AvegPrec 0.524 ± 0.000• 0.388 ± 0.085• 0.846 ± 0.011• 0.857 ± 0.000• 0.860 ± 0.000• 0.817 ± 0.000• 0.892 ± 0.011

YeastBP
1-RankLoss 0.282 ± 0.000• 0.196 ± 0.039• 0.978 ± 0.000• 0.994 ± 0.000 0.994 ± 0.000 −− 0.994 ± 0.001
1-OneError 0.346 ± 0.000• 0.309 ± 0.042• 0.768 ± 0.007• 0.768 ± 0.000• 0.811 ± 0.000◦ −− 0.790 ± 0.032
AvegPrec 0.258 ± 0.000• 0.196 ± 0.034• 0.812 ± 0.004• 0.818 ± 0.000• 0.839 ± 0.000◦ −− 0.833 ± 0.018

to be used as feature data matrix for prediction, so we do
not use this kind of datasets for this experiment. To study
the prediction performance of fPML under different ratios of
training instances, we vary the ratios (TRatio) from 50% to
80%. The remaining 50% and 20% instances are testing data,
respectively. The training instances are labeled, while the labels
of the test data are only used for validation. We simulate a noisy
label setting with m = 3 as before for the training instances,
and predict a set of relevant labels for the test instances.

From Table III, we can observe the following: (i) fPML
almost always outperforms PLST, ML-CSSP, REML, and
IPAL on all datasets; (ii) fPML outperforms PML-fp on Enron
and Slashdot datasets, but loses to PML-fp on Yeast dataset;
(iii) Out of 18 cases (3 datasets × 3 metrics × 2 TRatios),
fPML achieves a performance superior to PL-LEAF in 9 cases,
and an inferior performance in 6 cases. PL-LEAF is a two-
stage approach, and uses numeric label confidence values to
train a predictive model, like fPML does. But unlike fPML,
PL-LEAF does not consider correlations among labels. In
addition, PL-LEAF estimates label confidence by encoding
the manifold structure of the feature space into the label
space, while fPML utilizes the instance-feature matrix and
the instance-label association matrix for a coherent low-rank
matrix approximation to estimate label confidences, which is
robust to noisy labels. Therefore, PL-LEAF is outperformed by
fPML in many cases. Although PL-LEAF achieves a superior
performance in several cases, its time complexity is much
higher than that of fPML. Like fPML, PML-fp also takes into
account feature information, but it often loses to fPML. This
observation further demonstrates the effectiveness of feature-
induced low-rank matrix approximation for identifying noisy
labels.

In addition, we investigated the benefit of identifying noisy
labels. For this investigation, we introduce fPML-Y, a variant
fPML, which directly optimizes W with an l1 regularization
norm based on the observed instance-label associations (Y,
instead of SGT ), and then applies W to make predictions on

unlabeled data. The experimental results on Enron and Slashdot
(see Figure 2) show that fPML significantly outperforms
fPML-Y. Thus, identifying noisy labels indeed improves the
performance of multi-label learning.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1−
R

an
kL

os
s

Enron(TRatio=50%)

Enron(TRatio=80%)

Slashdot(TRatio=50%)

Slashdot(TRatio=80%)

 

 

fPML−Y

fPML

Fig. 2. 1-RankLoss of fPML and its variant (fPML-Y) on predicting the labels
of unlabeled instances on Enron and Slashdot. fPML-Y uses the observed
instance-label associations for training without identifying noisy labels.

V. CONCLUSIONS

In this paper, we study an interesting but seldom explored
variation of multi-label learning, called partial multi-label
learning, which aims at identifying noisy labels of instances
associated with multiple inter-correlated labels, and predicting
labels of unlabeled instances using noisy labeled instances.
To reach this goal, we introduce a unified model called
fPML. Extensive experiments clearly support the superiority
of fPML against competitive techniques. For simplicity and to
automatically explore label correlation, fPML adopts a square
label correlation matrix whose size is equal to the number of
distinct labels. fPML can also work on datasets with a large
label space by using a smaller sized non-square matrix. We will
investigate the performance of fMPL on large-scale datasets,
and on other types of noisy labels (i.e., false negative labels).



TABLE III
PERFORMANCE FOR PREDICTION WITH NOISY LABELS. •/◦ INDICATES WHETHER FPML IS STATISTICALLY (ACCORDING TO PAIRWISE t-TEST AT 95%

SIGNIFICANCE LEVEL) SUPERIOR/INFERIOR TO THE OTHER METHOD.

TRatio PLST ML-CSSP REML IPAL PL-LEAF PML-fp fPML
Enron

1-RankLoss 50% 0.719 ± 0.008• 0.715 ± 0.014• 0.875 ± 0.005• 0.690 ± 0.014• 0.853 ± 0.005• 0.874 ± 0.003• 0.890 ± 0.006
80% 0.727 ± 0.012• 0.725 ± 0.015• 0.881 ± 0.007• 0.675 ± 0.015• 0.852 ± 0.009• 0.884 ± 0.005• 0.895 ± 0.010

1-OneError 50% 0.519 ± 0.014• 0.450 ± 0.043• 0.746 ± 0.018◦ 0.719 ± 0.016• 0.745 ± 0.013◦ 0.720 ± 0.017• 0.738 ± 0.028
80% 0.515 ± 0.029• 0.484 ± 0.024• 0.743 ± 0.017• 0.720 ± 0.021• 0.741 ± 0.025• 0.728 ± 0.016• 0.757 ± 0.022

AvgPrec 50% 0.456 ± 0.010• 0.431 ± 0.016• 0.645 ± 0.007• 0.535 ± 0.013• 0.625 ± 0.001• 0.618 ± 0.007• 0.659 ± 0.020
80% 0.467 ± 0.013• 0.460 ± 0.014• 0.650 ± 0.009• 0.532 ± 0.017• 0.626 ± 0.014• 0.635 ± 0.007• 0.671 ± 0.017

Slashdot

1-RankLoss 50% 0.742 ± 0.008• 0.729 ± 0.012• 0.818 ± 0.005• 0.711 ± 0.011• 0.834 ± 0.009 0.827 ± 0.008• 0.835 ± 0.005
80% 0.791 ± 0.006• 0.776 ± 0.009• 0.828 ± 0.012• 0.722 ± 0.016• 0.849 ± 0.008• 0.835 ± 0.005• 0.857 ± 0.008

1-OneError 50% 0.337 ± 0.012• 0.282 ± 0.057• 0.481 ± 0.010• 0.467 ± 0.012• 0.545 ± 0.013◦ 0.459 ± 0.011• 0.516 ± 0.010
80% 0.421 ± 0.016• 0.370 ± 0.040• 0.516 ± 0.014• 0.491 ± 0.017• 0.578 ± 0.013◦ 0.494 ± 0.013• 0.565 ± 0.017

AvgPrec 50% 0.466 ± 0.008• 0.419 ± 0.046• 0.576 ± 0.008• 0.563 ± 0.011• 0.628 ± 0.011◦ 0.568 ± 0.011• 0.609 ± 0.008
80% 0.538 ± 0.009• 0.494 ± 0.031• 0.602 ± 0.013• 0.491 ± 0.015• 0.653 ± 0.011 0.598 ± 0.011• 0.652 ± 0.013

Yeast

1-RankLoss 50% 0.786 ± 0.007• 0.766 ± 0.015• 0.791 ± 0.003• 0.742 ± 0.007• 0.794 ± 0.004• 0.821 ± 0.003◦ 0.803 ± 0.005
80% 0.800 ± 0.011• 0.785 ± 0.015• 0.792 ± 0.006• 0.747 ± 0.010• 0.801 ± 0.011• 0.816 ± 0.013◦ 0.809 ± 0.011

1-OneError 50% 0.715 ± 0.007• 0.683 ± 0.068• 0.751 ± 0.008◦ 0.732 ± 0.012• 0.762 ± 0.007◦ 0.770 ± 0.013◦ 0.746 ± 0.015
80% 0.749 ± 0.020• 0.702 ± 0.056• 0.745 ± 0.015• 0.738 ± 0.015• 0.773 ± 0.009◦ 0.750 ± 0.016• 0.755 ± 0.018

AvgPrec 50% 0.716 ± 0.006• 0.691 ± 0.033• 0.708 ± 0.005• 0.692 ± 0.007• 0.734 ± 0.005• 0.749 ± 0.006◦ 0.738 ± 0.008
80% 0.734 ± 0.012• 0.708 ± 0.025• 0.707 ± 0.008• 0.699 ± 0.009• 0.744 ± 0.011 0.741 ± 0.015 0.745 ± 0.012

The code of fMPL and three proteomic datasets are available
at http://mlda.swu.edu.cn/codes.php?name=fMPL.
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