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Abstract

Multiple clustering approaches aim at exploring alternative

ways of organizing a given collection of data into various

clusters from different perspectives. Although multiple

one-way clusterings have been studied for more than a

decade, how to explore alternative two-way clusterings (or

co-clusterings) still remains an untouched topic, and an

important one from an application standpoint. To solve this

interesting but yet unexplored topic, we assume the existence

of alternative co-clusterings embedded in different subspaces

and simultaneously pursue multiple co-clusterings therein.

We initially specify a subspace indicator matrix for each

feature subspace, and employ matrix tri-factorization to seek

row-wise and column-wise cluster indicator matrices in each

subspace. To ensure diversity, we quantify the redundancy

between pairwise co-clusterings using the cluster indicator

and the subspace indicator matrices. We further introduce

a unified objective function to simultaneously account for

the two pursues, and an alternating optimization solution to

iteratively optimize cluster indicator and feature indicator

matrices. Our empirical study shows that the proposed

solution can explore multiple meaningful co-clusterings

and generally achieves better results than state-of-the-art

methods.

1 Introduction

Clustering attempts to organize data into disjoint groups
called clusters. Clustering is one of the most popular
exploratory data analysis techniques in unsupervised
learning, and has been applied to a variety of domains,
such as biomedicine, collaborative filtering, and finan-
cial analysis [1, 2, 3]. Traditional clustering methods
typically compute a single partition. However, most
data in the real world are rather complex (e.g., biologi-
cal, multimedia, and social network data), and can be
organized in a variety of meaningful clusterings. Typi-
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cally, it’s unknown which clustering is best suited for a
given application; thus, generating different clustering
results is often the best option. For example, proteins
can be divided into a set of clusters based on homology
information, 3D structure, or biological functions. Each
criterion leads to a different clustering. To explore differ-
ent clusterings of high quality from a given collection of
data, multiple clustering has emerged as a new approach
in recent years [4]. Some of the existing approaches seek
clusterings in alternative to those already explored, by
enforcing the new ones to be different [5, 6, 7, 8, 9]; some
other solutions simultaneously pursue multiple cluster-
ings [10, 11, 12].

Typically, existing multiple clustering methods focus
on one-way clustering, i.e., they cluster samples based
on their similarity computed across all the features.
However, in real world applications, it’s meaningful to
consider a two-way clustering (co-clustering), in which
the data matrix is clustered both sample- and feature-
wise [2, 13, 14]. Such an approach enables the exploration
of co-clusters relevant to both a subset of samples and
a subset of features. As an example, the co-clusters
discovered from gene expression data have been used as
bio-markers of different cancer subtypes [15].

While sample-wise (or feature-wise) multiple clus-
terings have been studied extensively, how to find mul-
tiple co-clusterings remains a largely unexplored top-
ic. Wang et al. [16] pioneered a multiple co-clustering
solution (MultiCC) by repeatedly applying matrix tri-
factorization on the same input data matrix, and by
enforcing dissimilarity among the co-clusterings. Howev-
er, multiple co-clusterings may be embedded in different
subspaces (see Fig. 1 for an example), and repeated-
ly factorizing the original data matrix may result in
multiple redundant co-clusterings lacking meaningful
interpretations. Tokuda et al. [17] introduced a multi-
ple co-clustering solution to account for heterogeneous
marginal distributions and features via a nonparametric
Bayesian mixture model; but this solution is unable to ex-
plore overlapping co-clusterings and requires the explicit
modeling of different (a-priori unknown) distributions.

Given these observations, we assume that multiple
co-clusterings might be embedded in different subspaces,
and propose a solution called multiple co-clusterings in
subspaces (MCC-SS). MCC-SS first pre-specifies a fea-
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Figure 1: Alternative co-clusterings embedded in dif-
ferent subspaces. Each feature subspace embodies a
co-clustering, which includes different co-clusters (col-
ored boxes).

ture projection matrix to map the input data matrix into
a new subspace. It then makes use of semi-nonnegative
matrix tri-factorization [18] to factorize the projected da-
ta matrix into a row-cluster indicator matrix, a column-
cluster indicator matrix, and a coefficient matrix between
these two matrices, which contributes to a co-clustering
of high quality. To ensure diversity among co-clusterings
in subspaces, it quantifies redundancy between two co-
clusterings using the indicator matrices and projective
matrices of the respective co-clusterings, and integrates
the redundancy into the matrix tri-factorization objec-
tive. Finally, it simultaneously optimizes the row and
column-cluster indicator matrices, and the projective
matrices of the integrated objective function to pursue
multiple subspaces and multiple co-clusterings therein.
We emphasize that the study of multiple co-clusterings is
different from clustering ensembles [19], co-clustering en-
sembles [20], and multiple view clustering [21]; the latter
three focus on how to derive a consensus (co)clustering
result, whereas the former focuses on how to present dif-
ferent explainable co-clustering results of the same data.
The main contributions of our work are summarized as
follows:

• We study the problem of discovering multiple co-
clusterings from a given collection of data, an
interesting and relevant problem that has received
little attention in the literature. We introduce
a matrix factorization based approach (MCC-SS)
to explore multiple co-clusterings embedded in
subspaces.

• MCC-SS can simultaneously find different subspaces
and co-clusterings therein. The discovered co-
clusterings are of high quality, have a small degree
of redundancy, and can be easily interpreted.

• Extensive experimental results demonstrate that
MCC-SS performs significantly better than other
competitive approaches [5, 9, 12, 16, 22, 23] in
identifying multiple clusterings, and in discovering
diverse alternative clusterings.

The remainder of this paper is organized as follows.

We briefly review related work in Section 2, and then
elaborate on the proposed algorithm and its optimization
in Section 3. Section 4 provides the experimental results,
and Section 5 discusses conclusions and future work.

2 Related Work

Our work is closely related to two branches of research,
co-clustering and multiple clusterings. Co-clustering
aims at discovering samples which are similar to one
another with respect to a subset of features. Co-
clustering can uncover interesting patterns (co-clusters)
that cannot be found by traditional one-way clusterings.
The exact solution to co-clustering requires enumerating
all sub-matrices of the data matrix, which is NP-hard. As
such, many approximation solutions have been proposed
[2, 15]. Some methods transform the co-clustering
problem into the task of partitioning a bipartite graph,
whose nodes are samples and features [24, 25]. Other
approaches assume the observed samples and features are
generated from a finite mixture of underlying probability
distributions, and then seek co-clusters via different
statistical models [26, 27]. More recent solutions make
use of matrix factorization to explore co-clusters and
take the factorized low-rank matrices as the row-cluster
and column-cluster indicator matrices [28, 29].

Multiple clustering approaches aim at discovering di-
verse clustering results, each capturing different aspects
of the data. Naive solutions consist in: (1) applying a
clustering algorithm on the same data using different
input parameters or distance metrics; (2) applying dif-
ferent algorithms; or (3) applying a combination of the
two [4]. These solutions can generate multiple cluster-
ings, but the latter might be highly redundant, since
no constraint is imposed on their similarity. A post-
processing operation can be used to filter out clusterings
which are too similar [11]. Other methods optimize the
dissimilarity between the to-be-explored clustering and
the already explored ones [5, 9]. Others simultaneously
seek multiple clusterings by decreasing the correlation
between pairwise distinct clusterings [10, 12]. A series
of methods seek multiple clusterings by operating fea-
tures [11, 23, 30]. To name a few, Caruana et al. [11]
and Hu et al. [23] assign different weights to features
and seek alternative clusterings in the resulting feature
spaces. Davidson and Qi [22] use multi-link and cannot-
link constraints between samples to learn a projected
feature space, and then seek the alternative clustering
in this space. Cui et al. [31] sequentially generate an
alternative clustering from a new feature space, which is
orthogonal to the previously used feature spaces.

All these aforementioned multiple clusterings focus
on finding alternative one-way clusterings, and some can
only find two alternative clusterings [12, 22]. However,
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in real world applications (i.e., cancer genomic data
analysis [15] and e-commerce recommendation [28]), it’s
desirable to provide multiple, different, and explainable
co-clusterings of the same data matrix. Wang et
al. [16] pioneered a multiple co-clustering approach
(MultiCC), which assumes co-clusterings are embedded
in the same feature space, and consistently applies
matrix tri-factorization on the same data matrix. As
such, the resulting co-clusterings still suffer from high
redundancy. Furthermore, this approach cannot uncover
co-clusterings embedded in different subspaces. Inspired
by feature transformation based multiple clusterings
[22, 23, 31] and MultiCC, we introduce an approach
called MCC-SS to simultaneously explore multiple co-
clusterings in different feature subspaces. Compared to
MultiCC, MCC-SS can further reduce redundancy by
controlling the diversity in feature subspaces and can
obtain more meaningful co-clusterings.

3 Methodology

3.1 Multiple Co-clusterings Let X ∈ Rd×n de-
note a data matrix with d rows (i.e., features or vari-
ables) and n columns (i.e., samples). Co-clusterings are
represented by the respective sample-wise and feature-
wise co-clustering indicator matrices (Rh ∈ Rd×kh and
Ch ∈ Rn×lh , h = 1, 2, · · · ,m, where m is the target
number of alternative co-clusterings). If feature i be-
longs to the k

′

h-th row-cluster of the h-th co-clustering,

Rh(i, k
′

h) = 1; otherwise, Rh(i, k
′

h) = 0. Similar-
ly, Ch is the column-cluster indicator matrix, stating
that the h-th co-clustering groups the n samples into
lh column-clusters. If sample j belongs to the l

′

h-th

cluster, Ch(j, l
′

h) = 1; otherwise, Ch(j, l
′

h) = 0. Mul-
tiple co-clustering approaches aim at finding multiple
co-clusterings of good quality and diverse from one an-
other.

Inspired by the success of semi-nonnegative matrix
tri-factorization in co-clustering [16, 18, 28, 29], we
adopt the tri-factorization formulation to find multiple
co-clusterings as follows:

(3.1)
Ψ1({Rh}mh=1, {Ch}mh=1) =

1

m

m∑
h=1

‖ X−RhShCT
h ||2F

s.t. Rh ≥ 0; Ch ≥ 0

where Sh ∈ Rkh×lh is the coefficient matrix, which
enables different numbers of row-clusters and column-
clusters, and the minimization of the squared error
induced by matrix factorization. Traditional nonnegative
matrix factorization requires the input data matrix to
be nonnegative [32]. Here, Sh can be mix-sign, and thus
Eq. (3.1) can accommodate a data matrix with negative
feature values.

Eq. (3.1) implicitly assumes that multiple co-

clusterings are embedded in the same feature space.
However, they may not. In fact, alternative clusterings
are often embedded in different feature spaces, and this
observation is widely adopted in multiple clusterings
[23, 31]. Given this, we assume multiple co-clusterings
may also be embedded in different latent subspaces,
via a series of projection coefficient matrices {Ph ∈
Rd×dh}mh=1. We then apply matrix tri-factorization on
the projected data matrix PT

hX as follows:

Ψ2({Rh}mh=1, {Ch}mh=1, {Ph}mh=1))

=
1

m

∑m

h=1
‖PT

h X−RhShCT
h ‖2F

s.t. Rh ≥ 0; Ch ≥ 0

(3.2)

We observe that Rh ∈ Rdh×kh , indicating the h-th co-
clustering, is explored in the feature space spanned
by Rh. By specifying different {Ph ∈ Rd×dh}mh=1,
multiple diverse co-clusterings can be pursued, but the
diversity among the co-clusterings cannot be sufficiently
guaranteed.

To enforce the diversity (or non-redundancy) be-
tween multiple co-clusterings, we can quantify the simi-
larity between two co-clusterings using the co-association
information of samples and features. Specifically, let
Ac

h ∈ Rn×n store the co-association between projected
samples in the h-th feature space; Ac

h(i, j) = 1 if two
samples i and j are in the same column-cluster of the
h-th co-clustering; and Ac

h(i, j) = 0 otherwise. Then
the overall sample-wise redundancy for each pairwise
column-clusterings can be approximately quantified as
follows:

Ψ3({Ch}mh=1)) =

m∑
h1,h2=1
h1 6=h2

n∑
i,j=1

(Ac
h1

)ij(A
c
h2

)ij

=

m∑
h1,h2=1
h1 6=h2

tr(CT
h1

Ch1Ac
h2

) =
m∑

h1,h2=1
h1 6=h2

‖CT
h1

Ch2‖
2
F

(3.3)

Eq. (3.3) quantifies the diversity for all pairs of column-
clusterings: the smaller the value is, the smaller is the
portion of two samples placed in the same clusters in two
co-clusterings, and therefore the smaller the redundancy
among column-clusterings is. The above equation still
holds when Ch is a numerical matrix.

The original features are projected into different
feature subspaces, and the subspaces may have different
number of features. In addition, the projected new
features have a different meaning. As such, we cannot
adopt the idea of Eq. (3.3) to quantify the feature-
wise redundancy between pairwise co-clusterings. To
bypass this issue, we maximize the difference between
{Ph ∈ Rd×dh}mh=1 to reduce the redundancy among row-
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clusterings as follows:

Ψ4({Ph}mh=1)) =

m∑
h1,h2=1
h1 6=h2

d∑
i,j=1

(Ph1PT
h1

)ij(Ph2PT
h2

)ij

=

m∑
h1,h2=1
h1 6=h2

‖PT
h1

Ph2‖
2
F

(3.4)

The more the orthogonality condition between Ph1
and

Ph2
is satisfied, the more dissimilar the two feature

subspaces are, and therefore the more dissimilar the
pairwise row-clusterings are.

To this end, we integrate Eqs. (3.2) and (3.3)
with Eq. (3.4) to simultaneously seek m different co-
clusterings via the following unified objective function:

J({Rh}mh=1, {Ch}mh=1, {Ph}mh=1))

=
1

m

∑m

h=1
‖PT

h X−RhShCT
h ‖2F

+
λ1

C2
m

m∑
h1,h2=1
h1 6=h2

‖CT
h1

Ch2‖
2
F +

λ2

C2
m

m∑
h1,h2=1
h1 6=h2

‖PT
h1

Ph2‖
2
F

s.t. Rh ≥ 0,Ch ≥ 0

(3.5)

where the two regularization parameters λ1 > 0 and
λ2 > 0 balance the quality of the m co-clusterings,
which is pursued by the matrix tri-factorization, and
the diversity among the co-clusterings, which is pursued
by the last two terms. Two normalization factors, 1/C2

m

and 1/m, are introduced to reduce the impact of scaling.
Most feature-transformation based alternative clus-

terings seek the alternative clusterings in a sequential
manner, and refer to the already explored clusterings
[9, 23, 31]; some even require to specify the feature sub-
spaces in advance [11, 22]. In contrast, MCC-SS can
simultaneously pursue multiple subspaces and multiple
alternative co-clusterings therein, and it is less affected
by the quality of the already explored co-clusterings. In
addition, the target number of alternative co-clusterings
of MCC-SS can be specified by the user. Another un-
derlying merit of MCC-SS is that it can jointly perform
feature selection and explore different co-clusterings in
the selected (possibly overlapping) feature subspaces.
As a result, we can obtain clear interpretations of the
co-clusterings with respect to different compositions of
features.

3.2 Optimization Algorithm Rh and Ch are both
binary matrices, so it is very hard to directly optimize
them. As such, we relax the entries of Rh and Ch to
nonnegative numeric values. Note, the above Eqs. (3.3-
3.5) still hold when Rh and Ch are numerical. Since
Eq. (3.5) is not jointly convex for Rh, Ch, and Ph, it is
unrealistic to find the global optimal values for all the

variables. Here, we solve Eq. (3.5) via the Alternating
Direction Method of Multipliers (ADMM) [33], which
alternatively optimizes one variable, whilst fixing the
other variables.

Optimizing Sh with Rh, Ch, and Ph fixed: The
optimization of Eq. (3.5) with respect to Sh is equivalent
to the following objective:

(3.6) JS(Sh) = ‖PT
h X−RhShCT

h ‖2F

Letting the partial derivative ∂JS

∂Sh
= 0, we can obtain

the updating formula of Sh as follows:

(3.7) Sh = [RT
h Rh]−1RT

h PT
h XCh[CT

h Ch]−1

Optimizing Rh with Sh, Ch, and Ph fixed: The
optimization of Eq. (3.5) with respect to Rh is equivalent
to the following objective:

(3.8) JR(Rh) = ‖PT
h X−RhSh(Ch)T ‖2F

Because of the nonnegative constraints Rh ≥ 0, we
introduce the Lagrangian multiplier α ∈ Rdh×kh and
update the above equation as follows:

(3.9) J̃R(Rh) = ‖PT
h X−RhShCT

h ‖2F − tr(αRT
h )

Letting the partial derivative ∂J̃R

∂Rh
= 0, we can get α as:

(3.10) α = −2A + 2RhB

where A = PT
hXChST

h , B = ShCT
hChST

h . Based on the
Karush-Kuhn-Tucker (KKT) complementarity condition
[34] (α)ij(Rh)ij = [−A + RhB]ij(Rh)ij = 0 we have:

(3.11) [−A+ + A− + RhB+ −RhB−]ij(Rh)ij = 0

where A = A+ − A−, B = B+ − B−, and A+
ij =

(|Aij | + Aij)/2, A−ij = (|Aij | − Aij)/2, The above
equation leads to the following updating formula for
Rh:

(3.12) (Rh)ij ← (Rh)ij

√
[A+ + RhB−]ij
[A− + RhB+]ij

Optimizing Ch with Sh, Rh, and Ph fixed:
Similarly to the optimization of Rh, the optimization
of Eq. (3.5) with respect to Ch is equivalent to the
following objective:
(3.13)

JC(Ch) = ‖PT
h X−RhShCT

h ‖2F +
λ1

C2
m

m∑
h2=1
h2 6=h

‖CT
h Ch2‖

2
F

To satisfy the nonnegative constraints Ch ≥ 0, we
introduce a Lagrangian multiplier β ∈ Rn×lh for Ch

and update the above equation as follows:

J̃C(Ch) = ‖PT
h X−RhShCT

h ‖2F

+
λ1

C2
m

m∑
h2=1
h2 6=h

‖CT
h Ch2‖

2
F − tr(βCT

h )(3.14)
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Again, we take the partial derivative of J̃C(Ch) with

respect to Ch and let ∂J̃C

∂Ch
= 0. We obtain:

(3.15) β = −2P + 2ChQ + 2λ1Γh

where P = XTPhRhSh, Q = ST
hRT

hRhSh, Γh =
(
∑m

h2=1,h2 6=h(Ch2C
T
h2

Ch))/C2
m. Based on the KKT

complementarity condition βij(Ch)ij = 0, we obtain
the updating rule for Ch as follows:

(3.16) (Ch)ij ← (Ch)ij

√
[P+ + ChQ− + λ1Γ

−
h ]ij

[P− + ChQ+ + λ1Γ
+
h ]ij

where P = P+−P−, Q = Q+−Q− and Γh = Γ+
h −Γ−h

follow a similar definition as A+ and A−.
Optimizing Ph with Sh, Ch, and Rh fixed: The

optimization of Eq. (3.5) with respect to Ph is equivalent
to the following objective:
(3.17)

JP (Ph) = ‖PT
hX−RhShCT

h ‖2F +
λ2
C2

m

m∑
h2=1
h2 6=h

‖PT
hPh2

‖2F

Letting the partial derivative ∂JP

∂Ph
= 0, leads to the

following updating formula for Ph:

Ph = (XXT +
λ2
C2

m

m∑
h2=1
h2 6=h

Ph2P
T
h2

)−1XChST
hRT

h(3.18)

By iteratively applying the above updating rules for
Sh, Rh, Ch, and Ph, we can approximately solve the
objective function of MCC-SS. Our empirical study
shows that MCC-SS often converges after 50 iterations.
The convergence trend and runtime costs of MCC-SS
will be provided in the experimental section.

With respect to the time complexity of MCC-SS,
it takes O(kndh + lndh) to update Sh, O(mkd2h) to
update Rh, O(mln2) to update Ch, and O(mn2dh)
to update Ph. Suppose t is the number of iterations
for convergence, the overall complexity of MCC-SS is
O(mt(kndh +nldh +mkd2h +mln2 +mn2dh)). MCC-SS
holds similar time complexity as MultiCC.

Table 1: Characteristics of the datasets
Datasets #Samples #Features #Classes
Vowel 528 10 10

Ionosphere 351 34 2
Glass 214 9 7
Vehicle 846 17 4

Crowdsourced 10545 28 6
CMUface 640 15360 20/4
Dancing 900 400 9

4 Experimental Results and Analysis

4.1 Experimental Setup With multiple clusterings
we need to measure the quality and diversity of alter-
native clusterings. To measure quality, we adopt the
widely used Silhouette Coefficient (SC) and Dunn Index
(DI) as internal indexes [1]. Larger values of SC and DI
indicate a higher quality clustering. To measure the re-
dundancy between alternative clusterings, we adopt the
Normalized Mutual Information (NMI) and the Jaccard
Coefficient (JC) as external indexes. The smaller the
values of NMI and JC are, the smaller the redundancy
between alternative clusterings is. All these metrics have
been used in the multiple clustering literature [4]. Due to
space limitations, the formal definitions of these metrics
are omitted, and can be found in [4, 9].

Given the characteristics of co-clustering and the
scarcity of available multiple co-clusterings, we evalu-
ate the performance of our MCC-SS from two angles:
(1) Discovering multiple sample-wise clusterings, and
compare MCC-SS with MultiCC [16] and other repre-
sentative multiple clustering methods; and (2) Finding
multiple co-clusterings and visualize them. Six datasets
collected from the UCI machine learning repository and
a Dancing image dataset are used for the experiments.
These datasets are often used for multiple clusterings
[10, 31, 35]; their details are summarized in Table 1.

MCC-SS needs to preset the following required pa-
rameters: the target number of alternative co-clusterings
(m), the number of row-clusters (k), the number of
column-clusters (l), and the dimensionality of subspaces
dh. We adopt a widely used technique to determine
the number of row-clusters [36]: we first repeat k-means
under each input value of k, and then measure the stabil-
ity of the clusterings obtained under each k, and finally
set k to the value that gives the most stable clustering
results as the target number of row-clusters. Based on
this technique and with m = 2, we finally determine
the value of k as follows: k = 5 for Vowel, k = 7 for
Ionosphere, k = 3 for Glass, k = 3 for Vehicle, k = 6
for CMUface, k = 5 for Dancing, and k = 4 for Crowd-
sourced. The value of l is set equal to the number of true
classes of the respective datasets, as specified in Table
1. l1 and l2 for the CMUface are set to 20 (number of
identities) and 4 (type of poses), respectively. For the
first five datasets with a moderate number of features,
we set dh = d (number of original features), and for the
last two high-dimensional datasets, we set dh = 0.8d
(Dancing) and dh = 0.5d (CMUface).

4.2 Discovering Multiple One-way Clusterings
In this section, we conduct experiments to investigate
the capability of MCC-SS in finding multiple one-
way clusterings and compare them with the multiple
clusterings explored by MultiCC [16], Dec-k-means
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Table 2: Quality and Diversity of the various competing methods. ↑(↓) indicates the direction of preferred values
for the corresponding measure. •/◦ indicates whether MCC-SS is statistically (according to pairwise t-test at 95%
significance level) superior/inferior to the other method.

Dec-kmeans COALA ADFT MSC OSC MNMF MultiCC MCC-SS

Vowel

SC↑ 0.088±0.042• 0.133±0.001• 0.233±0.015◦ 0.238±0.015◦ 0.046±0.005• 0.018±0.013• 0.243±0.021◦ 0.181±0.000
DI↑ 0.021±0.000• 0.079±0.000• 0.071±0.011• 0.033±0.003• 0.024±0.000• 0.019±0.003• 0.073±0.003• 0.118±0.002

NMI↓ 0.026±0.011◦ 0.158±0.005• 0.678±0.083• 0.458±0.023• 0.434±0.003• 0.018±0.003◦ 0.418±0.013• 0.037±0.000
JC↓ 0.125±0.008• 0.225±0.006• 0.353±0.054• 0.412±0.023• 0.196±0.003• 0.112±0.003• 0.142±0.013• 0.056±0.001

Ionosphere

SC↑ 0.258±0.018• 0.392±0.000• 0.412±0.006• 0.401±0.002• 0.350±0.009• 0.108±0.012• 0.405±0.005• 0.741±0.011
DI↑ 0.095±0.014◦ 0.041±0.000◦ 0.077±0.006◦ 0.041±0.015 0.241±0.013◦ 0.013±0.009 0.062±0.012◦ 0.022±0.000

NMI↓ 0.534±0.020• 0.362±0.000• 0.809±0.016• 0.588±0.041• 0.024±0.002◦ 0.313±0.006• 0.115±0.005• 0.055±0.000
JC↓ 0.588±0.033• 0.502±0.000• 0.788±0.013• 0.744±0.032• 0.618±0.002• 0.338±0.005 0.448±0.012• 0.345±0.002

Glass

SC↑ 0.512±0.076◦ 0.664±0.006◦ 0.566±0.010◦ 0.665±0.016◦ 0.148±0.038• -0.131±0.076• 0.161±0.011• 0.224±0.002
DI↑ 0.047±0.019• 0.213±0.011◦ 0.021±0.008• 0.119±0.025◦ 0.017±0.000• 0.016±0.002• 0.253±0.018◦ 0.113±0.001

NMI↓ 0.056±0.023• 0.176±0.002• 0.866±0.018• 0.286±0.044• 0.460±0.007• 0.077±0.018• 0.037±0.008 0.032±0.000
JC↓ 0.428±0.022• 0.459±0.006• 0.874±0.018• 0.733±0.026• 0.310±0.007• 0.175±0.014• 0.078±0.011 0.077±0.000

Vehicle

SC↑ 0.118±0.086• 0.661±0.001◦ 0.741±0.005◦ 0.756±0.021◦ 0.527±0.011◦ -0.159±0.022• 0.111±0.022• 0.369±0.004
DI↑ 0.008±0.000• 0.065±0.000◦ 0.045±0.000◦ 0.035±0.002◦ 0.031±0.000◦ 0.013±0.002 0.049±0.000◦ 0.020±0.002

NMI↓ 0.175±0.012• 0.698±0.005• 0.998±0.031• 0.889±0.034• 0.628±0.028• 0.129±0.004• 0.146±0.002• 0.003±0.000
JC↓ 0.286±0.022• 0.722±0.004• 0.989±0.012• 0.937±0.054• 0.359±0.028• 0.242±0.004• 0.142±0.004 0.141±0.002

Crowdsourced

SC↑ 0.038±0.003• 0.211±0.011• 0.196±0.008• 0.012±0.000• 0.192±0.013• -0.011±0.000• 0.342±0.013◦ 0.232±0.002
DI↑ 0.027±0.001◦ 0.115±0.003◦ 0.073±0.002◦ 0.020±0.001◦ 0.042±0.001◦ 0.002±0.000• 0.013±0.001 0.016±0.001

NMI↓ 0.017±0.002• 0.349±0.015• 0.863±0.035• 0.111±0.006• 0.806±0.015• 0.022±0.000• 0.053±0.002• 0.013±0.000
JC↓ 0.144±0.010• 0.348±0.014• 0.538±0.032• 0.150±0.003• 0.823±0.047• 0.109±0.002• 0.155±0.001• 0.081±0.000

CMUface

SC↑ 0.016±0.014• 0.044±0.002• 0.054±0.002• 0.011±0.012• 0.230±0.000◦ -0.008±0.012• 0.075±0.013 0.093±0.000
DI↑ 0.088±0.033• 0.124±0.001• 0.014±0.001• 0.022±0.002• 0.203±0.000• 0.044±0.022• 0.144±0.011• 0.272±0.014

NMI↓ 0.042±0.011◦ 0.082±0.000◦ 0.662±0.019• 0.522±0.023• 0.794±0.003• 0.038±0.021◦ 0.028±0.003◦ 0.111±0.000
JC↓ 0.154±0.004• 0.166±0.000• 0.549±0.023• 0.511±0.026• 0.462±0.003• 0.142±0.006• 0.042±0.009• 0.026±0.000

Dancing

SC↑ -0.264±0.014• -0.047±0.002• 0.680±0.006◦ 0.669±0.000◦ 0.607±0.009◦ -0.198±0.004• 0.549±0.001◦ 0.165±0.001
DI↑ 0.043±0.000• 0.296±0.001◦ 0.113±0.002◦ 0.824±0.022◦ 0.069±0.000• 0.033±0.000• 0.030±0.000• 0.098±0.000

NMI↓ 0.147±0.007• 0.444±0.001• 0.860±0.002• 0.961±0.000• 0.833±0.012• 0.252±0.000• 0.218±0.004• 0.015±0.000
JC↓ 0.101±0.007• 0.072±0.001• 0.433±0.002• 0.989±0.000• 0.368±0.002• 0.122±0.002• 0.115±0.000• 0.059±0.000

[12], COALA [5], ADFT [22], MSC [23], OSC [31],
and MNMF [9]. For COALA and ADFT, we use k-
means to generate the first clustering (C), and then
apply their respective solutions to generate the second
alternative clustering (C∗). We downloaded the source
code of MNMF and MSC, and directly implemented the
other methods based on the respective original papers.
Parameters were specified or optimized as suggested
by the authors. Following the experimental procedure
adopted by these methods, we measure clustering quality
on C∗, and measure the diversity using C and C∗. Table
2 reports the average and standard deviation results of
ten independent runs.

MCC-SS generally outperforms other comparing
methods on different datasets and across the used metrics.
Both MCC-SS and MultiCC use matrix factorization
to explore multiple co-clusterings. The two alternative
clusterings explored by MCC-SS have a larger diversity
than those found by MultiCC, while they almost hold the
same quality. This comparison supports our motivation
to pursue diverse alternative clusterings in subspaces.
MCC-SS, ADFT, and OSC explore multiple clusterings
by mainly operating features. MCC-SS almost always
outperforms the latter two in terms of diversity, but
sometimes loses to them in terms of quality. This
is because MCC-SS simultaneously pursues multiple
clusterings, whereas AFDT and OSC pursue multiple
clusterings sequentially. As such, AFDT and OSC give
high priority to the quality of the first clustering, and
may obtain two alternative high-quality clusterings. In
terms of clustering quality, MSC performs better than
MCC-SS on Glass, Vehicle, and Dancing. The reason is
that MSC gives more emphasis on stability than diversity.
MCC-SS has a DI which is lower than other methods on

Ionosphere and Vehicle; this may be because tr(PT
h Ph′)

is not an ideal surrogate for the redundancy between
clusterings, and thus may also reduce the quality of
clustering results in some cases.

4.3 Discovering Multiple Co-clusterings To
show that MCC-SS can explore more than two diverse
co-clusterings, we apply MCC-SS on the Diffuse Large
B Cell Lymphoma (DLBCL) gene expression data [37].
We preprocess this gene expression data by removing the
genes that are not expressed or have a small variance,
and finally obtain a data matrix with 360 genes and
180 samples (cancer patients). Particularly, we set the
number of multiple co-clusterings m = 4, the number
of gene clusters k = 5, the number of sample-clusters
l = 3, λ1 = λ2 = 100, and dh = 360. We visualize the
results by plotting the heatmap, and the mean gene ex-
pression profile of each co-clustering in Figure 2. In the
heatmap, red points indicate that the gene expression is
a high expression value, while green points indicate low
expression values.

From Figure 2, we can see that MCC-SS groups
genes and samples into multiple red and green blocks,
implying that it can find co-expression patterns of genes
across specific samples. In other words, MCC-SS can find
multiple diverse co-clusterings of good quality. As shown
by the mean expression profiles of these co-clusterings,
the co-clusters contain a different number of samples.
For example, these four co-clusterings separately group
180 samples into three clusters of sizes {91, 49, 40}, {45,
67, 68}, {84, 40, 56}, and {60, 66, 54}, respectively.
In addition, these co-clusters also contain a different
number of features, and they divide the projected feature
subspace into five column-clusters of sizes {100, 83, 68,
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Figure 2: Heatmaps and mean gene expression profiles of co-clusters for four different co-clusterings.

52, 57}, {61, 105, 84, 53, 57}, {101, 93, 45, 39, 82}, and
{75, 102, 37, 68, 78}. For the co-clusterings explored by
MultiCC (results are not shown due to space limitations),
the first and fourth co-clusterings explored by MultiCC
are similar, and they do not manifest much diversity
feature-wise.

We further use the average Co-cluster relevance
Score(CS) [38] to measure the diversity between co-
clusterings, and report the scores for MCC-SS and
MultiCC in Table 3. A larger value of CS indicates
a higher redundancy. The row-wise CS between two
alternative co-clusterings is computed as follows:

CSh1h2
=

1

|Ch1 |
∑

(Ri,Ci)∈Ch1

max
(Rj ,Cj)∈Ch2

|Ri ∩Rj |
|Ri ∪Rj |

(4.19)

where Ri (Rj) is the row-cluster of a co-cluster in Ch1

(Ch2). The column-wise CS has a similar definition. The
smaller the CS is, the smaller the redundancy between
the two co-clusterings is.

Both MultiCC and MCC-SS manifest low redun-
dancy between co-clusters across co-clusterings, since
both gene-wise and sample-wise scores are lower than
0.5. MCC-SS always has a much lower CS than Mul-
tiCC. This comparison further confirms that multiple
co-clusterings are embedded in different subspaces, and
MCC-SS can discover multiple diverse co-clusterings
therein.

4.4 Parameter Sensitivity Analysis The regular-
ization parameters λ1 and λ2 control the tradeoff be-
tween the quality and the diversity of m alternative
clusterings. dh controls the dimensionality of respective

Table 3: Average co-cluster relevance score (CS) of four
co-clusterings found by MCC-SS and MultiCC.

MCC-SS CS12 CS13 CS14 CS23 CS24 CS34

Gene-wise 0.19 0.21 0.20 0.22 0.20 0.21
Sample-wise 0.22 0.23 0.22 0.21 0.20 0.22
MultiCC CS12 CS13 CS14 CS23 CS24 CS34

Gene-wise 0.43 0.38 0.49 0.29 0.34 0.39
Sample-wise 0.28 0.29 0.34 0.29 0.33 0.34

feature subspaces and also affects the diversity between
alternative clusterings. We investigate parameter sensi-
tivity by varying λ1 and λ2 in [10−4, 103] with m = 2.
We take DI as the quality measure and 1-NMI as the
diversity measure, and plot their values under different
input values of λ1 and λ2 with dh = 10 in Fig. 3 (Vowel).
Similarly, we vary dh from 0.1× d to d with λ1 = 100,
λ2 = 100, and m = 2. For simplicity, we fix dh1 = dh2 .
We show the values of DI and 1-NMI under different dh
in Figure 4 (Dancing). The other datasets give similar
results.
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Figure 3: Quality and diversity of MCC-SS vs. λ1 and
λ2 on the Vowel dataset.

MCC-SS has lower quality and diversity values when
λ1, λ2 ≈ 0, and it has significantly increased values
when λ1 and λ2 are in other ranges. This is because
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Figure 4: Quality and diversity of MCC-SS vs. dh on
Dancing and CMUface datasets.

too small λ1 or λ2 values do not sufficiently account
for the redundancy between alternative clusterings. A
too large λ1 value gives more weight to the diversity
between sample-clusterings, but diverse clusterings can
also be derived from different feature spaces. As such,
the performance worsens under this extreme setting.
λ2 controls the redundancy between different subspaces,
and MCC-SS often achieves a relatively good quality and
diversity when a large λ2 is used. This observation again
indicates that multiple co-clusterings are embedded in
different subspaces. Based on the above results, we adopt
λ1 = λ2 = 100 for the experiments.

From Figure 4, we can see that MCC-SS is less
affected by the input values of dh than by those of λ1
and λ2. We also observe that dh ∈ [0.1d, 0.9d] sometimes
gives better results than dh = d. This observation
corroborates the fact that multiple co-clusterings are
embedded in different subspaces, and it is reasonable
to explore alternative co-clusterings in different feature
subspaces.

4.5 Convergence Analysis Figure 5 reveals the
convergence trend on the Glass and Dancing datasets.
We can observe that MCC-SS generally converges after
60 iterations, and this pattern holds on all datasets.
Table 4 gives the runtimes of all methods. The
experiments are conducted on a server with Linux
OS 2.6.32, Intel Xeon E2675v3, and 256GB RAM; all
methods are implemented in Matlab2014a.
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Figure 5: Objective function convergence curve on Glass
and Dancing datasets.

OSC is almost always the fastest and MNMF is
slightly slower than OSC. These two methods are
much faster than the other techniques. MCC-SS

has a larger runtime than MultiCC, since is has one
more matrix inversion (Ph), and this increases the
iteration of Ph. Dec-kmeans is based on k-means
and MultiCC is based on NMF, so they have a small
runtime cost. Both ADFT and MSC involve costly
operations (i.e., dendrogram construction and feature
weight computation). This is the main reason for
their dramatic increase in computing time on high-
dimensional datasets. In summary, MCC-SS holds a
runtime similar to other competitive approaches, but
frequently outperforms them in exploring multiple one-
way and two-way clusterings.

5 Conclusions and Future Work

In this article, we study how to simultaneously find mul-
tiple co-clusterings in feature subspaces. This topic is
challenging and rarely studied, but of interest and useful
in practice. We introduced a matrix factorization based
approach called MCC-SS to jointly explore multiple sub-
spaces and co-clusterings therein. MCC-SS seeks mul-
tiple co-clusterings by semi-nonnegative matrix factor-
ization and enforces diversity between the co-clusterings
by minimizing redundancy between column clusterings
and feature subspaces. Extensive experimental results
show that MCC-SS is superior to other competitive and
representative multiple clustering methods and can find
many different meaningful co-clusterings. In the future,
we will extend MCC-SS for integrative cancer genom-
ic data analysis. The code of MCC-SS is available at
http://mlda.swu.edu.cn/codes.php?name=MCC-SS.
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