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Abstract

Multi-label learning aims at assigning a set of ap-
propriate labels to multi-label samples. Although it
has been successfully applied in various domains in
recent years, most multi-label learning methods re-
quire sufficient labeled training samples, because of
the large number of possible label sets. Co-training,
as an important branch of semi-supervised learn-
ing, can leverage unlabeled samples, along with
scarce labeled ones, and can potentially help with
the large labeled data requirement. However, it is
a difficult challenge to combine multi-label learn-
ing with co-training. Two distinct issues are as-
sociated with the challenge: (i) how to solve the
widely-witnessed class-imbalance problem in multi-
label learning; and (ii) how to select samples with
confidence, and communicate their predicted labels
among classifiers for model refinement. To address
these issues, we introduce an approach called Multi-
Label Co-Training (MLCT). MLCT leverages in-
formation concerning the co-occurrence of pairwise
labels to address the class-imbalance challenge; it
introduces a predictive reliability measure to select
samples, and applies label-wise filtering to confi-
dently communicate labels of selected samples a-
mong co-training classifiers. MLCT performs favor-
ably against related competitive multi-label learning
methods on benchmark datasets and it is also robust
to the input parameters.

1 Introduction

In multi-label learning, each sample is associated with sev-
eral related class labels [Zhang and Zhou, 2014; Gibaja and
Ventura, 2015]. Let X € R™*9 be the data matrix includ-
ing n d-dimensional samples, and Y € R"*9 be the ¢-
dimensional label space for the samples. Given a training
dataset D = {(x;,¥:))|1 < ¢ < n}, the task of multi-label
learning is to learn a predictive function f(x) € R? that maps
the input feature space of the samples onto the label space.
Most multi-label learning methods train the predictor using
only labeled samples [Zhang and Zhou, 2007; Bucak et al.,
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2011; Huang and Zhou, 2012; Yu et al., 2014]. Given the
exponential size of the power set of the labels, a very large
number of labeled training samples is generally required. In
practice, collecting sufficient labeled samples in this scenario
is very expensive, and often impractical. On the other hand,
with the rapid advancement of data collection and storage
techniques, it has become feasible to collect a large number of
unlabeled samples. Inspired by single-label semi-supervised
learning [Zhu, 2008], efforts have been made to leverage both
labeled and unlabeled samples for multi-label learning, giving
promising results [Qian and Davidson, 2010; Yu et al., 2012;
Kong et al., 2013; Wu et al., 2015; Zhang and Yeung, 2009;
Zhang et al., 2015b]. The nature of this work, though, is
typically transductive; that is, the canonical approach is to
construct a graph that captures the connections between la-
beled and unlabeled instances, and then to predict the labels of
the unlabeled instances embodied in the graph. As such, this
approach cannot generalize to unseen samples. It is obvious-
ly desirable to empower the learner with an inductive ability
that enables label prediction for new instances unseen during
training.

Few attempts have been made to achieve inductive semi-
supervised multi-label learning [Guo and Schuurmans, 2012;
Wu and Zhang, 2013; Gonen, 2014; Tan et al., 2017,
Zhan and Zhang, 2017]. In [Guo and Schuurmans, 2012],
the authors utilized unlabeled and labeled instances to learn
a subspace representation, while simultaneously training a
supervised large-margin multi-label classifier on the labeled
instances, which could be directly applied to unseen instances.
In [Wu and Zhang, 2013], the authors took advantage of la-
bel correlations in labeled instances and of maximum-margin
regularization over unlabeled instances to optimize a col-
lection of linear predictors for inductive multi-label classi-
fication. In [Gonen, 20141, the author proposed a Bayesian
semi-supervised multilabel learning (BSSML) approach that
combines linear dimensionality reduction with linear binary
classification under a low-density assumption. In [Tan er al.,
20171, the authors introduced SMILE, which first estimates
the missing labels of labeled samples and uses a graph to
embody both labeled and unlabeled samples; it then trains a
graph-regularized semi-supervised linear classifier, to further
recover the missing labels of labeled samples, and to directly
predict labels of unseen new samples. In [Zhan and Zhang,
20171, the authors introduced an inductive semi-supervised



multi-label learning using a co-training approach called COIN-
s. Specifically, to enable single view co-training, COINs first
optimizes two disjoint feature views from the whole feature
space by maximizing the diversity between two classifiers
independently trained on the two views [Chen et al., 2011],
and then iteratively communicates the pairwise ranking pre-
dictions of either classifier on unlabeled instances for model
refinement. COINs communicates only the single predicted
most relevant label and the single predicted most irrelevant
label between two classifiers. However, multi-label instances
are often simultaneously associated with several relevant and
irrelevant labels, and not just a single one. For this reason,
only communicating the two most relevant and irrelevant la-
bels may mislead the refinement process, and may not achieve
pronounced performance improvement. Furthermore, COINs
only focuses on two views.

To fully accomplish inductive multi-label classification and
to leverage labeled and unlabeled instances of multiple feature
views, we advocate the integration of multi-label learning with
the well-established co-training paradigm [Blum and Mitchell,
1998; Zhou and Li, 2005]. Co-training has a natural induc-
tive classification ability. It mutually communicates the labels
predicted with most confidence among classifiers, which are
independently trained on the respective views of data, thus
augmenting the labeled training sets. The classifiers are then
independently retrained on the respective augmented training
sets; the communication and update iterate till convergence.
Nevertheless, it is a difficult challenge to integrate multi-label
learning with co-training. Two distinct issues should be ad-
dressed:

(i) How to solve the widely-witnessed class-imbalance
problem in multi-label learning. For multi-label datasets,
the number of samples relevant to a label is generally
much smaller than the number of samples irrelevant to
that label. Furthermore, the number of relevant samples
for different labels can vary significantly [Zhang er al.,
2015a; Sun and Lee, 2017]. The class-imbalance prob-
lem can be exaggerated when communicating labels a-
mong learners during the iterative process of co-training.

(i) How to select the samples and communicate their pre-
dicted labels with confidence among multiple co-training
classifiers. Unlike traditional co-training, the to-be-
communicated samples can be associated with several
labels, and not just one.

To address the above two issues in multi-label co-training,
we propose a co-training based multi-label classification
method called MLCT. MLCT first independently trains pre-
dictors on different views and makes prediction on unlabeled
samples. Then, it uses the co-occurrence information of la-
bels to adjust the predicted likelihoods and to deal with the
class-imbalance problem. Next, it summarizes the adjusted
likelihoods across views and measures the predictive confi-
dence of samples based on the summarized likelihoods. After
this, it selects samples with the highest confidence, applies
label-wise filtering on the summarized likelihoods of the se-
lected samples, and then communicates filtered labels among
learners during the iterative co-training process. MLCT re-
peats the above iterative process till convergence and makes

the final prediction on unseen samples by combining the pre-
dictions of the classifiers via a majority vote. An extensive
comparative study shows that MLCT performs favorably a-
gainst the recently proposed COINs [Zhan and Zhang, 2017]
and other representative multi-label learning methods (includ-
ing ML-KNN [Zhang and Zhou, 2007], MLRGLI[Bucak et
al., 2011], MLLOC[Huang and Zhou, 2012], BSSML[Génen,
2014] and SMILE[Tan et al., 2017]).

2 The MLCT Approach

The original co-training approach was applied to samples with
multiple feature views [Blum and Mitchell, 1998], under the
assumption that each feature view would provide sufficient and
independent information to produce a classifier with a good
generalization capability. In this paper, we mainly focus on
mining multi-label samples naturally represented by multiple
views. MLCT can also work on feature views generated by a
particular view splitting technique [Chen ez al., 2011; Du et
al.,2011]. Let X = {X"}7_, be m view representations of n
samples, where each view X" € R7xdv, x}? € R1%dv jg the
d,-dimensional feature vector for the j-th sample in the v-th
view, and y; € {£1} is the g-dimensional label vector for
the j-th sample, where y; . = +1(—1) indicates whether the
c-th (1 < ¢ < q) label is relevant (irrelevant) for the sample.
Without loss of generality, we assume that the first [ samples
are labeled and the remaining u = n — [ (I < u) samples are
unlabeled, £ = {(x;,y;) Y, U = {x;}7_, ;.

The goal of MLCT is to perform multi-label co-training
on X and {y;}"_,, and to make accurate predictions on un-
seen new sampljes. To accomplish this goal, MLCT first uses
correlations of labels to address the widely witnessed class-
imbalance problem in multi-label learning, and to adjust the
predicted label confidence values of samples. Next, it in-
troduces a confidence measure to select samples, performs
label-wise filtering on the predicted label confidence values of
the selected samples, and communicates their labels among
classifiers. The following subsections elaborate on the above
two steps.

2.1 Addressing Class-imbalance via Label
Correlation

In multi-label learning, labels have much fewer relevant
samples than irrelevant ones, and the number of relevan-
t samples varies significantly across labels [Zhang et al.,
2015al. This class-imbalance issue can become even more
pronounced during the iterative process of label communica-
tion in co-training. Inspired by the class-imbalance solutions
for multi-label learning proposed in [Zhang et al., 2015a;
Sun and Lee, 2017], MLCT makes use of label correlation to
address class-imbalance in multi-label co-training.

Two labels c1 and ¢2 are considered as positively correlated
if they often co-occur as sample labels, and their correlation
can be empirically estimated as follows:
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where [] is true if and only if the condition is met. C(c2, c1)
represents the probability that a sample is labeled as ¢2, given

C(c2,cl) = (1)



that it’s already labeled as c1. Although c1 and ¢2 might co-
exist for some samples, the number of relevant samples for
c1 might be far less than that of ¢2, or vice versa. As such,
we separately compute C(c2, ¢1) and C(c1, ¢2) (C(c2,cl) #
C(cl, ¢2)) to account for the imbalance phenomenon.

Suppose {7 = [fjvl, X € R is the likelihood of x7
with respect to q labels in tﬂe v-th view, initially predicted
by a specific multi-label classifier (i.e., ML-KNN [Zhang
and Zhou, 2007]) and trained on the [ labeled samples. To
address the class-imbalance problem, MLCT makes use of
label correlation to adjust the predictive confidence values of
labels as follows:
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P} . is the updated likelihood of the c-th label for x7. It follows
the form of a logistic regression function to enforce that the
adjusted value is within the range (0,1). w; . and W;fc are

computed as follows:
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c2=1 & (C(c,e2)) — 1
where w ' (w; ) reflects the confidence that ¢ is a relevant (ir-
relevant) label for x}. A (a) is an indicator function; it’s equal
to 1 when a > 0, and to 0 otherwise. Y %,_, A (C(c,¢2)) —1
counts the number of labels positively correlated with the c-th
label (c excluded). >4, 20 £72C(c, c2) indicates how
much information the other labels, which are correlated with
the c-th label, contributes to the relevance between ¢ and x7.

It is evident that the larger the margin W+ . 1s, the more
confident the prediction is. The margin 1nd1rect1y reflects the
relevance of the c-th label to x¥

Eq. (2) is used to solve the class—imbalance problem via
co-occurrence between labels, which not only considers the
condition where x}’ contains the c-th label, but also takes the
reverse case into account (i.e., the c-th label does not belong
to the label set of x}’). With the correlations between labels as
extra information, the impact of the class-imbalance issue can
be effectively reduced.

wj:c =f;.+ 4)

2.2 Communicating Label Information

It’s crucial to be able to communicate with confidence sam-
ples and labels among classifiers during the iterative process
of co-training. A good communication strategy helps obtain-
ing a pronounced and stable performance [Du er al., 2011].
Traditional co-training methods directly select samples with
the most confident predictions for communication and model
refinement [Blum and Mitchell, 1998; Zhou and Li, 2005;
Levati et al., 2017]. However, for co-training with multi-label
samples, since a sample may be annotated with several cor-
related labels, how to communicate labels with confidence
is more challenging. As an inductive multi-label co-training
algorithm, COINs [Zhan and Zhang, 2017] deals with this
challenge by communicating the single positive and single
negative labels of an unlabeled example predicted with the
largest confidence. As such, the refined model may be misled

by the two communicated labels, and may result in perfor-
mance degeneration.

A sample in different views should share the same relevant
labels. To select samples and labels to be propagated with
confidence, MLCT first summarizes the prediction reliability
based on m—1 views (the v-th view is excluded), and measures
the overall prediction reliability of the j-th sample with respect
to the c-th label as follows:

v 1 o v’ v’
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where |p§:c —(1- pj“/C)| is the prediction reliability of the c-th

label of xg/. It’s straightforward to see that a larger h/ . value
indicates that the m — 1 classifiers are more in agreement on
whether ¢ should, or should not, be a relevant label for the j-th
sample.

By extending the estimation in Eq. (5) to ¢ labels, MLCT
measures the overall prediction reliability of the j-th sample

as follows: .
- Z h*(j, ©6)

where larger r7 values 1mply more consistent predictions
across the classifiers, and this makes the j-th sample a good
candidate for communication. As such, MLCT selects uy
(up < u) samples corresponding to the largest r¥ values as
the candidate sample set 3Y to be communicated for classifier
refinement.

Next, to identify confident labels of the selected samples
during co-training, MLCT defines two threshold values for
each label on each view as follows:

Zx epv £ c[E7 . >=0.5]

vaeBT, [fy. >=0.5]

Zx veBv f]”c[f’-’ < 0.5]
Zx vepo ] < 0.5]

6" (c) is the average predicted likelihood of the c-th label on
the v-th view, estimated using plausible relevant samples; simi-
larly, 6" (c) is the average predicted likelihood of the c-th label
on the v-th view, estimated using plausible irrelevant samples.
Since the sample distribution of each label is different, the
above two threshold values are computed separately for each
label. MLCT then uses the above threshold values to convert
£7 . into a binary label as follows:

QH

0% (c) =
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)

Lif £, > 0% (c)
-1, if £}, < 6% (¢) (8)
0, otherwise

v
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MLCT then uses {b{ .}/, and the feature information of
the respective samples in the v-th view, to augment the labeled
training set and to refine the classifier in the corresponding
view. We do not apply sample-wise filtering here because dif-
ferent samples have a different number of relevant labels, and
an appropriate filter threshold is difficult to pursue [Quevedo

et al., 2012]. The pseudo-code of MLCT is summarized in



Algorithm 1. MLCT first computes label correlations based
on available labels (step 2). Then, it randomly selects u, unla-
beled samples and puts them in the buffer pool B (step 3), and
independently predicts label likelihoods of these samples in
each view (step 4-7). Next, it summarizes adjusted likelihoods
and the overall predictive reliability of these samples in each
view, chooses wu; samples with the largest reliability, applies
label-wise filtering on the summarized predicted likelihoods,
and forms the communication label sets (step 8-12). After this,
it appends the communication label sets obtained from the
respective views to the labeled sets, and removes it from the
unlabeled set (step 13). After the maximum number of itera-
tions is reached, MLCT finally returns the iteratively refined
classifier of each view, and makes ensemble predictions for
new samples via majority vote of the classifiers.

Algorithm 1 MLCT pseudo-code

Input:
L: labeled samples set in m views;
U: unlabeled samples set in m views;
B: buffered unlabeled samples for co-training;
t: maximum number of iterations for co-training;
Uq, Up: buffer size and number of communication samples.
Qutput:
H": the prediction model on the v-th (1 < v < m) view.
1: Foriter =1:t¢
Estimate label correlation C(c2, c1)(1
(D;
: Randomly pick u, samples from ¢{ and put them into B;
: Forv=1:m
Update classifier H" based on £ and make predictions on B;
Adjust the initially predicted likelihoods f . (x; € B) via Eq.
)
: End For
: Forv=1:m
9:  Calculate 5 (1 < j < u,) via Eq. (6), then select uy, samples
from B with the largest 7 and form the set B”;
10:  Compute 0 (¢), 6” (¢)(1 < ¢ < ¢) viaEq. (7);
11:  Apply label-wise filtering on f} . (x;j € B") via Eq. (8), and
form the communication label set A” = {b} .};
12: End For
13: Communicate A = {AY}72; to {H"}7-, augment the labeled
training set £ = £|J A and reduce the unlabeled training set
U=u-A.
14: End For
15: Return { H"}7%,

Y

< cl,e2 < q) viaEq.

[e BN ]

3 Experiments

3.1 Experimental Setup

We assess the effectiveness of MLCT on four publicly acces-
sible multi-label datasets from different domains, with differ-
ent numbers of views and of samples [Gibaja ef al., 2016;
Guillaumin et al., 2010]. These datasets are described in Ta-
ble 1. We also have computed the average imbalanced ratio
(ImR) for all labels of each dataset. ImR reflects the degree
of class-imbalance, and it is defined as follows [Sun and Lee,
2017]:

1 maz([y;.c

> — 1], [y;.c # 1)
sz cminlyie = e 1) )

Data set n q m Avg Min(ImR) Max(ImR) ImR
Emotions 593 6 2 1.87 1.24 3.00 2.32
Yeast 2417 14 2 423 1.32 70.08 8.95
Corel5k 4999 260 6 1.47 3.46 2498.50  327.39
Pascal 9963 20 6 340 1.45 50.62 19.67

Table 1: Statistics of the datasets used for the experiments. n, ¢, and
m are the number of examples, labels, and views, respectively. Avg
is the average number of labels per sample, and ImR is the average
imbalanced ratio for all labels in a dataset.

Max(ImR) and Min(ImR) represent the largest and the s-
mallest imbalanced ratios of ¢ labels, respectively. The larger
the difference between Max(ImR), Min(ImR), and ImR, the
more imbalanced the dataset is. From the statistics in Table 1,
we can see that the labels of the last three datasets are quite
imbalanced.

We compare the performance of MLCT against six represen-
tative and related multi-label learning algorithms: MLKNN
[Zhang and Zhou, 2007], MLRGL [Bucak et al., 2011], M-
LLOC [Huang and Zhou, 2012]), BSSML [Gonen, 2014],
SMILE [Tan et al., 2017] and COINs [Zhan and Zhang, 2017].
To enable experimental comparisons with multi-label learning
methods on a single view, we concatenate the feature vectors
of different views for each sample into a single vector, and
use the latter as the input of the comparing methods. COINs
performs the feature view splitting and classifier refinement
during the iterative process, and optimizes two views using
the concatenated feature vectors. MLCT directly refines m
ML-KNN classifiers on the naturally split views during the
iterative process.

We use five widely-used multi-label evaluation metrics:
Hamming Loss (HammLoss), Average AUC (Area Under
receiver operating Curve) (AvgAUC), Ranking Loss (Ran-
kLoss), One Error (OneError), and Average Precision (Avg-
Prec). Due to space limitation, we omit the formal definitions
of these metrics; they can be found in [Zhang and Zhou, 2014;
Gibaja and Ventura, 2015]. HammLoss requires transforming
the predicted probabilistic label vector of a testing sample into
a binary vector. Following the setting of ML-KNN, a label is
considered relevant to the sample if its predicted probability is
above 0.5, otherwise is considered irrelevant. The smaller the
values of HammlLoss, RankLoss, and OneError are, the better
the performance is. As such, to be consistent with the other
evaluation metrics, we report I-HammLoss, I-RankLoss, and
1-OneError instead. With the latter measures, larger values
indicate a better performance.

3.2 Experimental Results and Analysis

To compute the performance of MLCT, we randomly partition
samples of each dataset into a training set (70%) and a testing
set (30%). For the training set, we again randomly select 10%
samples as the initial labeled data (£) and the remaining as
unlabeled data (I/) for co-training. We independently repeat
the above partition 10 times, and report the average results
and standard deviations. For co-training based methods, the
maximum number of iterations (¢) is fixed to 30, the number
of samples (u,,) in the buffer pool B is fixed to |u/t], and the
number of samples (up) to be shared during the co-training
process is fixed to |5%u, |. The input parameters of the com-
petitive methods are specified (or optimized) as indicated by



authors in the codes or papers. Table 2 shows the results.
From Table 2, we can see that MLCT generally outperforms
comparing methods on different datasets and across the used
metrics. We used the signed rank test [Demsar, 2006] to check
for statistical significance between MLCT and the other meth-
ods (except SMILE and MLLOC). All the p-values are smaller
than 0.05. Both MLCT and COINs are multi-label co-training
methods, and MLCT frequently outperforms the latter. This
is because COINs only communicates the single positive and
negative labels predicted with highest confidence during co-
training. Given the multi-label characteristics of multi-label
samples, the two shared positive and negative labels may mis-
lead the classifier update and thus degenerate the performance.
In practice, we also randomly divided the concatenated view
of the Pascal dataset into two views, and then applied MLCT
on each view. Again, MLCT shows a better performance than
COINs. MLCT runs much faster than COINs: their average
runtimes on the first two datasets are 155.180 and 708.225
seconds, respectively. MLCT also outperforms two supervised
multi-label solutions (ML-KNN and MLRGL), which uses
different techniques for multi-label data classification. The per-
formance margin shows the advantage of using unlabeled data
for training. MLLOC explores label correlations locally and it
holds comparable performance to MLCT, which employs label
correlation globally. BSSML, SMILE, and MLCT use unla-
beled data for training; BSSML loses to MLCT, and SMILE
obtains comparable performance to MLCT. This fact suggests
that co-training is an alternative and effective paradigm for
using unlabeled data for semi-supervised multi-label learning.
SMILE has higher AvgAUC than MLCT because the predict-
ed likelihood vectors of SMILE are less sparse than MLCT.
SMILE uses label correlation to replenish missing labels of
instances before training the linear classifier, whereas MLCT
directly uses the available label information for prediction.

Component Analysis

To further analyze the effect of the individual components of
MLCT, we introduce four variants of MLCT:

(1) MLCT(nC): does not adjust the initially predicted likeli-
hoods; in other words, it does not explicitly tackle the class-
imbalance problem, and directly uses the initially predicted
likelihoods during the whole iterative process.

(i) MLCT(nS): first adjusts the initially predicted likelihoods,
but randomly selects u; samples; it then follows the same
process as MLCT.

(iii) MLCT(nF): first adjusts the initially predicted likelihoods
and selects samples based on the summarized likelihoods r7;
it then communicates labels whose f7 . >= 0.5 (as done by
ML-KNN), without applying label-wise filtering on the sum-
marized likelihoods.

(iv) MLCT(nCSF): does not adjust the initially predicted like-
lihoods, randomly selects u; samples, and then communicates
labels whose £ . >= 0.5.

Figure 1 gives the results obtained with MLCT and
its variants. Overall MLCT outperforms its vari-
ants, and MLCT(nCSF) usually has the lowest perfor-
mance. MLCT(@F), MLCT(®nS), and MLCT(nC) out-
perform MLCT(nCSF). MLCT(nC) is always better than
MLCT(nCSF), and is worse than MLCT on various datasets,

0.75
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4

0.65

I VLCT(nCSF)
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Figure 1: I-RankLoss and AvgAUC of MLCT and its variants on
different datasets.

especially on Corel5k, which is the most imbalanced dataset.
This observation indirectly reflects the effectiveness of ad-
dressing class-imbalance during the co-training process. More-
over, we can see that MLCT(nS), which randomly selects the
same number of samples for communication, is always outper-
formed by MLCT. This fact shows the effectiveness of MLCT
in selecting samples with high confidence. We used a signed
rank test to verify the statistical significance of the results
of MLCT and its variants, and all p-values are smaller than
0.02. These results support the fact that MLCT is effective in
addressing class-imbalance, and is capable of communicating
labels with confidence for multi-label co-training.

Parameter Sensitivity Analysis

As with other co-training methods [Blum and Mitchell, 1998;
Zhou and Li, 2005; Zhan and Zhang, 20171, two input pa-
rameters (¢ and u;) may affect the performance of MLCT.
We conduct additional experiments to study the sensitivity
of MLCT with respect to these parameters. Due to space
limitation, we report only the average results with respect to
1-HammLoss. In fact, results with respect to other metrics
provide similar patterns and conclusions.

Figure 2(a) shows the results for MLCT under different
values of ¢; u, and u, were set to |u/t] and |5%u, |, respec-
tively. MLCT has an increasing /-HammLoss as t increases,
and it reaches a plateau after 15 iterations. Initially, MLCT has
a lower performance than ML-KNN; that is because ML-KNN
is trained on the integrated view, whereas MLCT works on
separate views. To further study the generalization ability of
MLCT, we also investigate the performance of MLCT with
MLRGL [Bucak et al., 2011] and BPMLL [Zhang and Zhou,
2006] as base classifiers (instead of ML-KNN), and report
these results in Figure 2(a). Again, MLCT has a performance
that is superior to that of the adopted base classifiers.

Figure 2(b) exhibits the 7-HammLoss of MLCT for different
number of selected samples (up) for communication, with u,
fixed to 50, 100, 300, and 500, respectively. The results are
average on three datasets. Emotions is excluded from this
experiment, since its small number of samples prevents the
same setting of u, as for the other datasets. MLCT holds a
stable performance when the ratio u;/u, increases from 1%
to 10%, and then shows a decreasing trend as up/u, > 10%.
This indicates that a reasonable number of samples can be
easily selected to achieve an effective co-training for MLCT.



Metric BSSML SMILE MLLOC MLRGL MLKNN COINs MLCT
Emotions
1-HammLoss R R . . . 0 . . . .
1-RankLoss 0.345 + 0.036e  0.614 + 0.008¢  0.712 + 0.0160  0.577 £0.015e¢  0.547 £+ 0.029e  0.588 4= 0.022e¢  0.617 4 0.029
AvgPrec 0.477 +0.017¢  0.601 + 0.004e  0.548 £+ 0.025e¢  0.562 £ 0.015¢  0.559 £+ 0.021e¢  0.582 4+ 0.012¢  0.608 4 0.027
1-OneError 0.272 + 0.028e¢  0.466 4+ 0.0150  0.430 £ 0.018e  0.412 + 0.049e¢  0.412 4+ 0.057 0.451 + 0.023 0.456 + 0.048
AvgAUC 0.602 + 0.0290  0.647 + 0.0250  0.674 £ 0.0220  0.542 £ 0.011e  0.525 £+ 0.045e¢  0.557 4+ 0.0430  0.552 4 0.009

1-HammLoss
1-RankLoss
AvgPrec
1-OneError
AvgAUC

E . °
0.787 + 0.004e 0.7
0.699 + 0.007e¢ 0.7
0.748 = 0.011e 0.7
0.625 + 0.0030 0.5

1-HammLoss
1-RankLoss
AvgPrec
1-OneError
AvgAUC

1-HammLoss
1-Rankloss
AvgPrec
1-OneError
AvgAUC

Table 2: Results on different datasets. e/o indicates whether MLCT is statistically (according to pairwise t-test at 95% significance level)

superior/inferior to the other methods.
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Figure 2: 1-HammLoss of MLCT under different input values of ¢
(maximum number of iterations), u (number of selected samples for

communication), and different offsets of 6% (c¢) and 67 (c) (label-wise
thresholds).

MLCT also applies label-wise thresholds (6" (c) and 6% (c))
to filter positive and negative labels. Figure 2(c) shows the
1-HammLoss of MLCT under different offsets of these two
thresholds. Particularly, +0.2 (-0.2) means increasing (decreas-
ing) the respective threshold by 0.2. From the Figure, we can
observe that directly using ' (c) and 0¥ (c) (both with offset
as 0) gives a better performance than other values. In practice,
we also tested a threshold fixed to 0.5, and the obtained perfor-
mance is lower than that of MLCT. These results demonstrate
the importance of label-wise filtering. Irrespective of the offset

for 0 (c), either decreasing or increasing 6" (c) downgrades
the performance. This is because decreasing 6V (¢) results in
a more stringent rule for negative samples, whereas increas-
ing 6” (c¢) causes the detection of positive samples as negative
ones. On the other hand, when the offset for 0" (c) is 0, MLCT
shows a stable performance for different offsets of 67 (c). This
is because the number of relevant samples for label c is gen-
erally smaller than the number of irrelevant samples for this
label; as such, MLCT can identify the relevant samples of
the c-th label even with a moderately decreased or increased
6" (c). In practice, we investigated the margin (9% (c) — 0" (c))
and found it is generally larger than 0.5 across all labels. This
investigation shows that label-wise filtering is important for
multi-label co-training and the adaptive threshold values are
effective. In summary, from these results, we can conclude
that MLCT is robust to key input parameters.

4 Conclusions

In this paper, we study the multi-label co-training problem, an
interesting but seldom studied learning paradigm. We intro-
duce a solution to address the issue of class-imbalance, and
to communicate confident labels of multi-label samples dur-
ing the co-training process. Experimental results show that
the proposed solution works better than other related meth-
ods. Several avenues remain to be explored, including how
to accurately estimate label correlation from limited labeled
data, and how to filter relevant labels more reliably during
multi-label co-training. The code of MLCT is available at:
http://mlda.swu.edu.cn/codes.php?name=MLCT.
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