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The goal of zero-shot learning (ZSL) is to build a classifier that recognizes novel categories with
no corresponding annotated training data. The typical routine is to transfer knowledge from seen
classes to unseen ones by learning a visual-semantic embedding. Existing multi-label zero-shot learning
approaches either ignore correlations among labels, suffer from large label combinations, or learn the
embedding using only local or global visual features. In this paper, we propose a Graph Convolution
Networks based Multi-label Zero-Shot Learning model, abbreviated as MZSL-GCN. Our model first
constructs a label relation graph using label co-occurrences and compensates the absence of unseen
labels in the training phase by semantic similarity. It then takes the graph and the word embedding
of each seen (unseen) label as inputs to the GCN to learn the label semantic embedding, and to obtain
a set of inter-dependent object classifiers. MZSL-GCN simultaneously trains another attention network
to learn compatible local and global visual features of objects with respect to the classifiers, and
thus makes the whole network end-to-end trainable. In addition, the use of unlabeled training data
can reduce the bias toward seen labels and boost the generalization ability. Experimental results on

benchmark datasets show that our MZSL-GCN competes with state-of-the-art approaches.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In conventional supervised learning, massive manually an-
notated data is required to train a model. However, the ever-
increasing need for fine-grained annotations, the consistent
emergence of new classes, and the exponential growth of large-
scale datasets have made the manual annotations of data very
costly and difficult to achieve. For example, when classifying a
rare species of animals, the number of available labeled images
is far from being sufficient to build reliable classifiers. Transfer
learning has been introduced as a paradigm to deal with this
fundamental problem (Pan & Yang, 2009). It learns using a limited
number of classes, and transfers knowledge to classify data from
new classes, either using only few labeled data points (i.e., few-
and one-shot learning Li, Fergus, & Perona, 2006), or in the
extreme case without any labeled data (i.e., zero-shot learning
(ZSL) Xian, Lampert, Schiele, & Akata, 2019). In this paper, we
focus on the more challenging ZSL setting, which has been studied
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recently in face verification, object recognition, video annotation,
and other domains (Xian et al.,, 2019). ZSL aims at recognizing
objects whose instances may not have been seen during training.
ZSL distinguishes between two types of categories, seen and
unseen, where labeled data is available only for seen categories.
The key of ZSL is to transfer knowledge from the seen classes
to the target unseen classes via the semantics of labels. Exist-
ing ZSL methods assume that each class prototype is embedded
in a semantic space (e.g., attribute space Lampert, Nickisch, &
Harmeling, 2009, 2013, or in a word vector space Frome, et al.,
2013; Liu, et al,, 2019). In such space, each class name can be
represented by a high-dimensional binary vector based on a
manually-defined object ontology, or by a numeric vector based
on a huge text corpus. In this way, the semantic relatedness
between the seen and unseen labels is established. Compared to
the extensively studied multi-class single-label ZSL (Xian et al.,
2019), the more challenging multi-label ZSL (MZSL) has received
far less attention (Lee, Fang, Yeh, & Wang, 2018; Mensink, Gavves,
& Snoek, 2014), due to the enormous label combinations and
more complex mappings between labels and visual features. Ex-
isting MZSL methods suffer from two issues: (i) they globally
project the whole image and ignore the local features, and thus
cannot differentiate the subtle difference between the projected
visual vectors of the seen images (e.g., tiger) and the unseen
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Fig. 1. The framework of MZSL-GCN. In the image subnet, the input image x is fed into the backbone net to generate feature map Z, which is used as the input
for the attentive region discovery module and produces N attentive feature maps {1",,}ﬁ=1 to capture different local visual features. Besides, we fix the last M, as a
matrix with all 1s to preserve the global features. In the GCN-based multi-label classifier learning subnet, stacked GCNs are adopted on the label graph to map the
label semantic embeddings (A € R%%) into a set of inter-dependent classifiers (W e R9P) and with respect to visual features. Both the labeled data of seen classes

and unlabeled data of unseen labels are used to train the model.

ones (e.g., leopard) (Lee et al., 2018; Shao, Guo, Ding, & Han,
2018); (ii) they ignore the global label correlations, which are
crucial in multi-label classification (Zhu, Kwok, & Zhou, 2018).
In essence, these methods either use simple label co-occurrence
statistics (Mensink et al., 2014) or train an independent classifier
for each class (Gaure, Gupta, Verma, & Rai, 2017; Zhang, Gong,
& Shah, 2016). Those issues greatly restrict the applicability of
these methods in effective multi-label zero-shot learning, where
complicated correlations exist among labels.

To address these issues, we propose an end-to-end model,
called MZSL-GCN (as illustrated in Fig. 1), to capture the cor-
relations between labels using Graph Convolutional Networks
(GCNs) (Kipf & Welling, 2016) for multi-label zero-shot learning.
Instead of treating multiple binary classifiers as a set of inde-
pendent parameter vectors to be learned, we consider the crucial
label correlations by sharing all the mapping parameters of label
semantic embedding-to-classifier to train inter-dependent classi-
fiers via the GCN subnet. The learned classifiers are then applied
to visual features generated by the image representation subnet
to compute the probability of each class. In this way, we can
jointly optimize the parameters of GCN subnet and image repre-
sentation subnet within a unified network in a coherent fashion.
Discovering salient regions of an image can better account for
knowledge transfer from seen labels to unseen ones, hence in the
image representation subnet we adopt an attention mechanism to
automatically find discriminate semantic regions (i.e., local parts).
Besides the local features, we also preserve the global features to
avoid semantic information loss by fixing the weights of the last
attention mask to ones. The joint extraction of local and global
features is useful for bridging the image representation and label
semantics. In the training phase, we use the data of seen and
unseen labels (without annotated data), and further incorporate a
balance loss term to alleviate the preference toward seen classes.
It is worth mentioning that the GCN-based classifier learning
subnet generates classifiers for both seen and unseen labels. As
a result, the classification scores on both seen and unseen classes
can be obtained directly. When the labeled data of unseen labels
becomes available, our model can be incrementally updated using
these data.
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Our key contributions are listed as follows:

e We propose a novel end-to-end trainable multi-label zero-
shot learning (MZSL-GCN) framework, which integrates GCN
to explore and capture label correlations and to learn a
set of inter-dependent classifiers. We also propose another
network to learn adaptive local and global visual features
and to coordinate the training of inter-dependent classifiers.

e We propose a correlation matrix which considers both label

co-occurrence and semantic similarity to compensate for

unseen labels during the training phase.

Experimental results on benchmark datasets show that

MZSL-GCN competes with state-of-the-art methods (Lee

et al,, 2018; Shao et al,, 2018; Weston, Bengio, & Usunier,

2011; Zhang et al,, 2016). It also achieves the state-of-the-

art results in conventional multi-label classification.

2. Related works

Our work has close connections with the popular multi-label
learning (Zhang & Zhou, 2014) and ZSL (Xian et al.,, 2019).

Multi-label learning (MLL) aims at inducing a classifier to
assign a set of non-exclusive labels to samples, it is a fundamen-
tal and practical task in various domains. Compared with ZSL,
multi-label learning has been more widely studied. Most multi-
label learning algorithms investigate how to make use of label
correlations to boost the performance (Read, Pfahringer, Holmes,
& Frank, 2011; Tsoumakas, Katakis, & Vlahavas, 2010; Zhu et al.,
2018); some try to leverage labeled and unlabeled data (Chen,
Song, Wang, & Zhang, 2008; Tan, Yu, Yu, & Wang, 2017); others
learn from multi-label data with missing labels or with noisy
labels (Sun, Zhang, & Zhou, 2010; Tan, Yu, Domeniconi, Wang, &
Zhang, 2018; Yu, et al., 2018). However, all these MLL methods
assume the labels of training data and those of testing data are
seen during the training stage, and they cannot handle emerging
new labels. Interesting readers of MLL are referred to Gibaja and
Ventura (2015) and Zhang and Zhou (2014) for a comprehensive
review.
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ZSL aims at inducing a classifier to recognize novel classes
without acquiring new training data but using the class attributes.
Direct attribute prediction (DAP) trains attribute classifiers and
then calculates the posterior of a test class for a given sam-
ple (Lampert et al., 2009). However, it handles attributes in-
dividually. Most ZSL methods learn a projection to map the
visual features onto a common embedding space. For example,
Attribute Label Embedding (ALE) (Akata, Perronnin, Harchaoui,
& Schmid, 2013) uses the pairwise-ranking loss to learn the
bi-linear compatibility function between the visual feature and
attribute spaces. Other representative embedding-based meth-
ods (Frome, et al., 2013; Romera-Paredes & Torr, 2015) optimize
the compatibility function from different perspectives (e.g., regu-
larization term and embedding space). For example, Embarrass-
ingly Simple ZSL (ESZSL) (Romera-Paredes & Torr, 2015) uses the
square loss to learn the bi-linear compatibility and explicitly reg-
ularizes the objective by Frobenius norm. Deep neural networks
have also been integrated to further boost ZSL (Tong, Wang,
Klinkigt, Kobayashi, & Nonaka, 2019). Quasi-Fully Supervised
Learning (QSFL) (Song, Shen, Yang, Liu, & Song, 2018) alleviates
the prediction bias to seen classes by increasing the probability
of being unseen ones. Latent Discriminative Features learning
(LDF) (Li, Zhang, Zhang, & Huang, 2018) automatically discovers
discriminative regions by a zoom network. Discriminative Latent
Features for Zero-shot Learning (DLFZRL) (Tong et al., 2019) learns
discriminative and generalizable representations with deep auto-
encoder. These approaches focus on the single-label scenario and
can only assign one label to an instance.

Unlike the aforementioned ZSL methods, multi-label zero-shot
learning (MZSL) considers a more complex scenario and tries to
simultaneously assign several unseen and non-exclusive labels
to a new sample. Several attempts have been made toward this
challenging task. Co-Occurrence statistics (COSTA) (Mensink et al.,
2014) uses co-occurrences of visual concepts and estimates a
classifier for a new label as a weighted combination of related
seen labels. However, the noise interference in co-occurrence
statistics is inevitable with sparse labels. For real-world datasets,
the co-occurrence often happens among labels that have large
semantic and visual difference (Shao et al., 2018). Zero-shot
Multi-Label Predictor (ZS-MLP) extends traditional ZSL to MZSL
by treating each label set as a single label (Fu, Yang, Hospedales,
Xiang, & Gong, 2014). As a result, it suffers from not only a
high computational complexity due to the combinatorial na-
ture of the output space, but also from a poor performance for
scanty data with respect to each label set. Fast Zero-shot image
Tagging (FastOTag) separates relevant and irrelevant labels by
learning principal directions for image data in the embedding
space (Zhang et al,, 2016), but it ignores the label correlations.
Multiple instance Visual-Semantic Embedding (MiVSE) (Ren, Jin,
Lin, Fang, & Yuille, 2015) uses a region-proposal method to
detect salient regions in images and then maps the regions (local
features) to their corresponding labels in the semantic embed-
ding space. Consequently, its performance relies on the region-
proposal method. Multi-label Zero-Shot Learning with Knowledge
Graph (MZSL-KG) uses structured knowledge graphs to describe
the relationships between multiple labels and to exploit cor-
relations between seen and unseen labels (Lee et al., 2018).
But it ignores the local visual features, highly depends on the
constructed knowledge graph and initial beliefs induced from the
base classifier. Label factorization with regularized least squares
(LFRLS) (Shao et al., 2018) learns a shared latent space by label
factorization and uses the label semantics as the decoding func-
tion, but its performance deteriorates as the number of categories
increase. Besides, multi-label zero-shot/few-shot learning had
been proposed for gene function prediction by mining hierar-
chical label correlations (Yu, Zhu, & Domeniconi, 2015; Yu, Zhu,
Domeniconi, & Liu, 2015).
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In this paper, we introduce MZSL-GCN to learn inter-
dependent classifiers for seen and unseen classes using GCNs and
word embeddings of semantic labels. In addition, we incorporate
the attention strategy to automatically extract both local and
global visual features of input data to guide the semantic-label
embeddings. Given that, it overcomes the issues suffered by
existing solutions and achieves a more competitive performance
than them.

3. Proposed method
3.1. Problem formulation

Let us consider a training set D° = {X°, Y}, where X € R"s*¢
represents d-dimensional ng training instances, and Y € {0, 1}"*¢
denotes the label matrix across a set of seen classes. Y = 1 if
the ith instance is annotated with the cth seen label; Y;; = 0
otherwise. S = {1, 2, ..., s} is the seen label set of the training
data. With multi-label data, each row of Y may have more than
one entry with a value of 1. A test set D' = {X'} is also given. The
labels of samples in D' are not available for training. For ZSL, we
assume there is a set of unseen classes, &/ = {s+1,s+2, ..., s+u}
such that g = s + u, and none of the labels in ¢/ appears in the
labeled training data. Additionally, we assume that the semantic
embedding of the seen and unseen classes are available as A =
[As; Ay] € R9*™ where A; € R*™ is the embedding for seen
classes, and A, € R**™ is the embedding of unseen ones. We
aim to learn a multi-label classification model using the training
data to achieve good performance not only in the conventional
setting (prediction on unseen labels), but also in the generalized
setting (prediction on both seen and unseen labels) of MZSL. The
overall framework of our MZSL-GCN is shown in Fig. 1, which
is composed of two sub-nets, namely the image representation
sub-net and the GCN learning sub-net. Next, we explain the two
sub-nets in detail.

3.2. GCN learning

GCN (Kipf & Welling, 2016) has been widely-used in semi-
supervised learning and network representation learning, it up-
dates the node representations by propagating information
among connected nodes. We construct a graph to model the
inter dependency between labels, which captures the topological
structure of the label space. Specifically, we represent each node
(label) of the graph as word embeddings of the label, and propose
to use GCN to map these label embeddings into a set of interde-
pendent classifiers, which can be applied to image classification.
Two factors motivate the design of GCN learning part. Firstly, as
the parameters of embedding-to-classifier mapping are shared on
all classes, the learned classifiers can retain the weak semantic
structures in the word embedding space, where semantic related
concepts are close to each other. Meanwhile, the gradients of all
classifiers can impact the classifier generation function, which
implicitly models the label dependency (both seen classes and
unseen ones). Second, we design a novel label correlation matrix
based on their co-occurrence patterns and semantic similarity to
explicitly model the label dependency by GCN, with which the
update of node features will absorb information from correlated
nodes (labels).

We extend GCNs to learn a classification model f(-, -) that
takes the class label embeddings A' € R7™ and the label cor-
relation matrix S € R as inputs, where m indicates the
dimensionality of the word embeddings. The updating rule of
GCN can be written as:

A" =f(A,S),

where A1 is the updated label representation.

(1)
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After applying the convolution operation, it can be further
represented as

AH—l — ¢(SA1P1), (2)

where P! is the to-be-learned transformation matrix, and ¢(-)
denotes a non-linear activation function (LeakyRelu is used in this
work).

In our model, we consider higher-order label correlations. As
such, the convolution on nodes of the label graph S depends on
the nodes that are at H steps away from the target node. In other
words, the output signals of the convolution are defined by a
H-order approximation of localized spectral filters on networks.
Thus, the convolution operation is further formulated as:

H
AH»] — ¢(Z ShAlPI). (3)

h=1
Through stacking multiple GCN layers, we can model the complex
inter-relationships among classes (see Fig. 1).

We design the final output of each GCN node to be the clas-
sifier of the corresponding label in our task. Here we discuss
the training of inter-dependent classifiers for g labels, i.e., W =
{wc}‘c’=1 via a GCN-based mapping function f(-, -). We use stacked
GCNs, where the new label representation A*! is updated by
the input A'. For the first layer, we use a 300-D GloVe word
embedding (Pennington, Socher, & Manning, 2014) vector A €
R9*300 35 the input. For the last layer, the output W € R9*P can be
seen as a classifier for g labels with respect to the D-dimensional
sample representation. In this way, we can obtain the predicted
score as

y = Wf,(x), (4)

where f,(x) € RP is the representation of image x, which will be
introduced later.

Now we describe how to get the correlation matrix S. We esti-
mate the label correlation matrix S by mining label co-occurrence
patterns in the dataset. Let n° denote the number of training
samples with label ¢, and let n® be the number of training
samples annotated with both labels ¢ and s. Then the estimated
label correlation is n®/n°. When co-occurrences are rare, this
estimation may be inaccurate. In addition, the co-occurrences in
the training data may differ from those in the testing data. In this
case, the correlation matrix over-fits the pattern in the training
data and thus reduces the generalization ability of the model. To
alleviate this problem, we define a binary correlation matrix via
a threshold 7 to filter out noisy edges, as shown in Eq. (5).

Oa
s, = {

1’

where S! is the binary version of the label correlation matrix.

Our model can be regarded as a quasi-fully supervised classi-
fier (Song et al., 2018), since the nodes in the graph correspond
to both seen and unseen classes, and the model should be able
to predict input data with respect to each class. However, the
unseen labels do not appear in the training data, so we can-
not obtain seen-to-unseen and unseen-to-unseen co-occurrence
statistics. As an alternative, we adopt the semantic similarity to
construct a label similarity matrix. Specifically, we use the 300-
D GloVe embedding to calculate the Euclidean distance between
labels and setup the binary similarity matrix as Eq. (6):

{ 1, ifc e Ny(s)ors e N(c)

0, otherwise
where N(c) denotes the set of v nearest neighbors of class c.
To build the complete correlation matrix S used in Eq. (1), we

ifn®/n° <1
ifn®/n° >1

(5)

2
Scs_

(6)
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combine the co-occurrence statistics with the semantic similarity
in the following simple yet effective way:

SL+8%

Scs={ SZZ ?

cs?

ifceSandse S
otherwise

(7)

3.3. Image representation

The discrimination power implied in local regions (paragraphs)
of images (documents) often corresponds to specific semantic
information, and thus they can assist the semantic transfer be-
tween seen/unseen classes. Attention Region Embedding (ARE)
can capture discriminant regions automatically, without any part-
level manual annotation (Xie, et al., 2019). Take the image input
data for example, we can use any CNN-based model as the back-
bone network to learn the representation features of an image.
For other data types (i.e., documents), other network structures
(i.e., RNN) can also be adopted here.

In Fig. 1, we feed the last convolutional feature map Z of
the backbone (ResNet101 in the experiment) for image x to ARE
(shown in upper right of Fig. 1). The first part of ARE is the
Attention Region Discovery (ARD) module, followed by an adap-
tive thresholding (AT) procedure. Through the ARD, the attention
regions can be effectively highlighted, and the AT operation can
filter out the ones with low attentive strength. Afterward, we
exploit the global maximum pooling (GMP) for these feature
maps and then concatenate them. Last, a fully connected layer
is used to control the dimension of the sub-net, and to fuse both
local and global features to form the final image representation.
The vision embedding can be formulated as follows:

(%) = L(G(T(R(Z)))), Z=B(x), (8)

where B, R, T, G and £ are the backbone network operation, the
ARD operation, the AT operation, the GMP operation, and the fully
connected operation, respectively.

We use the attention mechanism to automatically discover
the important regions of an input image x, which serves as the
bridges for semantic transfer at the region level. Suppose Z is the
last convolutional feature map of the backbone net. Z € RF*WxC
is a 3D tensor, where C is the number of channels, and H and
W are the height and width of a channel. Let z(h, w, c) € R be
the value in location (h, w) of the cth channel from Z. We further
denote the number of regions as N. Some of these regions can be
matched with the specific semantic attributes and help the clas-
sification task (Xie, et al., 2019). Inspired by the attention models
developed in various fields, we design an attention mechanism to
capture the semantic regions and to further narrow the semantic
gap between seen/unseen images. We first generate N 2D masks
M, e R"W(n=1,2,...,N):

M, = MMGn (Z), (9)

where My, is a mask generation operation. Instead of several
fully connected layers, the operation is implemented by convolu-
tion on Z followed by the Sigmoid activation function. We can get
the attentional convolutional feature map I3, € R(Z) as follows:

r, = oReshape(Mn) ®Z, (10)

where Ogeshape Teshapes the size of the input to be the same as Z,
and ® denotes the element-wise product.

The generalized N attention maps inevitably involve redun-
dancy such as background noise, we exploit the AT operation to
filter these maps. Firstly, AT calculates a maximum value of each
2D mask map (M,,) from the N attention feature maps, and yields
the maximum value vector m, € RV*!. Then, the maximum of
m, denoted by AT,,,, can be calculated as

ATpe = max my(n) (11)
1<n<N
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ATy is the global maximum value of these N feature maps. We
use this value and set the thresholding bound as Tz = a X AT,
where « is an adaptive coefficient (0 < « < 1). Thus we can
get the information-rich feature map 7(I7,) by AT operator i.e., if
the nth value in m, is less than T, the corresponding map I},
will be set to zero. Instead of adopting the widely-used global
average pooling, we adopt the global maximum pooling(GMP)
for all feature maps generated by ARD and then concatenate
them. The global maximum pooling can preserve the most salient
features (such as image edge and image texture) than global
average pooling.

Following the GMP, a fully connected operator £ is leveraged
to get the final image representation which is matched with
the dimension of class classifiers, then we can get the extracted
feature f,(x) of image x.

3.4. Loss function of the MZSL-GCN network

As described above, the architecture of MZSL-GCN is similar
to the conventional fully supervised classification model, with a
(s+u)-way classifier for both the seen and unseen classes. Unfor-
tunately, only the data for seen classes are labeled and the data
from unseen classes are unlabeled. Given that and inspired by
Song et al. (2018), we propose a quasi-fully supervised learning
loss as:

1< PR
L=— ) LWAGE), v+ — D Ly(WH,(X) (12)
S =1 b=t
We assume that the ground truth label of an image isy € RY,
where y{ € {0, 1} denotes whether label c is annotated to the
sample x; or not. We use traditional multi-label classification loss
as follows on training data.

Ly(x;, yi) = Y ¥5 log(o (7)) + (1 — ¥{) log(1 — o ()

ceS

(13)

where o(-) is the Sigmoid function and o(jf) is the predicted
probability of x{ with respect to class c.

Different from the conventional definition, where the loss is
the classification loss L, only, we define a balance term L, to
reduce the bias to seen classes on unlabeled data:
) ——In ZCES U(ytc)

Zces O_(S,'c) + Zceu G(j’xc)
The bias term encourages the model to increase the sum of prob-
abilities of being any unseen class. Specifically, the term ensures
that the ratio between the sum of the predicted probabilities for
unseen label set and that for all labels will be not too small.
Consequently, it prevents testing instances from being classified
as seen labels only, and thus alleviates the bias toward seen ones.
A is a trade-off weight between two different terms, and we
compute its value by cross-validation. By minimizing the above
loss, we can optimize the GCN subnet for multiple interdependent
classifiers (W) and the image representation subnet (f,(x)) in an
end-to-end coherent fashion within a unified network.

(14)

4. Experiments
4.1. Experimental setup

We conducted experiments on two benchmark multi-label
image classification datasets (MS-COCO and NUS—WIDEl) to test

our model on (generalized) multi-label zero-shot classification.
We provide visual results to further analyze the advantages of

1 http://Ims.comp.nus.edu.sg/research/ NUSWIDE.htm.
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Table 1

Statistics of datasets.
Dataset #training #validation #testing #classes
NUS-WIDE 100,000 10,203 20,000 1,000/81
MS-COCO 78,081 4,000 40,137 80

our model. The statistics of the two datasets are summarized in
Table 1. We use the cleaned version of NUS-WIDE, which contains
130,203 images, with 100,000, 10,203 and 20,000 for training,
validation and testing, respectively. More detailed information
of these two datasets can be found in Chen, Wei, Wang, and
Guo (2019) and Lee et al. (2018). Following Lee et al. (2018),
for the methods which predict labels according to the ranking
scores of the labels, we assigned the K highest-ranked labels
to the image, and compared the assigned labels to the ground
truth. The commonly-used metrics of precision (P), recall (R), and
F1-measure are considered.

We mixed labeled and unlabeled data for training. Each batch
of training images (default size is 32) are randomly selected from
the mixed collection. Our GCN-based classifier learning subnet
consists of two GCN layers with an output dimensionality of
1024 and 2048, respectively. For the label semantic embedding
A, we use a 300-D GloVe trained on the Wikipedia dataset as the
label representation. For the label whose name contains multiple
words (such as “baseball bat”), we obtain the label represen-
tation as the average of the embedding of all words. For the
label correlation matrix, we empirically set 7 in Eq. (5) to 0.4.
We adopt ResNet-101 as the backbone framework, which was
pre-trained on ImageNet in our experiments. All the input im-
ages are randomly cropped and resized into 448 x 448 with
random horizontal flips for data augmentation during training
follows Chen et al. (2019). So we can obtain 2048 x 14 x 14
feature maps from the “conv5-x" layer of ResNet-101. We use
SGD as the optimizer and implement the network by PyTorch.
The momentum is fixed to 0.9 and the weight decay is fixed to
107>, The initial learning rate is 0.1, which decays by a factor
of 2 at every 50 epochs, and the network is trained for 200
epochs. As to the attention region discovery module, the number
of regions N (10 in our experiment) is empirically selected from
{N € N;i|4 < N < 12} and the AT parameter « is selected
from {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, as suggested in Xie, et al. (2019).
These hyper-parameters are selected via cross-validation. After
getting the predicted label likelihoods from interdependent GCN
classifiers, we adopt 0.5 as the threshold per label to get the
binary label vector for each sample. This threshold value is also
applied to other compared methods. The demo code of MZSL-GCN
is shared at http://mlda.swu.edu.cn/codes.php?name=MZSL-GCN.

4.2. Multi-label classification

We first test our model on the conventional multi-label clas-
sification task on two datasets NUSIWDIE-81 and MS-COCO. To
reach a comprehensive comparison, we compare the performance
of ML-GCN against representative and related multi-label classi-
fication methods:

o WSABIE (Weston et al.,, 2011) and FastOTag (Zhang et al.,
2016) predict labels according to the ranking scores of the
labels, we choose the top K labels. Following conventional
settings, we report results for K = 3.

e Logistics (Wright, 1995) is a conventional baseline method
based on Logistics regression. We adopt the regularization
coefficient C as 2.0, penalty parameter as L2 and optimiza-
tion algorithm solver as ‘saga’ for experiments. Logistics is
implemented by the scikit-learn package.



G. Ou, G. Yu, C. Domeniconi et al.

Table 2

Multi-label classification results on NUS-WIDE (81 labels) and MS-COCO (80
labels). Results for WSABIE, ML-KNN, and FastOTag are with respect to the top
K = 3 relevant labels for each image.

NUS-81 MS-COCO

P R F1 P R F1
WSABIE 27.0 46.1 34.1 54.0 55.7 54.8
Logistics 35.2 433 38.8 67.3 60.1 63.5
ML-KNN 25.0 43.6 318 54.9 56.7 55.8
FastOTag 289 51.2 36.9 57.2 61.3 59.2
MZSL-KG 41.2 45.3 432 72.8 63.4 67.8
ML-GCN 53.1 373 43.8 824 69.7 75.5
MZSL-GCN 533 38.4 44.6 83.7 71.3 77.0

e ML-KNN (Zhang & Zhou, 2007) is a multi-label lazy learning
approach derived from traditional K-nearest neighbor (KNN)
algorithm with the maximum a posterior principle. The
number of nearest neighbors is set to default 10.

e MZSL-KG (Lee et al., 2018) is a recent MZSL method that
uses knowledge graph to update the belief vector. It can also
produce a satisfactory performance on the standard task of
multi-label classification. We fix the propagation step T as
5.

e ML-GCN (Chen et al., 2019) adopts the GCN to mine la-
bel correlations and to induce interdependent classifiers
for multi-label classification. Its parameter settings are the
same as our MZSL-GCN.

For all the compared algorithms, codes and/or suggested param-
eters in the original papers are used here. We use ResNet-101
as the visual backbone network for all compared methods. Here,
MZSL-GCN uses the traditional multi-label classification loss only
and sets the initial learning rate as 0.1, which decays by a factor
of 10 at every 30 epochs. The network is trained for 50 epochs.

Table 2 gives the results on the NUS-81 and MS-COCO datasets.
Our approach, MZSL-GCN, achieves a superior or comparable
performance against the baselines. FastOTag is introduced for the
MZSL task, but can also be used in the conventional multi-label
setting. MZSL-GCN clearly achieves improved results on both
datasets. Both ML-GCN (Chen et al., 2019) and MZSL-GCN adopt
GCN to learn label correlations and inter-dependent classifiers,
but ML-GCN ignores the important local regions of the input
images, which help to bridge the semantic mapping gap between
visual features and inter-dependent classifiers. In contrast, MZSL-
GCN considers both the local and global visual features of the
images and achieves a better semantic mapping, thus leading to a
better performance. MZSL-KG and MZSL-GCN use different tech-
niques to explore label correlations, and MZSL-KG often loses to
MZSL-GCN. This is because MZSL-KG ignores the local visual fea-
tures and heavily depends on the constructed knowledge graph
to establish the visual-semantic embedding, whereas MZSL-GCN
leverages both local and global features and learns compati-
ble inter-dependent classifiers with respect to these features.
Since MZSL-GCN is explicitly designed for MZSL, its advantages in
conventional multi-label learning tasks largely benefit the MZSL
task.

4.3. MZSL and generalized MZSL

To comprehensively and comparatively study the performance
on multi-label zero-shot learning tasks, we consider four related
and competitive methods: ESZSL (Romera-Paredes & Torr, 2015),
LFRLS (Shao et al., 2018), FastOTag, and MZSL-KG (all were intro-
duced in Section 2). Besides the conventional MZSL task, we also
consider the challenging task of generalized MZSL task, for which
models are trained on seen labels but are required to predict both
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Table 3
Results for the conventional/generalized MZSL tasks on NUS-1000 with 81
unseen labels and 925 seen labels.

Conventional Generalized

P R F1 P R F1
ESZSL 17.9 34.2 235 105 13.0 11.6
LFRLS 19.2 335 244 16.5 21.2 18.6
FastOTag 21.0 35.2 26.3 18.7 242 21.1
MZSL-KG 26.9 30.1 284 204 234 21.8
MZSL-GCN 25.7 323 28.6 20.3 239 22.0

seen and unseen labels during testing. We use the same data
splits for all the compared methods. The configurations of these
compared methods are as follows:

e ESZSL (Romera-Paredes & Torr, 2015) models the relation-
ships between features, attributes, and classes as a two
linear layers network It has 3 super-parameters. We set
y =0.1, A =0.001, and 8 = yA.

LFRLS (Shao et al., 2018) learns a shared latent space by la-
bel factorization and uses the label semantics as the decod-
ing function. It has two types of losses and the regularized
least square loss is used in our experiment. We set « = 0.1,
By =0.01, and B, = 0.01.

FastOTag (Zhang et al., 2016) predicts labels according to the
ranking scores of the tags, a small K in generalized MZSL will
result in low recall due to a large number of tags predicted
for each image, so we report the conventional MZSL results
with K = 3 and the generalized MZSL results with K = 10.
MZSL-KG (Lee et al., 2018) uses knowledge graph to update
the belief vector. For a fair comparison, we use the similar
supplementary information (label co-occurrence and GloVe
semantics) as ours to construct the knowledge graph for
MZSL-KG, and fix the propagation step T = 5.

We report the results under conventional/generalized MZSL on
the NUS-WIDE dataset. Following the work in Lee et al. (2018), we
use a set of 81 labels from NUS-WIDE as the unseen label set ¢/;
the seen label set S is derived from NUS-1000 with 75 duplicated
labels removed and 925 seen ones. From the reported results in
Table 3, we have the following observations:

(i) MZSL-GCN keeps a good balance of Precision and Recall, and
thus has a higher F1 value in both conventional and generalized
settings than compared methods. FastOTag has a better Recall,
one possible reason is that it does not consider the different
distributions of the seen and unseen classes (the unseen classes
are more sparse), and FastOTag is more focused on seen classes,
which leads to a low Precision but a high Recall. On the other side,
MZSL-KG has a better Precision, since it uses label propagation
to guide the knowledge transfer from seen classes to unseen
ones, but this strategy may not find some “difficult” positive
samples. As a result, it has a lower Recall compared with other
methods. F1 measure is a balance between Precision and Recall,
and MZSL-GCN achieves the highest F1 value, which confirms the
effectiveness of our proposed ML-GCN.

(ii) MZSL-GCN-base yields comparable performance with existing
MZSL methods except MZSL-KG. This fact indicates that even
if there is no sample corresponding to the unseen class, the
interdependent classifiers can be learned synchronously based on
the correlations between the classes, which alleviates the differ-
ence in the distribution of the seen and unseen classes. It also
proves the rationality to adopt GCN for training interdependent
classifiers.

(iii) MZSL-GCN performs much better than MZSL-GCN-base. This
contrast confirms our introduced balanced loss can significantly
improve the performance. MZSL-GCN can effectively leverage
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the valuable information embedded in the unlabeled data to
facilitate the knowledge transfer from seen classes to unseen
ones. The deep MZSL methods also perform better than non-deep
ones (ESZSL and LFRLS), since they can capture nonlinear feature
correlations and more complex visual-semantic mappings.
Overall, the results in Tables 2 and 3 clearly show that our
proposed MZSL-GCN can extract the local and global features of
image data, also leverage the unlabeled data and balance loss to
gain a competent multi-label classifier in different scenarios.

4.4. Further analysis

To evaluate the contribution of specific key components of
our model, we perform an ablation study by removing such
components from the model and measuring how the performance
is affected. In particular, we remove the attention region dis-
covery module by directly adding a GMP operator after the last
convolutional layer as baseline ‘MZSL-GCN-nA’. We also train our
proposed model with only labeled source data, i.e., the inductive
version of our model. In this case, our loss (in Eq. (14)) degrades to
traditional multi-label classification loss. We denote this baseline
by ‘MZSL-GCN-nB'. Finally, we remove the label correlation by
replacing the correlation matrix S with an identity matrix as
baseline ‘MZSL-GCN-nC'. We observe in Fig. 2 that the F1-score
drops 1.2% without the attentive module, reduces 2.5% without
the balance constraint and 0.7% without the label correlation. This
ablation study again shows that the full version of our model is
preferable.

We vary the threshold value 7 in Eq. (5) for converting the
label correlation matrix into binary ones, and plot the F1 values
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under different input values of 7 in Fig. 3. The F1 score man-
ifests an increase pattern when filtered out the edges between
two labels with low correlations (i.e., noisy edges). This pattern
comes into a plateau when t ~ 0.4. As t further increases, the
number of filtering edges rises, but F1 score gradually reduces.
That is because the moderately correlated labels are deemed as
not related when a large 7 is used. In our experiment, if we do
not filter any edges, the model will not converge. Thus, there is no
result for T = 0 in the figure. Based on this observation, we adopt
T = 0.4 for experiments on MS-COCO and NUSWIDE. Interesting,
the relatively best T on two datasets are the same. One possible
explanation is that we adopted the same word embedding-GloVe,
and the threshold is more closely related to the embeddings of
label nodes, instead of individual datasets.

We also vary the number of GCN layers for our model and
summarize the results in Table 4. With three GCN layers, the
output dimensionalities are 1024, 1024, and 2048. With four
GCN layers, the output dimensionalities are 1024, 1024, 1024,
and 2048. We observe that when the number of graph convo-
lution layers increases, the performance drops. We hypothesis
that the propagation between nodes is accumulated when using
excessive layers, and these inter-dependent classifiers would be
over-smoothed (see Fig. 5).

A in Eq. (14) balances the loss with respect to unseen classes.
We test A with several different input values vary in
{0,0.1,...,0.9, 1} and report the results in Fig. 4. The best result
is obtained when A = 0.7. A too small A leaves the bias problem
unsolved. On the other side, a too large A yields negative effects
on building the relationship between input features and semantic
embedding. We can also observe that A = 0 gives nearly the
lowest result. This fact suggests that with an appropriate value
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Table 4
Comparison of different GCN depths for the multi-label classification task.
Layer MS-COCO NUS-81
P R F1 P R F1
2-layer 83.7 713 77.0 533 36.4 433
3-layer 83.0 71.0 76.6 53.0 359 428
4-layer 814 70.1 75.3 52.3 345 416
40
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Fig. 4. Performance of MZSL-GCN with varying A in (conventional setting).

of A, our balanced loss in Eq. (12) can reduce the bias to seen
labels. Given that we adopt A = 0.7 for experiments.

The runtimes of our model and of compared methods are
shown in Tables 5 and 6. For shallow methods (such as ESZSL
and LFRLS), we need to use the pre-trained ResNet101 model to
get the visual representation (about 10 h). For deep methods, the
extraction of image visual features and model training are inte-
grated into an end-to-end process. We can see that the runtime
of shallow methods is typically smaller than the deep ones, but
they have a lower classification performance. The runtime of our
MZSL-GCN is closed to that of FastOTag. Since the propagation
iterations of MZSL-KG are small (T 5), its runtime is the
lowest compared with other deep methods. Overall, our model
has an acceptable runtime, while maintains the most prominent
performance. All the experiments are performed on a server with
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Table 5
Runtimes (in hours) of compared methods under zero-shot learning task. 10.0
is the deep feature pre-training time for respective shallow methods.

ESZSL LFRLS FastOTag MZSL-KG MZSL-GCN
NUS-1006 2.1+10.0 3.9+10.0 721 30.7 709
Table 6
Runtimes (in hours) of compared methods on multi-label classification task.
WSABIE ML-KNN FastOTag ML-GCN MZSL-GCN
NUS-81 6.3+10.0 8.4+10.0 241 223 23.6
MS-COCO 4.9+7.7 6.1+7.7 215 171 189

following configurations: CentOS 7.5, 1 TB RAM, Inter Xeon 6148
and NVIDIA V100 GPU.

4.5. Classifier visualization

The effectiveness of our model has been quantitatively evalu-
ated through comparison with existing methods under different
settings and detailed ablation studies. In this section, we inves-
tigate whether a meaningful semantic topology is captured by
visualizing the inter-dependent classifiers of MZSL-GCN. t-SNE is
a variation of Stochastic Neighbor Embedding (Hinton & Roweis,
2003) that is much easier to optimize, and produces significantly
better visualizations by reducing the tendency to crowd points
together in the center of the map. First, we get the final outputs
from the GCN sub-net as the classifiers for labels in NUS-81. Then
we use t-SNE (Maaten & Hinton, 2008) to visualize the classifiers
in a 2D plot (Fig. 5). The visualization method is implemented by
t-SNE in the sklearn package.

We can see that the classifiers indeed maintain a meaningful
semantic topology. For example, classifiers {‘dog’, ‘cat’, and ‘tiger'}
within the super concept ‘animals’ or classifiers {‘surf, ‘lake’,
‘waterfall’ and ‘ocean’} within the super concept ‘water’ tend to
be closer to each other. This like cluster pattern also holds for
other classifiers within a super concept (e.g., plant and buildings).
This visualization result further shows the effectiveness of the
proposed model on learning inter-dependent classifiers.
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Fig. 5. 2D plot of inter-dependent classifiers of MZSL-GCN on NUS-WIDE 81.
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5. Conclusion

In this paper, we studied multi-label zero-shot learning and
proposed a novel framework (MZSL-GCN) to learn inter-
dependent classifiers using GCN and extract compatible local and
global visual features via an attention mechanism. The intro-
duced attention mechanism enables better knowledge transfer
from seen classes to unseen ones, and the proposed bias loss
term can reduce the bias to seen classes. Empirical study shows
that MZSL-GCN outperforms state-of-the-art methods in different
MZSL tasks and in traditional multi-label classification.
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