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Heterogeneous network based data fusion can encode diverse inter- and intra-relations between objects, and
has been sparking increasing attention in recent years. Matrix factorization based data fusion models have been
invented to fuse multiple data sources. However, these models generally suffer from the widely-witnessed in-
sufficient relations between nodes and from information loss when heterogeneous attributes of diverse network
nodes are transformed into ad-hoc homologous networks for fusion. In this paper, we introduce a general data
fusion model called Attributed Heterogeneous Network Fusion (AHNF). AHNF firstly constructs an attributed
heterogeneous network composed with different types of nodes and the diverse attribute vectors of these nodes.
It uses indicator matrices to differentiate the observed inter-relations from the latent ones, and thus reduces the
impact of insufficient relations between nodes. Next, it collaboratively factorizes multiple adjacency matrices
and attribute data matrices of the heterogeneous network into low-rank matrices to explore the latent relations
between these nodes. In this way, both the network topology and diverse attributes of nodes are fused in a coor-
dinated fashion. Finally, it uses the optimized low-rank matrices to approximate the target relational data matrix
of objects and to effectively accomplish the relation prediction. We apply AHNF to predict the IncRNA-disease
associations using diverse relational and attribute data sources. AHNF achieves a larger area under the receiver
operating curve 0.9367 (by at least 2.14%), and a larger area under the precision-recall curve 0.5937 (by at least
28.53%) than competitive data fusion approaches. AHNF also outperforms competing methods on predicting de
novo IncRNA-disease associations, and precisely identifies IncRNAs associated with breast, stomach, prostate, and
pancreatic cancers. AHNF is a comprehensive data fusion framework for universal attributed multi-type relational
data. The code and datasets are available at http://mlda.swu.edu.cn/codes.php?name=AHNF.

1. Introduction creasing popular over the past decades, they have been widely applied

in various domains to collectively explore interesting patterns from het-

The rapid development and wide application of high-throughput
techniques lead to the production of different types of data that are
directly related to the main task, and also other data sources indirectly
related to the task but still helpful for the completion of this task. For
example, in Fig. 1, the association prediction tasks between IncRNAs
(long non-coding RNAs) and diseases, between genes and Gene Ontol-
ogy functional terms can be more reliably made by fusing the gene-
level, transcript-level and the diverse interactions among molecules,
which convey complementary biological knowledge about the functions
of IncRNAs or genes. Given that, data fusion approaches have been in-
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erogeneous data sources, to remedy the insufficient information of indi-
vidual data sources, and to reduce the impact to noisy or irrelevant data
sources [1-3].

Existing data fusion-based models can be generally classified into
three categories: early, intermediate, and late. The early integration mod-
els generally concatenate the original (or transformed) attributes into a
single long attribute vector before fitting a unsupervised or supervised
model [4-6]. But this concatenation ignores the intrinsic characteristics
of different attribute types, and may suffer from the curse of dimension-
ality. Late integration models firstly learn individual models for different

E-mail addresses: yhwang@email.swu.edu.cn (Y. Wang), kingjun@sdu.edu.cn (J. Wang), carlotta@cs.gmu.edu (C. Domeniconi), guomaozu@bucea.edu.cn (M.

Guo), xiangliang.zhang@kaust.edu.sa (X. Zhang).

https://doi.org/10.1016/j.inffus.2020.06.012

Received 17 September 2019; Received in revised form 23 May 2020; Accepted 21 June 2020

Available online 26 June 2020
1566-2535/© 2020 Elsevier B.V. All rights reserved.



G. Yu, Y. Wang and J. Wang et al.

Information Fusion 63 (2020) 153-165

X
u, u,. u, U,
-~ i X G‘é
i} X Gzé
: : = X~ GUY
e X Gj: Lig
IR | Ru
] A |

—— Inter-relational data matrix
Heterogeneous attribute data matrix

G

G,
i~H©O (GSG) !
> Gs!

Gy

Gsi

Optimize G, S

Reconstruction target matrix R;~ GS;G;" '.-E.E;

Fig. 1. The operating principle of AHNF. R; is the relational data matrix between object types i and j, X, is the tth attribute data matrix of the ith object type, G; is
the low-rank representation matrix of the ith object type. The inter-associations between objects can be predicted by G;S;,G.

data sources, and then combine the outputs of these models for ensemble
prediction [7-10]. This ensemble paradigm, though easy to implement,
may be compromised by low-quality base models independently trained
on single data sources. For this reason, intermediate models are more
popular in various data fusion tasks [1,11-13]. Intermediate models can
combine different data sources in a single model, and simultaneously
perform the prediction.

Multi-view learning, as an important intermediate data fusion
paradigm, generally focuses on a single type of objects and requires
the same number of objects across multiple data sources (views) [14—
16]. As such, it can not sufficiently make use of other indirectly related
data sources. On the other hand, heterogeneous network based interme-
diate approaches can encode the inter-relations between different ob-
ject types, and the intra-relational subnetworks of objects derived from
different data sources, they can accommodate diverse types of objects
and indirectly related data sources [3,11,17]. These approaches gen-
erally project heterogeneous data sources onto homologous networks
(kernels), and then follow the principle of multiple kernel (network)
learning [18,19] to fuse the networks and to make prediction [20,21].
Based on this network, and the assumption that similar objects are as-
sociated with similar labels and vice versa, different network-based in-
ference techniques have been developed to infer associations between
nodes [20-22]. However, these models typically have to project multi-
relational data with objects onto the homologous intra-relational net-
works of respective objects for data fusion. This hand-crafted projection
may enshroud the intrinsic structure of multi-relational data, and thus
does not make the best usage of them [1].

Matrix factorization based data fusion models factorize the relational
data matrices of the heterogeneous network into low-rank matrices to
explore latent relationships between network nodes, and to fuse mul-
tiple relational data sources, without projecting them onto homoge-
neous networks [11]. For this advantage, they have been extensively
studied in recent years. To name a few, Wang et al. [23] proposed a
symmetric nonnegative matrix tri-factorization approach (S-NMTF) to
achieve clustering on multi-type relational data sources. Zitnik and Zu-
pan [11] developed a penalized matrix tri-factorization based model
(DFMF) to fuse multiple relational data matrices for predicting gene
functions and pharmacologic actions. Fu et al. [24] extended matrix
tri-factorization (MFLDA) to predict IncRNA-disease associations by se-
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lectively fusing inter-relational data matrices. Yu et al. [25] improved
MFLDA to predict IncRNA-disease associations by further differentiat-
ing the relevance of multiple intra-relational data matrices. Wang et al.
[26] proposed a selective matrix tri-factorization (SelMFDF) to avoid
the preference toward sparse relational data matrices. Lu et al. [27] in-
troduced an inductive matrix completion based approach with the fu-
sion of different attribute kernels of IncRNAs (or disease). Biswas et al.
[28] proposed a robust inductive matrix completion strategy using an
¢'5,1 norm penalty function to fuse data sources.

However, all these network-based data fusion techniques [11,26—
28] still have two major limitations: (i) The fusion of the diverse at-
tributes of network nodes is achieved by converting the attribute vectors
into homologous networks via various similarity metrics. This leads to
suboptimal results (as will show in our experiments). (ii) They implic-
itly and optimistically assume that the observed associations between
objects are ‘complete’. On the contrary, they are usually incomplete. As
such, their performance is compromised by insufficient observed asso-
ciations. To address these limitations, we propose the Attributed Het-
erogeneous Network Fusion (AHNF) approach and illustrate the over-
all procedure of AHNF in Fig. 1. AHNF firstly constructs an attributed
heterogeneous network composed with different types of nodes (i.e.,
IncRNAs and Disease Ontology terms), along with the diverse attribute
vectors of these nodes. It differentiates the observed relations from the
other ones by means of indicator matrices, thus remedying the impact of
insufficient relations between nodes. Next, it collaboratively factorizes
multiple inter(intra)-relational adjacency matrices of the heterogeneous
network, along with the indicator matrices, into low-rank matrices to ex-
plore the latent relations between these nodes. In addition, the low-rank
matrices are also collaboratively factorized with respect to the hetero-
geneous attribute data matrices of multi-type nodes. In this way, both
the network topology and diverse features of nodes are fused, and both
the impact of insufficient relations and information loss are accounted
for. Finally, it uses the optimized low-rank matrices to approximate the
relational data matrix, and thus accomplishes the association prediction.

We apply AHNF to fuse multiple heterogeneous biological data
sources for predicting IncRNA-disease associations, which is a practi-
cal, important and challenging topic in biomedical data mining [29,30].
We compare it with related and competitive methods, including S-NMTF
[23], DFMF [11], MFLDA [24], WMFLDA [25], SelMFDF [26], SIMCLDA
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[27], and RIMC [28]. AHNF obtains an AUROC (area under the receiver-
operating-characteristic curve) of 0.9367 and an AUPRC (area under
the precision-recall curve) of 0.5937, which are significantly better than
those of comparing methods. In the de novo IncRNA-disease association
prediction, AHNF again achieves higher values of AUROC and AUPRC
than the competitive comparing methods. The case studies on breast,
stomach, prostate and pancreatic cancers confirm that our predictions
are supported by evidence from the bio-medical literature. In addition,
the experiments confirm that both the consideration of insufficient rela-
tions and of information loss caused by data transformation contributes
to a better performance. In summary, our diverse experiments confirm
the effectiveness and the potential value of AHNF in identifying poten-
tial IncRNA-disease associations. AHNF is a comprehensive data fusion
framework for universal attributed multi-type relational data and read-
ily available for various prediction tasks, such as drug re-purposing and
user-item recommendation.

The rest of the paper is organized as follows. We elaborate on the
formulation of AHNF in Section 2, and detail the experimental protocol
and analyze the experimental results in Section 3. Section 4 concludes
our work along with directions for future pursue.

2. Attributed heterogeneous networks fusion

Given a heterogeneous network (as shown in Fig. 1) composed with
m types of nodes (i.e., IncRNAs or diseases), the data information con-
tained in this heterogeneous network typically presents in two forms as
follows:

¢ Relational data matrices characterize the relations between
data objects from different types. A collection of relational data
matrices R, R;; € R (R;; € R"*") is an association matrix which
relates n; objects of type i with n; objects of type j. Without loss of
generality, if s € {1, 2, .-, ;;} and t € {1, 2, ---, n;} have a known
relation, then Rij(s, t) > 0; otherwise, R;;(s,7) = 0.

o Attribute data matrices characterize the attribute information
of objects. Diverse attribute data matrices for the ith type of ob-
jects are encoded as X;, € R"*%: t € {1, 2, -, t;} where t; is the
number of attribute matrices for the ith object type, and d;, is the
number of attributes for the tth attribute data matrix.

The rich structures of multi-type heterogeneous network provide a
potential opportunity to improve the prediction accuracy, which, how-
ever, also present a new challenge on how to take advantage of all avail-
able information. In this paper, we address this problem via collabora-
tive matrix tri-factorization. Our goal is to make full use of the structure
and attribution information of a multi-type heterogeneous network.

2.1. Matrix factorization based data fusion

Matrix factorization techniques recently have been widely used for
integrating multi-type relational data [1,11,15,24,27]. Among them,
matrix tri-factorization can accommodate multi-type relational data ma-
trices. Matrix tri-factorization does not require the matrices having the
same type (and number) of objects, nor it requires projecting them into
homologous ones for fusion [31]. Zitnik and Zupan [11] introduced
a representative data fusion model based on matrix tri-factorization
(DFMF) as follows:

@

] m r 2 max; ; T

min Z(G, S) = tZ'I R, - 68,67+ Z{ r(GTOYG)
where G; € R"*%i, G; e R%, §;; e R“), (k; < m;, k; < ), G=
diag(Gy, Gy, ,G,,). tr( - ) and ||-||% are the matrix trace operator and
the Frobenius norm, respectively. S;; is much smaller than R;; and it can
be viewed as a compressed matrix that encodes latent inter-relations
between two object types. G; can be viewed as the low-rank representa-
tion of the ith type objects. To accommodate diverse attribute data ma-
trices X;;, Eq. (1) handcrafts them into multiple homologous networks
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0" e R"*". @ collectively stores all the following block diagonal ma-
trices: @0 = diag(é)(lt),(')(z'), ,95:,)), te (, 2, -, max;t), and the ith
block matrix along the main diagonal of @® is zero if t > t;.

Eq. (1) works directly on the heterogeneous network without per-
forming any projection of subnetworks. This is in contrast with other
network based data fusion approaches [21,22,27,28,32], which first
project target object (i.e., IncRNAs or diseases) related data sources onto
homologous (intra-relational) networks, and then merge the homolo-
gous networks for predicting the inter (or intra) relations between ob-
jects. Eq. (1) can explore and employ the intrinsic relation of multi-type
objects. In addition, it optimizes R;; with respect to G; and G;, which are
also coordinated by other data sources. As a result, multi-type relational
data matrices are fused in a collaborative fashion.

Although the extensions of DFMF [24-26] can reduce the impact of
irrelevant relational data matrices, alike matrix completion based solu-
tions [27,28], they implicitly assume the observed relations (R; (8,0 =
1) are ‘complete’ by equally treating all elements of Ry;. But, in fact, R;;
is typically quite incomplete. Furthermore, these solutions need a hand-
craft projection to convert attribute data matrices into homologous sim-
ilarity networks (-)f’), which causes information loss. In practice, these is-
sues are suffered by most matrix factorization or network (kernel) based
data fusion solutions [17-19,32-34]. As such, both issues reduce the re-
liability of data fusion based prediction. As a result, these approaches
have a compromised performance and do not make full use of the at-
tributed heterogeneous network, which can universally represent diverse
interconnected heterogeneous data sources.

To make full use of the attributed heterogeneous network, we in-
troduce a framework called AHNF and illustrate its operating principle
in Fig. 1. AHNF firstly constructs an attributed heterogeneous network
composed of different types of object nodes and diverse attributes associ-
ated to the nodes. It then collaboratively factorizes relational adjacency
matrices and diverse attribute data matrices, along with the indicator
matrices, into low-rank matrices to explore the latent relations between
these nodes. After this, it approximates the target relational data matrix
using the optimized low-rank matrices, and thus completes the predic-
tion of associations between nodes.

2.2. Attributed heterogeneous network fusion

To avoid the information loss caused by projecting diverse attribute
data matrices and to differentiate the observed relations from other un-
observed ones (entries with zero values in Ri}-), we formulate the at-
tributed heterogeneous network based data fusion as follows:

m 2

: r _h\ _ r

Bip7(G.S.070) = 3, ),
L=

H; 0 (R, -GS,6]

ijj

m max;t; 5
o33 et -eutl,
i=l t=1
m max; f;
st. @ 20,0"20, ) of =1, @
ij=1 i=1 =1

where @ is the Hadamard product (element-wise product), Hl-j is the
indicator matrix for Ry and with the same size as Ry. Hjj(s,n =1 if
R;(s, 1) > 0, and H;;(s,7) = 0 otherwise. G; is the network structure and
attribute information co-guided low-rank representation of n; objects,
and U;, € R¥*%:. Each of & € R™" and " € R™™!i includes the
weights assigned to |R| inter-relational data matrices and to diverse at-
tribute data matrices. For R;; ¢ R, @], = 0. For Xy, if t > max t;, mﬁ =0.
2
H,o (R, - GisijGJ.T)l .
relations from others. It can enforce the preservation of the observed
associations in the approximated Ry, and can be viewed as the approx-
imation loss. Unlike Egs. (1), (2) directly factorizes diverse attribute
data matrices without converting them into intra-relational matrices.

is incorporated to differentiate the observed
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However, Eq. (2) prefers to set ol =1to RlJ’ when R has the smallest
approximation loss among all the relational matrices, and the other re-
lational matrices will be disregarded. Eq. (2) also likes to assign mﬁ =1
to X, if it has the smallest approximation loss among all the attribute
matrices. In other words, the sparser the relational (or attribute) matrix
is, the larger the weight assigned to it. As a result, the contribution of
other relational (attribute) data matrices is disregarded.

Different relational (attribute) data matrices generally provide com-
plementary information, and their fusion can give a more comprehen-
sive view of the target objects. To remedy the trivial weight assignment
and to selectively fuse multiple data sources, we add two l,-norm based
regularization terms on ®" and oM, and update Eq. (2) as follows:

m
i,j=l

m% ||x,., -GUr “i + allvec(@)]|% + ﬂ“vec(m") ||i
t=1

0 (R, -G, GT)2

: r h
réxéraj(G,S,m,m ) ijj F

m

X

m max;f;

=LY Y ol=1

i=l t=1

st. o >0,0" >0, Ea) 3)

i,j=1

where vec(®") is the vectorization operator that stacks the rows of @';
a > 0and g > 0 are used to control the complexity of vec(o") and vec(oh).
a and f can also help to selectively integrate relational matrices and
attribute data matrices.

The sparse indicator matrices Hy; differentiate the observed relations
from others, but they leave other unobserved relations at random to
some extent and thus result in noisy relations of the target matrix. Given
that, we further add an I,-norm based regularization and formalize the
final objective function of AHNF as follows:

minJ (G.S, ", 0") = i o (R, -GS,67) i
> ~
m max;t; N
+ 2‘{ 2‘1 mg||x,, GUT“
& £
+ a]|vec(a)’)||7;+ﬂ||uec || +y Z ”G S;;G ; "

m max; t;
st. @ >0,0 = Z Z mﬁ:l @
i=1 1=1

; “; is the added constraint to control the noisy
associations, and y > 0 is the scalar parameter to balance its effect.

The objective function of AHNF is non-convex in G, S, oh, and o
altogether. We can optimize Eq. (4) according to the idea of ADMM
(alternating direction method of multipliers) [35], which was used to
compute the approximate matrix tri-factorization [11,24]. For G, S, ol
and o', we alternatively consider three of them as constant and opti-
mize the fourth one. The iterative optimization procedure is provided
in Appendix A.

The time complexity of optimizing low-rank representation G; of the
ith type objects is @(n;k%). In each iteration, there are m types of nodes to
be integrated, so the time complexity for optimizing G is O(X[_, n;k?).
The time complexity of optimizing S is O(Z:"j L mn;k). As to U, its time
complex1ty is T, X" nyd, k). The complex1ty for seeking weight
" and w" are both @(m?). Therefore, the overall time complexity of
AHNF is

m max;t;
O(T(Zn K+ Z mngk+ Y Y mdyk+m?)
ij=1 i=1 1=1
T is the number of iterations to reach the convergence. In our study,
since the adopted multi-type relational data matrices and the diverse
attribute data matrices are all sparse, the actual time costs of the above
operations can be further reduced.

Information Fusion 63 (2020) 153-165
3. Results and discussion
3.1. Experimental setup

To study the performance of AHNF, we consider 5 object types: IncR-
NAs (Type 1), miRNAs (Type 2), genes (Type 3), Gene Ontology (Type
4), and diseases (Type 5) and apply it to predict IncRNA-disease as-
sociations, a fundamental and challenging topic in functional genome
[29,30,36]. We collect eight relational matrices between these objects
from public databases and list the details of the multi-type relational
data sources in Table 1. We also collect 36 attribute data sources of IncR-
NAs, miRNAs, and genes, and gives the details of these attribute data
of objects in Table 2. Particularly, we collect 12 attributed data matri-
ces for IncRNAs, including IncRNA expression profiles, IncRNA methy-
lation profiles, IncRNA-single nucleotide polymorphisms (SNPs) associ-
ations and so on. We also collect 5 attributed data matrices for miRNAs,
including miRNAs expression profiles and miRNA-transcription factor
(TF) interactions. We further collect 9 attributed data matrices for genes,
including gene expression profiles in different experiments and gene in-
teractions. All these relational and attribute data sources are shared at
http://mlda.swu.edu.cn/codes.php?name=AHNF.

We compare AHNF against seven related and representative data fu-
sion methods, including S-NMTF [23], DFMF [11], MFLDA [24], WM-
FLDA [25], SeIMFDF [26], SIMCLDA [27], and RIMC [28]. The first
five comparing methods predict target associations by integrating multi-
ple inter(intra)-relational data matrices and matrix tri-factorization. The
last two adopts matrix completion to complete the potential IncRNA-
disease associations with the handcrafted attribute data matrix of IncR-
NAs and diseases. The input parameters of these methods are set as spec-
ified by the authors in their code, or optimized in the suggested ranges.
a=10%, f =103 and y = 102 are used for AHNF. These parameters will
be analyzed in the next subsections. We adopt the widely-used area un-
der the receiver-operating-characteristics curve (AUROC) and area un-
der the precision-recall curve (AUPRC) to quantify the prediction results
of the methods.

3.2. LncRNA-disease association prediction with cross validation

We perform five-fold cross validation (with 10 repetitions) on ex-
perimentally confirmed IncRNA-disease associations to study the per-
formance of AHNF. Particularly, we randomly divide known IncRNA-
disease associations (R;5) into five folds; the associations in four folds
are used as training samples and the remaining associations of the other
fold are alternatively used as testing samples for evaluation. The ROC
(PR) curves of the comparing methods, along with their AUROC and
AUPRC values are given in Fig. 2. AHNF manifests the highest TPRs un-
der the same FPRs, and has the highest AUROC (0.9367) among the
comparing methods. The AUROC values of S-NMTF, DFMF, MFLDA,
WMFLDA, SelMFDF, SIMCLDA, and RIMC are 0.7862, 0.8236, 0.8398,
0.8852, 0.9171, 0.8212, and 0.8079, respectively. AHNF improves the
AUROC by at least 2.14%. As for the PR curves and AUPRC values, AHNF
again has the highest AUPRC (0.5937), and it improves the AUPRC by at
least 28.53%. The performance margin between AHNF and other com-
paring methods with respect to AUPRC is more prominent. This is be-
cause the known IncRNA-disease associations are scanty; predicting the
IncRNA-disease associations is a class-imbalanced data mining task, and
AUPRC is more sensitive to class-imbalance than AUROC.

SelMFDF, WMFLDA, MFLDA, DFMF and S-NMTF all aim at integrat-
ing multi-type relational data matrices, but they are statistically (pair-
wise t-test with p-value=0.01) outperformed by AHNF. The main rea-
son is that they implicitly assume the observed relations are ‘complete’,
and need to convert heterogeneous attribute vectors of nodes into ho-
mologous networks before fusion. AHNF, SelMFDF, and WMFLDA ac-
count for the different importance levels of inter(intra)-relational ma-
trices and achieve a better performance than other competitive meth-
ods, which equally treat all the inter(intra)-relational data matrices.
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Table 1
Details of the collected multi-type relational data sources.
Datasets Size #Associations Sources
LncRNA-miRNA 240 x 495 1002 R, http://starbase.sysu.edu.cn/mirLncRNA.php/
LncRNA-Gene 240 x 15527 6186 R3 http://www.Incrna2target.org/
LncRNA-GO 240 x 6428 3094 R,, ftp.ncbi.nih.gov/gene/GeneRIF/
LncRNA-Disease 240 x 412 2697 R;s http://www.rnanut.net/Incrnadisease/
miRNA-Gene 495 x 15527 135,852 Ry http://mirtarbase.mbc.nctu.edu.tw/
miRNA-Disease 495 x 412 13,562 Rys http://www.cuilab.cn/hmdd/
Gene-GO 15527 x 6428 1,191,503 Ry,  http://geneontology.org/
Gene-Disease 15527 x 412 115,317 Rss http://www.disgenet.org/
Table 2
Details on the collected features matrices from different data sources.
Object Type  Size #nonzero entries Feature Type Sources
LncRNAs 240 x 53 844 X1 IncRNA expression http://bigd.big.ac.cn/Incbook/index
240 x 32 3057 X1z profiles
240 x 7 1253 X3 IncRNA methylation
240 x 6 1080 X4 profiles
240 x 3 1253 Xis
240 x 7 1263 X6
240 x 6 1078 X7
240 x 5 901 Xig
240 x 3 540 Xig
240 x 5 899 Xi10
240 x 6 1079 X1
240 x 68851 69,751 Xi12  IncRNA-SNP http://bioinfo.life.hust.edu.cn/IncRNASNP/
interactions
miRNAs 495 x 474 46,843 X5 miRNA similarity http://www.lirmed.com/misim/
495 x 112 999 X2 miRNA-TF interactions https://doi.org/10.1371/journal.pone.0152792
495 x 135 29,028 Xy3 miRNA expression http://guanlab.ccmb.med.umich.edu/mirmine/
495 x 39 9321 Xo4 profiles http://doi.org/10.1186/1471-2164-8-166
495 x 22 32 X5 miRNA-miRNA 10.1016/j.gene.2012.09.066
interactions
15527 x 13 18,068 X34 gene expression https://www.ebi.ac.uk/gxa/experiments/E-MTAB-4344/
15527 x 53 7504 X3, profiles https://www.ebi.ac.uk/gxa/experiments/E-MTAB-5214/
15527 x 83 173,264 X33 https://www.ebi.ac.uk/gxa/experiments/E-PROT-3/
15527 x 2055 4551 X34 protein-protein http://dip.doe-mbi.ucla.edu/dip/Main.cgi
Genes 15527 x 6170 32,097 X35 interactions http://hprd.org/index_html
15527 x 12826 283,306 X3 http://ophid.utoronto.ca/ophidv2.204/index.jsp
15527 x 10559 113973 X37 http://www.ebi.ac.uk/intact
15527 x 6170 32,097 Xsg http://mint.bio.uniromaz2.it
15527 x 12471 223,546 X39 http://thebiogrid.org

These results demonstrate the effectiveness of separately weighting the
inter-relational data matrices and attribute data matrices in AHNF. Both
SelMFDF and WMFLDA lose to AHNF, since they also suffer from the
information loss when handcrafting attribute data matrices into homol-
ogous networks, and do not differentiate the observed associations from
other ones. Both SIMCLDA and RIMC complete IncRNA-disease associa-
tions via matrix completion. Although they can accommodate attribute
data matrices by concatenating and projecting various heterogeneous
attribute matrices into a homologous one, they are still outperformed
by matrix tri-factorization based solutions (except S-NMTF). That is be-
cause they implicitly deem the collected associations as ‘complete’; they
can only utilize the biological data directly related with IncRNAs or dis-
eases; and do not fuse multi-type relational biological data in a coordi-
nated fashion.

In addition, we introduce two variants, AHNF(nH) and
AHNF(Homo), to study the effect of considering the insufficiently
observed associations and directly fusing multiple attribute data,
respectively. AHNF(nH) excludes the Hadamard product H in the
approximate matrix factorization, so it still assumes the observed
associations are complete’. AHNF(Homo) handcrafts multiple hetero-
geneous attribute matrices into homologous networks derived from the
b nearest neighbors network based on the Euclidean distance. Fig. 3
gives the results of AHNF and its variants. AHNF obtains higher AUROC
and AUPRC than AHNF(nH), since it accounts for the fact that the
observed associations are insufficient, and models them. Although both
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AHNF and AHNF(Homo) account for the incomplete associations and
use the same data sources, AHNF outperforms AHNF(Homo). That is
because AHNF(Homo) suffers from information loss when handcrafting
heterogeneous attribute data into homologous similarity matrices.

We further study other distance metrics (i.e., ‘Euclidean’, ‘Standard
Euclidean’, ‘Cosine’, *, and ‘Spearman’) with different choices of b, and
report the results of AHNF(Homo) in five-fold cross validation in Fig. 4.
AHNF does not require hand-crafting different attribute data matrices
into homologous networks, so its results are independent from the dis-
tance metrics and b. We can clearly see that no matter what distance
metric is used, both AUROC and AUPRC of AHNF(Homo) are decreased
as the increase of b and the results are stable after b > 5. AHNF(Homo)
obtains the best performance using ‘Euclidean’ distance metric with

= 1. Even though, AHNF(Homo) is still always outperformed by AHNF,
which does not handcraft heterogeneous attribute data matrices into
homologous networks. This study confirms the information loss when
handcrafting heterogeneous data into homologous networks for fusion,
and also supports our motivation for attributed heterogeneous network
fusion.

3.3. Predicting masked IncRNA-disease associations

Disease Ontology (DO) [37] has a hierarchical structure among dis-
eases via a direct acyclic graph. If a given IncRNA is associated with a
DO term, then the same IncRNA is also associated with ancestor terms of
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Fig. 3. Prediction results of variants of AHNF. AHNF(nH) disregards the
indicator matrix Hy, and treats equally the observed relations and others;
ANHF(Homo) projects heterogeneous attribute data matrices onto homologous
networks.

the DO term, and may also be associated with its descendant terms in the
hierarchy. We may further find that the discovered diseases associated
with a certain IncRNA become more and more specific as the biomed-
ical technique develops [38,39]. Given this, we perform another type
of simulated experiment to further study the capability of AHNF of pre-
dicting specific IncRNA-disease associations. We assume that the disease
terms related to a specific IncRNA are complete, and these terms form
a direct acyclic graph. We observe that, once a particular leaf disease
node is masked in the direct acyclic graph and its direct parent disease
node has no descendants associated with the specific IncRNA, then the
direct parent disease nodes can also be masked. Following this principle,
we randomly mask g particular diseases corresponding to leaf nodes in

@ AHNF
=0~ Euclidean
— & — Standard eculidean
—®— Cosine

~ @~ Correlation
— & — Spearman

5 6
b nearest neighbors

(a) AUROCs

the direct acyclic graph. We consider the masked IncRNA-disease asso-
ciations for prediction. We repeat the mask operation for each IncRNA
under each g € {1, 3, 5} in 5 independent rounds, and show the aver-
age results with standard deviations in Table 3. If q is larger than the
number of disease terms associated with an IncRNA, we ensure that the
IncRNA is associated with at least one disease. The average numbers of
masked specific diseases and associations under different input values
of g are also counted. ¢ indicates the best results in the same setting,
with significance checked by a pairwise t-test at 95% confidence level.
From Table 3, we can clearly see that AHNF outperforms the com-
peting methods across different input values of g. All the comparing
methods show a decreasing trend as q increase; this is because, as the
number of masked associations increases, the prediction task becomes
more difficult. This pattern suggests that the number of known associ-
ations can affect the prediction performance, and that the known as-
sociations should be specifically used. In other words, the insufficient
associations between IncRNAs and diseases impact the prediction.

3.4. Predicting De Novo IncRNAs-disease associations

We perform another type of experiments to investigate the poten-
tial of AHNF in predicting de novo associations between an IncRNA
(or disease), whose associated diseases (or IncRNAs) are completely un-
known. Particularly, we randomly divide the IncRNAs into five equal
folds and then remove all known IncRNA-disease associations for the
queried IncRNAs in each fold, rather than randomly masking 20%
known IncRNA-disease associations. Similarly, we perform disease ori-
ented five-fold cross validation by removing all the associated IncRNAs
for the queried diseases in each fold. Table 4 reports the AUROC and
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Fig. 4. AUROC and AUPRC of AHNF(Homo) with different distance metrics and b nearest neighbors network.
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Table 3
AUROC and AUPRC of the competitive methods for predicting (q) masked IncRNA-disease associations of each IncRNA.
q 1 3 5
Masked diseases/associations ~ 24.6/158 59.4/467 80.8/756
AUROC AUPRC AUROC AUPRC AUROC AUPRC
AHNF 0.9650 + 0.0015¢  0.7859 + 0.0004e  0.9537 + 0.0000®  0.7856 + 0.0037¢  0.9444 + 0.0007¢  0.7566 + 0.0002e
SelMFDF 0.9591 + 0.0010 0.7398 + 0.0007 0.9520 + 0.0003 0.7288 + 0.0012 0.9308 + 0.0014 0.7070 + 0.0002
WMFLDA 0.9581 + 0.0002 0.7328 + 0.0000 0.9453 + 0.0000 0.7009 + 0.0003 0.9124 + 0.0002 0.6552 + 0.0003
MFLDA 0.9474 + 0.0006 0.7237 + 0.0009 0.9368 + 0.0000 0.7085 + 0.0002 0.9125 + 0.0001 0.6477 + 0.0010
DFMF 0.9457 + 0.0012 0.6968 + 0.0021 0.9359 + 0.0000 0.6577 + 0.0002 0.9093 + 0.0004 0.5671 + 0.0009
SIMCLDA 0.8748 + 0.0000 0.1026 + 0.0000 0.8700 + 0.0000 0.0892 + 0.0001 0.8608 + 0.0001 0.0772 + 0.0000
RIMC 0.8225 + 0.0000 0.3966 + 0.0001 0.8210 + 0.0023 0.3850 + 0.0070 0.8195 + 0.0000 0.3745 + 0.0000
S-NMTF 0.8036 + 0.0000 0.1287 + 0.0010 0.8017 + 0.0000 0.1274 + 0.0002 0.8014 + 0.0002 0.1257 + 0.0000
Table 4
AUROC and AUPRC of the competitive methods for predicting de novo IncRNA-disease
associations.
LncRNA Disease
AUROC AUPRC AUROC AUPRC
AHNF 0.766 + 0.016¢ 0.212 + 0.001e 0.848 + 0.001e 0.478 + 0.006¢
SelMFDF 0.642 + 0.001 0.177 + 0.001 0.815 + 0.002 0.420 + 0.013
WMFLDA  0.612 + 0.003 0.156 + 0.000 0.776 + 0.001 0.400 + 0.002
MFLDA 0.584 + 0.003 0.134 + 0.004 0.755 + 0.006 0.387 + 0.006
DFMF 0.555 + 0.002 0.155 + 0.002 0.707 + 0.002 0.298 + 0.001
SIMCLDA 0.604 + 0.004 0.046 + 0.000 0.731 + 0.006 0.034 + 0.001
RIMC 0.647 + 0.003 0.078 + 0.006 0.783 + 0.001 0.204 + 0.004
S-NMTF 0.528 + 0.007 0.072 + 0.003 0.774 + 0.000 0.083 + 0.000
AUPRC values for AHNF and the competing methods. AHNF achieves the Table 5

highest AUROC (0.7661 and 0.8487), and the highest AUPRC (0.2119
and of 0.4785) in both the IncRNA-oriented and disease-oriented de
novo association prediction.

We observe that the AUROC and AUPRC values are lower than those
of the previous five fold cross validation. The reason is that it is more dif-
ficult to infer the association between a particular disease and IncRNA,
when the related IncRNAs are completely unknown. RIMC performs bet-
ter than MFLDA and DFMF; this is because RIMC completes the potential
IncRNA-disease associations using attribute data matrices, which pro-
vide additional information for identifying potential associations be-
tween IncRNAs and diseases. Another possible cause is that RIMC in-
duces a sparse regularization to reduce the false positive rate. These
results suggest that leveraging multi-type relational data and diverse at-
tribute data can boost the identification of novel IncRNA-disease associ-
ations. AHNF can more effectively integrate heterogeneous data sources,
and also includes a sparsity regularization; as such, it manifests superior
results than the competitive solutions.

3.5. Case studies

To further study whether the IncRNA-disease associations predicted
by AHNF can be confirmed by biological experiments, we apply AHNF
to prioritize all the candidate IncRNAs for breast cancer, stomach cancer,
prostate cancer, and pancreatic cancer, respectively. Here, besides the as-
sociations between IncRNAs and the studied cancer, all the other known
associations are used as training samples. We then select the top 20 plau-
sible associations as the predicted IncRNA-disease associations for each
cancer. After this, we check the predicted associations by referring to
available associations in LncRNADisease 2.0 [40] and Lnc2Cancer v2.0
[41]. For the predicted associations that cannot be found in the above
two databases, we further do manual text retrieval on PubMed and list
the supportive PubMed IDs (not included in the aforementioned two
databases) with boldface.

Table 5 lists the currently supported and un-supported associations
for breast cancer. We find that 19 prioritized IncRNAs have support-
ive evidence for breast cancer. For example, the expression of IncRNA

AHNF predicted IncRNAs associated with breast cancer (top 20 in ranking
list), and the corresponding evidence.

Rank IncRNA Confirmed Evidence(PubMed ID)

1 PVT1 v 28882595;26889781;25122612
2 BCYRN1 v 27277684;18006640;15240511
3 CDKN2B-AS1 Vv 28580310;27102007;26835415
4 H19 Vv 29693231;28544374;28102845
5 HOTAIR v 29630518;29423075;29222472
6 NEAT1 v 28338194;28034643;27556296
7 MEG3 v 28635399;28051255;27166155
8 GAS5 v 29180320;27034004;26862727
9 MALAT1 v 29574704;29416769;29386907
10 UCA1 Vv 29408336;27977766;27831634
11 KCNQ10T1 v 26323944;21304052

12 HOTTIP Vv 29415429;28036281

13 MIR17HG ? Not yet found

14 BANCR Vv 29805676;29565494

15 HCP5 v 31215169;31028999;30618123
16 XIST v 29550489;27362246;27248326
17 DANCR v 27716745

18 TUG1 Vv 28950664;28053623;27848085
19 HULC v 27986124

20 LSINCT5 v 29785740;21532345;20214974

‘PVTY’ was significantly up-regulated in breast cancer tissues, compared
with adjacent normal tissues (ANTs), so IncRNA ‘PVT1’ may be a prog-
nostic predictive biomarker for breast cancer [42]. Furthermore, IncRNA
‘HCP5’ was observed to be significantly up-regulated in breast cancer
[43], which provides first time evidence that IncRNA ‘HCP5’ is associ-
ated with breast cancer prognosis. Therefore, IncRNA ‘HCP5’ probably
contributes to the comprehensive treatment and diagnose of breast can-
cer after experimental verification. These case studies further confirm
the capability of AHNF in identifying novel IncRNA-disease associations
with confidence. The un-validated association ‘MIR17HG’ may be fur-
ther verified when more experimental evidences become available.
Table 6 lists 20 prioritized IncRNAs with supportive evidence for
stomach cancer. For example, IncRNA ‘MEG3’ expression was signifi-
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Table 6
AHNF predicted IncRNAs associated with stomach cancer (top 20 in rank-
ing list), and the corresponding evidence.

Rank IncRNA Confirmed Evidence(PubMed ID)

1 MEG3 Vv 26718650;26253106;26233544
2 HOTAIR Vv 29683069;29417297;29080815
3 CDKN2B-AS1 v 27121324,27027260;25636450
4 H19 v 29207111;28105222;27835600
5 PVT1 v 28258379;28122299;27756785
6 GAS5 Vv 29098549;27827524;27466992
7 UCA1 Vv 29723509;29516678;29212166
8 MALAT1 Vv 29162158;28396617;28276823
9 NEAT1 v 29544562;29363783;28401449
10 KCNQ10T1 v 25765901

11 HULC v 28356873;27781386;27246953
12 TUG1 v 29182008;27983921;27261864
13 SPRY4-IT1 v 26238992;25835973

14 BANCR Vv 29483646;28042329;26054683
15 HOTTIP Vv 29486794,28693275;27546609
16 CCAT2 Vv 29435046;28248065;27904778
17 WT1-AS Vv 26449525

18 CCAT1 Vv 28535628;28239816;27134049
19 LSINCT5 v 25694351;25526476

20 ZFAS1 Vv 29424266;28285404;27654478

Table 7

AHNF predicted IncRNAs associated with prostate cancer (top 20 in rank-
ing list), and the corresponding evidence.

Rank  IncRNA Confirmed  Evidence(PubMed ID)

1 PVT1 Vv 29452232;29050519;27794184
2 H19 Vv 24988946;24063685

3 MEG3 Vv 27507663;26610246;23728290
4 NEAT1 v 25415230;23728290

5 HOTAIR v 29436234;28259691;27922078
6 CDKN2B-AS1 v 28621612;27507663;22664915
7 GAS5 v 29416676;27743383;27507663
8 MALAT1 Vv 29633510;27922078;27600237
9 UCA1 Vv 28337266;27902466;27686228
10 TUG1 Vv 26975529

11 MIR17HG Vv 27556357

12 KCNQ10T1 v 23728290

13 HOTTIP v 27064878;23728290

14 BANCR ? Not yet found

15 HULC Vv 23728290

16 DANCR Vv 27191265;23728290

17 LSINCT5 ? Not yet found

18 CCAT2 Vv 27558961

19 CCAT1 Vv 29863242;29765457;29694502
20 TP53COR1 Vv 25999983

cantly lower in 20 early stage stomach cancer patient tumor tissues than
adjacent non-tumor tissues, and it may be a promising biomarker for the
early detection and early screening of high risk populations [44]. Fur-
thermore, plasma level of IncRNA ‘HOTAIR’ was significantly higher in
stomach cancer patients compared with healthy controls and it also can
be a potential non-invasive biomarker for diagnosis of stomach cancer
[45].

For prostate cancer, as shown in Table 7, 18 prioritized IncRNAs
have found supportive evidences. To name a few, IncRNA ‘PVT1’ has
been reported that it can promote prostate cancer invasion and metasta-
sis by modulating the mechanism of endothelialmesenchymal transition
(EMT) and it further promotes EMT by up-regulation of ‘Twist1’, a tran-
scription factor associated with EMT [46]. Since the increased expres-
sion of IncRNA ‘CCAT1’ was significantly related to lymph node metas-
tasis in prostate cancer; low-expression of ‘CCAT1’ could suppress cell
proliferation; knockdown of ‘CCAT1’ inhibited the migration of prostate
cancer PC-3 cells; down-regulation of ‘CCAT1’ attenuated the invasion
of PC-3 cells, IncRNA ‘CCAT1’ can promote the growth and the metasta-
sis of prostate cancer and it might be a potential target for the diagnosis
and treatment of prostate cancer [47]. As for the un-validated associa-
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Table 8
AHNF predicted IncRNAs associated with pancreatic cancer (top 20 in
ranking list), and the corresponding evidence.

Rank IncRNA Confirmed Evidence(PubMed ID)

1 MALAT1 Vv 29215734;28034748;27777857
2 MEG3 Vv 29328401;26850851

3 HOTAIR v 28476883;27895308;27028998
4 H19 v 24920070

5 GAS5 Vv 29112934;24026436

6 CDKN2B-AS1 Vv 28344092

7 PVT1 Vv 28657147;28355965;27028998
8 UCA1 Vv 29510195;28315290;27562722
9 NEAT1 v 27888106

10 TUG1 v 28617552

11 HULC \/ 27781386;25412939

12 HOTTIP v 28947139;27546609;26447755
13 BANCR ? Not yet found

14 SPRY4-IT1 Vv 29489909

15 CCAT2 ? Not yet found

16 HCP5 Vv 31061236

17 XIST Vv 29393501;28295543

18 WT1-AS Vv 19196508

19 AFAP1-AS1 v 25910082

20 PCGEM1 v 27682980;27507663;25744782
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Fig. 5. AUROC and AUPRC of AHNF under different input values of @ and g.
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Fig. 6. AUROC and AUPRC of AHNF under different input values of the param-
eter y.

tions ‘BANCR’ and ‘LSINCT5’, they may be further verified once more
experimental evidences become available.

As reported in Table 8, we also find 18 prioritized IncRNAs have sup-
portive evidences for pancreatic cancer. For instance, IncRNA ‘MALAT1’
presented an extremely high expression level in pancreatic cancer tis-
sues and cells [48]. Loss of MEG3 expression was observed in both the
cancerous tissues and cancer cell lines compared to the expression in
adjacent non-cancerous tissues and a human pancreatic normal epithe-
lial cell line, so IncRNA ‘MEG3’ functions as a tumour suppressor in
human pancreatic cancer [49]. In addition, a novel sub-network, mRNA
‘MMP9’-miRNA ‘miR-29b-3p’-IncRNA ‘HCP5’, established by [50] was
first demonstrated that it was linked to prognosis of pancreatic cancer
according to the results from expression, survival and correlation anal-
ysis. The IncRNA ‘BANCR’ and ‘CCAT2’ might be further verified once
more experimental evidence becomes available. These case studies fur-
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Fig. 7. AUROC and AUPRC of AHNF under different input values of low-rank
size k.

ther confirm the capability of AHNF in identifying novel IncRNA-disease
associations with confidence.

3.6. Parameter analysis

According to the explicit solution of " and @ in Appendix A, we can
clearly see that once the value of « is specified, the weight o assigned to
R;; € R can be computed based on the reconstruction loss of that matrix.
In addition, we can easily see that once the value of g is specified, the
weight a)f; assigned to attribute data X;, can be determined based on the
reconstruction loss for the attribute data matrix. Given this, both a and
B play important roles for the performance of AHNF. To find a feasible
value of @ and g, following the experimental settings in Section 3.2, we
conduct five-fold cross validation to predict IncRNA-disease associations
by varying « and g in {1073,...,107,10%}, and report the AUROC and
AUPRC under each combination of ¢ and g in Fig. 5.

From Fig. 5, we observe that when « =10° and g = 10>, AHNF
achieves the highest AUPRC. The input value of a significantly affects
the performance; the AUROC value increases as a rises, and reaches
a plateau when ¢ > 10%; the AUPRC reaches the highest value when
a = 10°, and then it slightly decreases and stays stable. This is because a
too small « value assigns little emphasis to the relational adjacency ma-
trices, and a too large a will treat all the relational adjacency matrices
equally, and the target relational matrix is underrated as a result. The
input value of g also affects the performance; the AUROC is stable when
B < 10°, and then slightly decreases; the AUPRC value becomes larger
as f§ increases, it reaches the highest value when g = 10°, and then it sig-
nificantly decreases. This observation shows that both the input values
of a and g have an impact on the performance of AHNF.

The regularization parameter y is used to balance the reconstruc-
tion constraint and approximation error. Intuitively, if the magnitude
of y is too large, the reconstructed association matrix will be too sparse
to complete the missing associations. On the other hand, a too small

y can not enforce a sufficient regularization of ”G,-Si JGf||i and result
in more false positive associations in the reconstructed association ma-
trix. Following the experimental settings in Section 3.2, we conduct five-
fold cross validation to predict IncRNA-disease associations by varying
y in {1074,1073, ..., 10%}, and report the average AUROC and AUPRC in
Fig. 6. We can find that the AUPRC value gets larger as y increases. When
y <1072, the AUPRC manifests a significant decrease. AUROC holds a
relatively stable value as y > 0.2. As a result, we adopt y = 10? for AHNF.

The low-rank size k; is an important parameter for low-rank matrix
approximation based solutions. To study the sensitivity of k;, we fix all
k; = k across these five types of objects for simplicity, and then increase
k from 10 to 230. Fig. 7 reports the AUROC and AUPRC under different
input values of k in predicting IncRNA-disease associations in five-fold
cross validation. We observe that AUROC values are much stable than
AUPRC values, this is mainly because Precision-Recall curves are much
sensitive than ROC curves for the class imbalance problem [51,52]. We
can see that AUROC value has a slight fluctuation as k increase. AUPRC
increases as the increase of k when k < 70, and then it has a consis-
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tent decrease after k > 70. This is because the dimensionality of some
attribute data matrices is small, and a too large rank size imports re-
dundancy (and even noise) into the low-rank representation matrices
G; and consequently increases false positive associations. Given these
observations, we adopt k = 70 for experiments.

To show the capability of AHNF in selectively combining multiple
inter-relational matrices and attribute matrices, we further report the
weights (a)lfj) assigned to 8 relational adjacency matrices under different
input values of @ with g = 10% in Fig. 8, and the weights ("’Q',) assigned
to 5 heterogeneous attribute matrices of miRNAs under different input
values of g with a = 105 in Fig. 9.

We can clearly observe that when « = 103, only the relational ad-
jacency matrix R, is selected. Ry, has the fewest known associations
(1002) among all the relational data matrices in Table 1. When g > 107,
all the 8 relational data matrices are selected and assigned nearly equal
weights. This is because a (too) small a value does not have a sufficient
regularization effect on the weights assigned to different relational ad-
jacency matrices. On the other hand, a (too) large a value results in a
strong regularization effect, and forces similar weight assignments to
all matrices. When a = 10%, 105 or 10, some relational matrices (Rss)
are excluded for fusion, and AHNF has the highest AUROC and AUPRC
when a = 10°. The exclusion of some inter-relational matrices (Ry3 and
Rjs5) is possible because these matrices may contain too much noisy
relational associations than the selected sources, and the selected inter-
relational matrices (Ry5) have more reliable inter-associations for an
accurate IncRNA-disease associations prediction.

We further observe that when § = 102, only the attribute matrix X5
for miRNA:s is selected. When g = 103, X,, and X, are selected for fu-
sion, and AHNF has the highest AUROC and AUPRC. Similar to the pa-
rameter @, a (too) small or a (too) large g value can not provide the
different weights to distinguish the multiple attribute matrices. When
p > 10%, nearly all the selected attribute matrices are assigned nearly
equal weights and the performance of AHNF decreases as the g value
increases. The mainly reason may be the more noisy attribute matrices
have been selected as § grows. These experiments confirm that AHNF
indeed can selectively integrate different inter-relational matrices and
heterogeneous attribute data matrices, which contribute to an improved
performance.
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4. Conclusion

We introduced an attributed heterogeneous network fusion frame-
work based on collaborative matrix tri-factorization. Unlike existing ma-
trix factorization based data fusion approaches, AHNF can not only con-
quer the negative impact of insufficient relations between nodes, but
also avoid the information loss when transforming attribute data of di-
verse network nodes into homologous networks for fusion. Extensive
experimental results show that AHNF achieves a superior performance
compared to the state-of-the-art solutions in predicting IncRNA-disease
associations. AHNF is a general data fusion framework to comprehen-
sively integrate attributed multi-type relational data for diverse tasks.
There are some avenues for future work: (i) our collaborative matrix
tri-factorization framework is not limited to the data types we used
in the experiments, it can be applied for various link prediction prob-
lems, such as drug repurposing, user recommendation and so on. (ii) The
framework can be extended by merging with deep learning techniques
to improve the efficiency and effectiveness.
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Appendix A. Objective Function Optimization for AHNF

This appendix elaborates on how to iteratively optimize G, S, ®"
and @" in the objective function (Eq. (4) of the main text) of AHNF.
Before elaborating on the updating rule, we introduce the Lagrangian
multipliers M for G; > 0, and reformulate the objective function of
AHNF as follows:

minJ(G, S.U,0",0") =

2R, GJSITGT+GS GTG STGT
j i)

Z o]ir[H; © (R,R] -

ij=1

)

m max;t;

+ z Z oltr(X, X7 - 2X,U,G! + G,UTU,GT)
2
e

+ allvec(m’)lli + ﬂ”vec (@

+y Z ytr(G S, G7G,STGT

[ B g ¥}
ij=1

+ Z 1r(%,GT)

i=1

s.t. (A1)

Our optimization of G, S and U follows the ideas of multiplicative factor
update rules used in [11,24,53,54].
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Optimizing S: Suppose G, U, & and " are known, to obtain
the optimal Sij aif R;; € R), we can take the partial derivative of
J(G,S, U, ®",\) with respect to Sij as follows:

9oJ _ T T
35, = OHy 0 (-267R,;G, +2676G;S,,676,)
+2yGTG; S,JGJTG

= —20[,G! (H,; O R,))G; +20/,G] (H, © 65,67 )G,

+2rG] G;S;;GIG; (A2)
By letting % =0 forVi,j € {1,2,...,m}, we can obtain:
o/ .GT(H;; OR;;)G;
Sij =SU o) ijoi ( 1y IJ) J (A3)

@},G7 (H,; ©G;5,6 )G, +1GTG;S,,G7G,

Optimizing U: Similarly, suppose G, S, " and " are known, the
partial derivative of J(G,S, U, ", ®", 1) with respect to Uy, is:
o7
U.

it

= ol (-2X7G, +2U,GTG;) (A4)

By letting % =0forVi,j € {1,2,...,m},t < max; t;, we can obtain:
it

XIG,

U, = it
! UG!G,

U, (A5)
Optimizing G: Suppose S, U, »" and " are known, the partial
derivative of J(G,S, U, ®", ®", \) with respect to G; is:

Z mutr[HU 0} (

—2R;;G;ST +2G;S;,GTG ST

G, ,RueR ij Fjvij ij J Vi
+ Y, @ur[H] 0 (-2RIG;S, +26S1GTGS, )|
it R JER
+ Y 72G;8,,G] G;S], + > 72G;S1GTG,S;
J:R;;ER J:Rj;€ER
max; f;

-2X, U, +2G,UTU,) - &, (A.6)

h
+ Z mit(
t=1
Multipliers 4; can be obtained from Eq. (A.6) by lettmg = 0. The KKT

(Karush-Kuhn-Tucker) complementary condition [55] for nonnegativity
of G; is:

0 = &0,
T T T
=1 Y, ojur[H, o (-2R,G,S] +265,67G,S] )]
J:R;; GR
+ Y or[H] o (-2RIG;S, +26,S16TG;S, )|
J:Rj;€ER
+ Y r2G8;GTG;s[+ Y r26S8GIGS;,
J:Rj;ER j:RjER

max; t;

+ Y ol
t=1

where © denotes the Hadamard product. Eq. (A.7) is a fixed point equa-
tion and the solution must satisfy it at convergence. We can let

-2X, U, +2G,UTU,)1 0 G, (A7)

R;G,ST = (R,,st, ) (R”GISU>
G:5,676,8T = (6:5,6! G,Sﬁ) - (6:8,676,8T)
RIGS; = (Rﬁcjsj,) (RTIGJSJ,)
GS1G7G,S, = (6816768, ) - (68t676,s,,)
XU, = (XilUit) - (XiiUit)
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GU U, = (GUU,)" - (GUFU,)” A8
ForR;; € R:
GO+ = @ H,; 0 (R,,stz) +(68,676,8%) -
+7G, (s GTG,sﬁ)
G4 = o/ H, © (R,jcjsu) +(68,676,87)" ‘
+7G,(s, GTG,sﬁ)
G+ = o H! © (R,.Tj(;,.s,.j) + (6876765, )
+76,(S5676:8,, )
6+ = o H] 0 -(RiTjGisij) + (6876765, ) —
+76,(s]67Gs,)’ A9)
Fort=1,2,...,max;t;:
G+ = 0! (X,U,)" +!G,(UIU,)”  for i=12...m
G+ = 0! (X,U,)” + 0!G, (UIU,)"  for i=12,...m (Al0)

where the matrices w1th posmve and negative symbols are defined as
VA [Zl+z and Z- = ‘ , respectively. We then update G as follows:

(8) G(e) (e)
G « G Odiag( (d) G(d) (;(d)

Optimizing o" and o": After updating S, U and G, we view them as
known and take the partial derivative of J (G, S, U, »’, ®", A) with respect
to @'. In this case, the second, the fourth and the fifth terms on the right
of Eq. (4) in the main text are irrelevant to ", and can be ignored. Then
we can obtain:

JG.s.0n =Y o (R
ij=1

©]; 20, ) vec(@) =1

(A.11)

m

-GS, GT)

2
12
467 )|, +ellvectail;

s.t. (A.12)

2
Let L;; = ||H [0} ( -G;S; jGJ ) be the reconstruction loss for

then Eq. (A.12) can be updated as:

lj’
,_’7 (L, 0") = vec(@") vec(L) + avec(@")! vec(o")

st @f; 20, vec(@) =1 (A.13)

Eq. (A.13) is a quadratic optimization problem with respect to vec(@").
By introducing the Lagrangian multipliers (6 and n) for the constraints
of ®", Eq. (A.13) is formulated as:

JL,a",8,m) = vec(@) vec(L) + avec(@) vec(@")

m
- ZGU @;j “(Zm;j_l>
ij=1

i,j=1
st @20, vec(@) =1 (A.19)

Base on the KKT conditions, the optional " should satisfy the following
four conditions:

(i) Stationary condition: ﬁ = L+2ara)" §-n=0
(ii) Feasible condition: m’j >0, Z” 1 -1=0
(iii) Dual feasibility: §;; ; >20,VR;; R
(iv) Complementary slackness: 8, jml =0,VR;; €R
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From the stationary condition, “’fj can be computed as follows:
8, +n—-L;
2a

We can find that m;j depends on the specification of §; and 7, and the
specification of &; and # can be analyzed in the following cases:

ro—
ij =

(A.15)

@) Ifn> Ly, then o], > 0: because of the complementary slackness

r| -L;;
Sumu =0,9; —Oandm o .
(i) If n =L, because of 5ij(l’,~j =0 and m{j = ﬁ then 8,=0 and
;=0
(iii) If 11 <Ly since m;j > 0, it requires 5;>0; because §; jm;j =0, then
ij =0
From the above analysis, we can set (o;j as:
"I_ij :
o = o !f'q>L,.j andR,-jeR, (A16)
J 0 ifn <L;; orR;; ¢ R

Let v; € Rl store the entries of vector vec(L) in ascending order with
entries corresponding to R;; ¢ R removed. Accordingly, v" € R'®! stores
the corresponding entries of vec(w") with entries corresponding to R; X3

R removed. For a not too big predefined a, there exists p € {1,2, ..., |R|}
with v (p) <nand v (p+1) 2 n, satisfying Y v, = 3 ,)<n "%(’;(”) =1
Then v’ (p’) has the following explicit solution:
n-ve. (@) VL(P) it
V@)= i <p, A1)
0 ifp’ >p
IR _vr  n=v@) _ .
From ZP,=1 V(@)= Zpr=1 # =1, we can get the value for n as:
200+ 2p/=l vL(pl)
n=——2>r=— " (A.18)

p

Then similar to the solution of @", we find that the first, the third
and the fifth terms on the right of Eq. (4) in the main manuscript are
irrelevant to ®", and can be ignored. Then we can obtain:

~ 2
(G,S,0" Z Z @l [Xi = GUE|| + |vec (™),
st. m'; >0, ) vec(o) =1 (A.19)
Let K, = (X, GIU§|| be feature matrix reconstruction loss, then
Eq. (A.19) can be update as:
j(K, a)h) = vec((oh)Tvec(K) +ﬂvec( h)Tuec (a)")
st. @f 20, vec( (A.20)

Eq. (A.20) is a quadratic optimization problem with respect to vec(o").
By introducing the Lagrangian multipliers (¢ and u) for the reconstruc-
tion loss of mh, Eq. (A.20) is formulated as:

TK, o, @,p) = vec (a)h)Tvec(K) + ﬁuec(a)h)Tuec(a)h)

-3

max; t;

q)lfm
=1

o} >0, Zvec(w") =1

s.t. (A21)

Base on the KKT conditions, the optional @" should be satisfy the fol-
lowing four conditions:

=K+2f0" —¢p-—pnu=0
(ii) Feasible condition: m 0 Z Zmax ifi m -1=0
(iii) Dual feasibility: @, > 0 VX € R

(iv) Complementary slackness: q),.,ms =0,vX, R

(i) Stationary condltlon
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From the stationary condition, mﬁ can be computed as follows:

o = ¢, +n—-K;

We can find that mf; depends on the specification of ¢; and u, and the
specification of ¢;, and u can be analyzed in the following cases:

(i) If u > Ky, then o > 0: because of the complementary slackness

—K;
90" =0,, =0and ! = "Z_ﬂr
(i) If p = K,,, because of ¢, @} = 0 and &} = u_;p("’ then @, = 0 and
(1)2 =0
@ii) If u < K;, since ®f >0, it requires g; > 0; because @,/ =0,
then n):; =0

From the above analysis, we can set (of’, as:

n-Ky
2p
it g

0 ifp <K, andz > max; t;

ifp > K, ands < max; t;
(A.23)

where K, = "X,., - G,-U‘?;”i is the reconstruction loss for i-th type of
objects in t-th heterogeneous feature matrix. Let vg store the entries
of vector vec(K) in ascending order with entries corresponding to Xj,
t > max;t; removed. Accordingly, v" stores the corresponding entries of
vec(o") with entries corresponding to X, t > max;t; removed. For a not
too big predefined B, there exists g € {1,2,...,|X|}, |X| is the number of
feature matrices for all the types, with vg(q) < g and vg (g + 1) > p, satis-

fying ¥ v = Xy, (y<n "';‘é @ — 1. Then v*(¢’) has the following explicit
solution:
. u—vzl‘(}(q’) if¢ <gq
vi(g) = , (A.24)
0 ifg’ > q
From ZL’,\L vi(g) = E:f=1 %’;@,) =1, we can get the value for u as:

C2B+XL V)
-

We compute v via finding an appropriate q that satisfies p — vg(q) >
0 and p — vg(g + 1) < 0. We decrease g from |X| to 1 step by step, and
list the procedure in Algorithm 1. The seek of v" in Eq. (A.17) can be

B (A.25)

Algorithm 1: A method to seek g and compute v
Input: vg, f
Output: g, v/

1 Initialize ¢ = |X|, u = 0;

2 while g > 0 do

3 Update p using Eq. (A.25);

4 if p— vg(g) > 0 then
5 | break;

6 else

7 | qg<—q-1;

8 end

9 end

10 vVi(¢') « %"‘;"I), forg =1,...,q;

11 V() «0,forqd =g+1,...,|X];
12 return g and v

similarly attained.

From the Eq. (A.24), we can see that if vi(g’) is smaller than vg(q”)
(¢" €{1,2,...,|&|}) and p — vg(g') > 0, then a larger weight is assigned
to the feature matrix corresponding to vg(q”) than to vg(q”). It can
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be also observed that if ¢’ > g, v*(¢’) = 0, which means that the at-
tribute matrices are automatically removed from the optimization pro-
cess. This is because these attribute data matrices with larger reconstruc-
tion loss. Similarly, we observe that if v; (p’) is smaller than v; (p”) (p”’ €
{1,2,...,|R|}) and n — v, (»') > 0 in Eq. (A.17), then a larger weight is
assigned to the relational data matrix corresponding to v;(p") than to
v, (p”). We can further observe that v4(p') =0 if p’ > p, which means
that the relational data matrices are automatically removed also during
the optimization process. This is because these relational matrices with
larger reconstruction loss, possibly due to the noisy entries of respective
association matrices. Therefore, AHNF has the capability to automati-
cally remove the noisy relational data matrices and noisy attribute data
matrices.
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