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Abstract. Current effort on multi-label learning generally assumes that the given
labels are noise-free. However, obtaining noise-free labels is quite difficult and
often impractical. In this paper, we study how to identify a subset of relevant labels
from a set of candidate ones given as annotations to instances, and introduce a
matrix factorization based method called MF-INL. It first decomposes the original
instance-label association matrix into two low-rank matrices using nonnegative
matrix factorization with feature-based and label-based constraints to retain the
geometric structure of instances and label correlations. MF-INL then reconstructs
the association matrix using the product of the decomposed matrices, and identifies
associations with the lowest confidence as noisy associations. An empirical study
on real-world multi-label datasets with injected noisy labels shows that MF-INL
can identify noisy labels more accurately than other related solutions and is robust
to input parameters. We empirically demonstrate that both feature-based and
label-based constraints contribute to boosting the performance of MF-INL.

Keywords: Multi-label learning · Noisy labels identification · Low-rank matrix
factorization.

1 Introduction

Multi-label classification models the scenario where each instance is associated with a
set of labels, and its goal is to find a set of relevant labels for unlabeled instances [36,6].
Multi-label classification has attracted ever-increasing interest in the context of text
classification [18], automatic image annotation [23], and protein function prediction [28],
among other applications. Currently, multi-label learning methods mainly focus on how
to assign a set of appropriate labels to unlabeled instances [35], how to replenish missing
labels for incompletely labeled instances [19], and how to make use of interrelationships
of labels [33]. Most of the aforementioned methods assume that the assigned labels
are correct. However, things may go athwart in practice, and the collected label set of
observed instances may include noisy (or not applicable) labels. This is because the
labels of multi-label instances are collected by human annotators with wide-ranging
levels of expertise and different techniques [29,14].
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Despite the progress achieved in multi-label learning, the problem of identifying
noisy labels in multi-label instances, to the best of our knowledge, is seldom studied.
Its goal is the selection of a set of appropriate labels for a multi-label instance, by
removing from the given collection those that do not apply. As such, the problem is more
challenging and different from partial-label learning [4,34], which identifies one label
from a set of candidate labels of an instance, disregarding their interrelationship.

In this paper, we propose a matrix factorization based approach called MF-INL to
identify noisy labels of multi-label instances. MF-INL first factorizes the instance-label
association matrix into two low-rank matrices via graph regularized Nonnegative Matrix
Factorization (NMF) [13,2]. Particularly, MF-INL takes advantage of the geometric
structure among instances and correlations between labels to define two graphs, and
thus enforces the factorized matrices to be consistent with both the geometric structure
and label correlations. After that, MF-INL reconstructs the association matrix using the
product of the two factorized matrices, and considers the reconstructed associations with
low entry values as noisy labels of instances. Experimental results on publicly available
multi-label datasets show that MF-INL can identify noisy labels of multi-label instances
more accurately than other related methods [31,34,3,27,15].

2 Related work
Partial-label learning studies the scenario in which an instance is associated with a set of
candidate labels among which only one is valid [4,26], and can be viewed as a special
case of multi-label partial-label learning, where we force each instance to be annotated
with one label only. Most partial-label learning methods combine the ground-truth label
identification and classifier training on the over-labeled instances [32]. Some methods
treat equally all candidate labels and make prediction by averaging the outputs of all
candidate labels [4] [8]. Other methods assume a parametric model and consider the
ground-truth labels as latent variables, which are iteratively refined to disambiguate
candidate labels [16,21]. More recent methods follow two stages: they first directly
disambiguate the candidate labels, and then perform classification on the disambiguated
labels of instances [31,34]. All the aforementioned partial-label learning methods assume
that each instance is associated with exactly one ground-truth label. But in many data
mining application domains, instances are naturally associated with multiple labels.

LSDR methods have been proposed for multi-label learning to handle large label
space [20]. CPLST [3] simultaneously considers both the instance-label association
information and the instance-feature information to minimize the upper bound of popular
Hamming loss, and consequently to seek a latent label space. FaIE [15] jointly maximizes
the recoverability of the original label space from the latent space, and the predictability
of the latent space from the feature space, to simultaneously learn the coding and
decoding matrices, which are used to compress and recover the label space, respectively.
All these LSDR based methods aim to find an optimal low-dimensional subspace with
respect to the original label space, and to perform multi-label learning in the subspace
to improve performance by removing irrelevant, redundant, or noisy information (i.e.,
noisy labels of instances) [3]. In addition, some other recent methods also show the
contribution of label embedding for multi-label classification [24,25].

Motivated by the robustness to noise of low-rank matrix approximation [7,17], we
introduce a matrix factorization based approach MF-INL to identify noisy labels of
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multi-label instances. The empirical study shows that MF-INL can identify noisy labels
more accurately than competitive algorithms.

3 Proposed method
Let X = [x1,x2, · · · ,xn] ∈ Rd×n be n multi-label instances in the d-dimensional
feature space. Y ∈ Rq×n is the known instance-label association matrix. Yci ∈ {0, 1},
where Yci = 1 if xi is associated with the c-th label, Yci = 0 otherwise. The goal of
MF-INL is to identify noisy associations in Y.

The low-rank approximation of a noisy matrix is robust to noise [12,17]. Thus, in
this paper, we consider to seek the low-rank approximation of the original instance-label
association matrix to identify noisy labels. Particularly, we advocate to decompose the
instance-label association matrix Y into two low-rank matrices by NMF, which is a
widely used low-rank matrix decomposition method. Then, we can use the product of two
low-rank matrices to approximate the original matrix. However, this decomposition does
not consider the geometric structure among instances and correlations among labels, both
of which should be leveraged to guide the decomposition. Our proposed method MF-INL
addresses this issue by integrating nonnegative matrix factorization with feature-based
and label-based constraints. MF-INL minimizes the objective function as follows:

ψ(U,V) = ‖Y −UVT ‖2 + αtr(VTLFV) + βtr(UTLLU) (1)

U ∈ Rq×r ≥ 0 and V ∈ Rn×r ≥ 0 are the low-dimensional representations of the
original Y matrix based on rows and columns, respectively (r � q, r � n). α and β
are the positive scalar parameters. By integrating two regularizations into NMF, MF-
INL enforces the factorized low-rank matrices to preserve the geometric structure of
instances and the interrelationships of labels in a coherent and coordinated manner. We
will elaborate on the two regularization constraints in the following subsections.

3.1 Feature-based regularization

Features of an instance essentially decide its outputs (labels) [11,30]. To leverage the
geometric structure of instances, which depends on the instance features, we adopt
the manifold assumption, which is widely-used in dimensionality reduction and semi-
supervised learning [22,1]. The manifold assumption assumes that if two data points xi

and xj are close in the intrinsic geometry of the ambient space, they should have similar
outputs (or labels). Firstly, we construct a k nearest neighbor graph [10,9] to model the
local geometric structure of n instances as follows:

WF
ij =

{
1, if xj ∈ Nk(xi)
0, otherwise (2)

where Nk(xi) is the set of k nearest neighbors of xi, and the neighborhood relationship
is determined using the Euclidean distance. Here, the 0-1 weighting scheme is used to
weighting the edges of the kNN graph, but other weighting schemes and distance metrics
can also be defined based on the specific application domains. vi is the low-dimensional
representation of i-th column of Y. The manifold assumption to enforce that vi and
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vj are close to each other when xi and xj are close in the original ambient space is
specified as follows:

ψ1(V) =
1

2

n∑
i,j=1

‖vi − vj‖2WF
ij = tr(VTLFV) (3)

where DF is a diagonal matrix with DF
ii =

∑n
j=1 W

F
ij , LF = (DF −WF ) is the

graph Laplacian matrix, and tr(·) denotes the trace of a matrix. By minimizing ψ1(V),
the proximity between close instances in the original space can be preserved in the
low-dimensional space spanned by V through the feature-based regularization.

3.2 Label-based regularization

In multi-label learning, labels are not mutually exclusive, and different pairs of labels
(or groups of labels) may have different degrees of correlation. In contrast, traditional
multi-class classification and partial-label learning explicitly (or implicitly) assumes the
labels are mutually exclusive. Various types of label correlations have been explored in
multi-label learning and they generally can improve the performance [33]. Given this,
besides feature-aware constraint, we also define a label-aware constraint.

Each row of U can be viewed as a low-dimensional (or latent) label vector of the
original label vector expressed by the corresponding row of Y. The expectation is that the
new low-dimensional representation is able to preserve the interrelationship of labels in
the original space, that is, if labels s and t are correlated in Y, then the low-dimensional
representations of Ys and Yt, i.e. us and ut, would also be correlated in the latent label
space. We first measure the label correlation using the cosine similarity as follows:

WL
st =

YsY
T
t

‖Ys‖‖Yt‖
(4)

where Ys is the s-th row of Y, and WL
st ∈ [0, 1] denotes the label correlation between

the s-th and t-th labels. WL
st is large when s and t frequently co-occur as annotation of

instances, and is small otherwise. We use cosine similarity for its simplicity, but other
measures can be also used. To preserve label correlations in the latent label space, we
defines the label-aware constraint for U as follows:

ψ2(U) =
1

2

q∑
s,t=1

‖us − ut‖2WL
st = tr(UTLLU) (5)

where DL is a diagonal matrix with DL
st =

∑q
t=1 W

L
st and LL = DL −WL. As in

Eq.(3), by minimizing Eq.(5), we can preserve correlations in the latent label space.
As for the standard NMF, we optimize Eq.(1) using an iterative algorithm. Readers

can refer to [2] for details. By minimizing Eq.(1), MF-INL reconstructs the approximated
association matrix as Ŷ = UVT . After the reconstruction, the associations available
in Y, but inconsistent with the low-rank representation with respect to the geometric
structure of instances and to the correlations between labels, have low values in Ŷ; oth-
erwise have high values. As a result, each entry of Ŷ reflects the association confidence
between a particular instance and a particular label. The labels corresponding to the
smaller entries in Ŷ are more likely to be deemed as noisy labels.
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4 Experimental setup
Datasets: To study the performance of MF-INL, we conduct experiments on four multi-
label datasets (listed in Table 1, downloaded from the Mulan Library3.). Since there are
no off-the-shelf multi-label datasets that can be directly used to validate the performance
of identifying noisy labels of multi-label instances, we assume that the available labels of
instances in these four datasets are noise-free, and randomly inject additional p×q labels
to each instance as noisy labels, where p is the ratio of noisy labels. Specially, to study
the performance of MF-INL under different levels of noise, we conduct experiments
with p set to 0.3 and 0.5.
Table 1: Datasets used in the experiments. Avg-Labels is the average number of labels per instance.

Dataset Instances Features Labels Avg-Labels
Enron 1702 1001 53 3.378
Yeast 2417 103 14 4.237
Rcv1-s5 6000 47235 101 2.642
Tmc 28596 500 22 2.220

Comparative methods: We compare MF-INL against IPAL [31], PL-LEAF [34],
CPLST [3], FaIE[15], ProDM [27]. These methods have been presented in the Section 2.

Evaluation metrics: We use three representative multi-label learning and partial-
label learning evaluation metrics: RankingLoss (RL), OneError (OE), and AveragePreci-
sion (AP) [36]. They can evaluate the identification of noisy labels from the perspective
of label distribution [5]. Note that the smaller the values of RL and OE, the better the
performance is; while the larger the values of AP, the better the performance is. We
report the 1-RL and the 1-OE in the following experiments. As such, larger values imply
a better performance.

5 Experimental results and analysis
5.1 Noisy label identification

Table 2: Performance for the identification of noisy labels as the ratio (p) of randomly injected
noisy labels per instance increases. •/◦ indicates whether MF-INL is statistically (according to
a pairwise t-test at 95% significance level) superior/inferior to the other method for a particular
value of p.

p CPLST FaIE ProDM IPAL PL-LEAF MF-INL

Enron

1-RL 0.3 0.799 ± 0.006• 0.776 ± 0.003• 0.996 ± 0.000• 0.992 ± 0.000• 0.994 ± 0.000• 0.998 ± 0.000
0.5 0.812 ± 0.007• 0.784 ± 0.004• 0.995 ± 0.000• 0.987 ± 0.000• 0.990 ± 0.000• 0.996 ± 0.000

1-OE 0.3 0.973 ± 0.004• 0.971 ± 0.003• 0.964 ± 0.003• 0.922 ± 0.004• 0.982 ± 0.003• 0.985 ± 0.004
0.5 0.963 ± 0.004• 0.960 ± 0.003• 0.936 ± 0.004• 0.868 ± 0.005• 0.966 ± 0.000• 0.970 ± 0.005

AP 0.3 0.801 ± 0.006• 0.780 ± 0.003• 0.951 ± 0.002• 0.910 ± 0.002• 0.943 ± 0.000• 0.973 ± 0.002
0.5 0.804 ± 0.007• 0.779 ± 0.004• 0.930 ± 0.002• 0.853 ± 0.002• 0.909 ± 0.001• 0.953 ± 0.002

Yeast

1-RL 0.3 0.970 ± 0.004• 0.975 ± 0.001• 0.977 ± 0.001• 0.960 ± 0.001• 0.966 ± 0.000• 0.985 ± 0.001
0.5 0.936 ± 0.006• 0.932 ± 0.003• 0.956 ± 0.001• 0.930 ± 0.001• 0.943 ± 0.001• 0.970 ± 0.001

1-OE 0.3 0.971 ± 0.006◦ 0.976 ± 0.003◦ 0.941 ± 0.005• 0.888 ± 0.004• 0.917 ± 0.002• 0.967 ± 0.003
0.5 0.885 ± 0.016• 0.885 ± 0.011• 0.914 ± 0.004• 0.831 ± 0.003• 0.893 ± 0.001• 0.945 ± 0.004

AP 0.3 0.955 ± 0.005• 0.960 ± 0.003• 0.952 ± 0.002• 0.914 ± 0.002• 0.930 ± 0.001• 0.969 ± 0.001
0.5 0.892 ± 0.008• 0.884 ± 0.008• 0.919 ± 0.002• 0.867 ± 0.002• 0.896 ± 0.001• 0.946 ± 0.003

Tmc

1-RL 0.3 0.903 ± 0.004• 0.879 ± 0.001• 0.995 ± 0.000 0.989 ± 0.000• 0.992 ± 0.000• 0.995 ± 0.000
0.5 0.903 ± 0.002• 0.879 ± 0.002• 0.991 ± 0.000◦ 0.980 ± 0.000• 0.991 ± 0.000 0.990 ± 0.001

1-OE
0.3 0.929 ± 0.005• 0.937 ± 0.002• 0.968 ± 0.001• 0.869 ± 0.001• 0.993 ± 0.000◦ 0.987 ± 0.001
0.5 0.885 ± 0.003• 0.894 ± 0.005• 0.917 ± 0.001• 0.765 ± 0.001• 0.979 ± 0.000◦ 0.939 ± 0.005

AP
0.3 0.886 ± 0.004• 0.872 ± 0.001• 0.971 ± 0.000 0.929 ± 0.000• 0.955 ± 0.000• 0.971 ± 0.002
0.5 0.860 ± 0.002• 0.849 ± 0.003• 0.940 ± 0.001◦ 0.868 ± 0.001• 0.959 ± 0.000◦ 0.937 ± 0.004

Rcv1-s5

1-RL
0.3 0.584 ± 0.003• 0.573 ± 0.002• 0.998 ± 0.000• 0.998 ± 0.000• 0.996 ± 0.000• 0.999 ± 0.000
0.5 0.591 ± 0.004• 0.577 ± 0.002• 0.997 ± 0.000• 0.996 ± 0.000• 0.993 ± 0.000• 0.998 ± 0.000

1-OE
0.3 0.881 ± 0.001• 0.881 ± 0.001• 0.923 ± 0.004• 0.943 ± 0.002• 0.907 ± 0.000• 0.992 ± 0.002
0.5 0.878 ± 0.001• 0.876 ± 0.001• 0.875 ± 0.004• 0.886 ± 0.003• 0.868 ± 0.000• 0.978 ± 0.004

AP
0.3 0.589 ± 0.003• 0.578 ± 0.002• 0.948 ± 0.002• 0.945 ± 0.001• 0.911 ± 0.000• 0.979 ± 0.001
0.5 0.592 ± 0.004• 0.577 ± 0.002• 0.915 ± 0.002• 0.902 ± 0.002• 0.872 ± 0.000• 0.963 ± 0.002

3 http://mulan.sourceforge.net/datasets-mlc.html

http://mulan.sourceforge.net/datasets-mlc.html
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Following the experimental protocol in partial-label learning [34], we considered
all instances in each dataset as both training and testing data. We search the optimal
parameter values for α and β in the range {0, 0.01, 0.1, 1, 10, 100, 1000, 10000}. As a
result, α and β are set to 0.1 and 100, respectively. The neighborhood size k is set to
5. The same value r = 10 is used for MF-INL, CPLST, and FaIE. Other parameters
of comparing methods are set (or optimized) as suggested by the authors in their code,
or respective papers. Table 2 reports the average results of 10 independent runs of all
methods under each particular p. From Table 2, MF-INL outperforms the other methods
across all the metrics in most cases. This observation shows that MF-INL can identify
noisy labels of multi-label instances more accurately than other related methods, and
supports our motivation to factorize the instance-label association matrix into latent
low-rank subspaces.

To study the efficiency of MF-INL, we record the runtime of all other comparing
methods on a server with configuration: CentOS 7, 256GB RAM and Intel Exon E5-
2678v3. The total runtime (seconds) of CPLST, FaIE, ProDM, IPAL, PL-LEAF and
MF-INL on all datasets is 173, 208, 306, 2933, 1962475 and 108, respectively. From
these observations and the results in Table 2, we can conclude that MF-INL not only
holds comparable runtime against efficient counterparts, but also achieves a superior
performance.
5.2 Parameter sensitivity analysis
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Fig. 1: RP of MF-INL under different combinations of α and β on Enron and Tmc.

To investigate the sensitivity of α and β, we vary α and β in the range {0.01, 0.1,
1, 10, 100, 1000, 10000} with p = 0.3, and report the average RP of MF-INL in 10
independent runs under different combinations of α and β in Fig 1(a). From this figure,
we can see that MF-INL achieves a stable and good performance for a wide range of α
and β values. In addition, we can see that MF-INL, with values α = 0.01 and β = 0.01,
has lower RP than many other values’ combinations. This observation suggests that it’s
necessary to integrate feature-based and label-based regularizations into NMF to obtain
coherent matrices. To further investigate the influence of feature-based and label-based
regularizations, we test the performance of MF-INL under extreme settings of α and
β, that is: α = 0 and β = 100; α = 0.1 and β = 0; and We report the results of
MF-INL under these extreme settings in Fig. 1(b). From the results we can see that
using feature-based and label-based regularizations together can significantly improve
the performance of NMF. Using either one of the two regularizations gives comparable
or better performance than NMF alone. α = 0 and β = 0.

The rank size of the decomposed (projected) matrix is an essential parameter for
MF-INL and LSDR-based methods CPLST and FaIE. We also conduct experiments
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to study the sensitivity of r. Due to page limitation, we do not provide the results in
this paper. From the results, MF-INL is robust to different input values of r, while
CPLST and FaIE are sensitive to r. Besides, MF-INL outperforms CPLST and FaIE
under each considered value of r. The robustness of MF-INL to r can be attributed to
the fact that MF-INL can find coherent low-rank matrices by simultaneously preserving
the geometric structure of instances and the correlation of labels.

6 Conclusions and future work
In this paper, we study an interesting but rarely explored problem of multi-label learning:
identifying noisy labels of multi-label instances. To solve this problem, we introduce a
matrix factorization based method called MF-INL. The experimental study shows that
MF-INL can identify noisy labels more accurately than other competitive techniques.
It will be interesting to study the performance of MF-INL under different choices of
distance metrics and label correlations, and to iteratively update the correlations, since
label correlations are affected by noise in the original instance-label association matrix.
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