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Co-clustering means simultaneously identifying natural clusters in different kinds
of objects. Examples include simultaneously clustering customers and products for
a recommender application; simultaneously clustering proteins and molecules in
microbiology; or simultaneously clustering documents and words in a text mining
application. Important insights into a problem can be gained by understanding the
interactions between clusters for the different kinds of objects. This paper considers
Bayesian models for co-clustering. The Bayesian approach begins by developing a
model for the data generating process, and inverting that model through Bayesian
inference to infer cluster membership, learn characteristics of the clusters, and fill
in missing observations. We consider a basic Bayesian clustering model and several
extensions to the model. Experimental evaluations and comparisons among the
clustering methods are presented. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Afundamental problem in data analysis is to group
objects into natural clusters. A cluster is a group

of objects that are similar to each other and dissimi-
lar to objects outside the cluster (c.f., Ref 1). Often,
clustering is performed as a preliminary exploratory
step before further modeling and analysis. In many
applications, it is useful to cluster different kinds of
objects simultaneously. For example, a recommender
system might simultaneously cluster customers and
products, so that customers in the same customer clus-
ter have similar patterns for purchasing products in the
same product cluster. A microbiologist might simulta-
neously cluster genes and experimental conditions so
that genes in the same gene cluster have similar expres-
sion levels under conditions in the same condition clus-
ter. A document analyst might simultaneously cluster
documents and words so that documents in the same
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document cluster tend to contain words in the same
word cluster. Understanding the interactions between
clusters for the different kinds of objects can give
important insights into the problem under study. For
example, simultaneously grouping molecules accord-
ing to their binding patterns with proteins and proteins
according to how they interact with molecules can
yield insight into the underlying biological processes,
ultimately yielding better drug designs.

In each of the above examples, we can arrange
the data in a matrix, where rows represent one kind
of object (e.g., customers, genes, documents), columns
represent another kind of object (e.g., products, exper-
imental conditions, words), and each entry represents
data collected for the row and column object pair (e.g.,
whether the customer purchased the product; expres-
sion pattern of the gene under the experimental con-
ditions; whether the word appears in the document).
Co-clustering can be thought of as reordering the rows
and columns of the data matrix to form homoge-
neous blocks; the co-clusters are the rows/columns
whose intersections form the homogeneous blocks.
To illustrate, the left-hand side of Figure 1 shows a
data matrix, for which a darker color is used to indi-
cate larger numbers. No pattern is immediately appar-
ent, but if the rows and columns are rearranged as
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(a) (b)

FIGURE 1 | Original data matrix (a); reordered to reveal
co-clusters (b).

shown on the right, row and column clusters become
apparent.

BACKGROUND
Co-clustering, also known as biclustering, was first
studied by Hartigan2 and has been investigated in a
variety of application areas (e.g., Refs 3–5). Many
algorithms for co-clustering have appeared in the
literature, e.g., Refs 3, 6

This paper studies Bayesian methods of
co-clustering. The Bayesian approach begins with
a formal model of the data-generating process,
and uses the observations to update this model.
In co-clustering, the observations consist of a
two-dimensional matrix x whose rows and columns
refer to objects and whose entries represent data
collected for the corresponding row and column
objects. For example, the entry xrc might contain the
rth person’s rating of the cth product, or an indicator
of whether the cth word appears in the rth document.
The aim of co-clustering is to find natural clusters
such that entries of x for objects in the same row and
column cluster tend to be similar. The observations
{xrc} are used to update prior knowledge about mem-
bership of objects in row and column clusters and
parameters governing the cluster characteristics.

A Bayesian approach to co-clustering has several
advantages. The model considered below uses soft
partitions, whereby each object can belong in some
degree to multiple clusters. This is more realistic than
traditional hard partitioning methods in which each
object is assigned to exactly one cluster. Bayesian
co-clustering is based on a clearly interpretable gen-
erative model that defines a full joint probability
distribution on unknown parameters, latent row and
column clusters, and observations. On the basis of this
joint distribution, Bayesian inference provides a theo-
retically principled foundation for algorithms to learn
the parameters of the generative model and infer the

unobserved cluster memberships. Because it is based
on a full joint distribution, the Bayesian approach
naturally handles missing observations, a necessary
requirement for many applications. For example, each
customer typically rates only a small subset of prod-
ucts, yielding a substantial fraction of missing ratings.
A recommender system unable to handle missing
ratings would be useless. Bayesian co-clustering can
discover customer and product co-clusters using only
a sample of product ratings from each customer,
and then use the co-clusters to predict a customer’s
ratings for products he/she has not rated. Further,
it is well known that Bayesian inference protects
naturally against overfitting, a problem that plagues
many machine learning algorithms. Protecting against
overfitting is especially important for models that
have a large number of parameters and/or unobserved
variables, as do the models considered in this paper.

A BASIC BAYESIAN CO-CLUSTERING
MODEL
In this section, we consider a basic co-clustering
model, which is later extended in several directions.
Prior information about the data-generating process
is incorporated into the model by defining a sampling
process for generating entries of the data matrix x.
Such a generative model is typically represented as
a graphical probability model, a standard and con-
venient way to visualize a complex joint probability
distribution over many variables. Figure 2 depicts a
graphical probability model for the generative process
taken from Ref 7; closely related models are given in
Refs 8, 9. Each of the circles in the graphical model
represents a quantity that is sampled. The circle for x
is dark, indicating that the entries of the data matrix
are observed. The other circles are light, indicating
that they represent unobserved quantities. The arrows
depict dependencies: a quantity at the head of an
arrow is sampled in a way that depends on the result of
sampling the quantity at the tail of the arrow. The rect-
angles, called plates, denote repeated samples, with the
number in the lower right-hand corner indicating the
number of repetitions.

The variables in the model consist of the obser-
vations x, the latent cluster memberships z, the param-
eters !, " of the distributions from which z and x are
sampled, and the hyperparameters #, $, or parameters
of the distributions from which the parameters ! and "
are sampled. We can walk through the generative pro-
cess by following the arrows in the graphical model.
Each quantity is sampled after all its predecessors in
the graph have been sampled, using a distribution that
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FIGURE 2 | Graphical model for Bayesian co-clustering.

depends on its immediate predecessors. Sampling pro-
ceeds as follows:

1. Select hyperparameters: !1, which governs sam-
pling of the latent row cluster memberships; !2,
which governs sampling of the latent column
cluster memberships; and ", which governs sam-
pling of the co-cluster characteristics.

2. Select co-cluster parameters {#mn:m= 1, … , M,
n=1, … , N} for the M row clusters and N
column clusters, from a parametric family of
probability distributions with parameter ". The
co-cluster parameter #mn governs sampling of
observations in the (mn)th block of the matrix.
In a gene expression problem, #mn might denote
the mean and standard deviation of the gene
expression level for the block. In a text mining
problem, #mn might denote the probability that a
given word in the row cluster appears in a given
document in the column cluster. For a given
application, the distribution for # is chosen from
a parametric family appropriate for the type of
data in the matrix x.

3. Choose row cluster membership probability vec-
tors

{
$1r

∶ r = 1, … ,R
}

for the R rows of
the matrix, from a probability distribution that
depends on the parameter !1. Each probabil-
ity vector $1r

consists of M non-negative num-
bers summing to 1. It governs sampling of
the row cluster latent variables, giving higher
probability to some row clusters than oth-
ers. Thus, $1r

can be thought of as defining
the strength of membership of the rth object
in each of the M row clusters. The proba-
bility vectors $1r

are drawn from a Dirich-
let distribution with parameter !1, a para-
metric family with convenient mathematical

properties for sampling probability distribu-
tions.

4. Choose column cluster membership probability
vectors

{
$2c

∶ c = 1, … ,C
}

for the C columns
of the matrix, from a probability distribution
that depends on the parameter !2. Each proba-
bility vector $2c

consists of N non-negative num-
bers summing to 1. It governs sampling of the
column cluster latent variables, giving higher
probability to some column clusters than oth-
ers. Thus, $2c

can be thought of as defining the
strength of membership of the cth object in each
of the M column clusters. The probability vec-
tors $2c

are drawn from a Dirichlet distribution
with parameter !2.

5. Choose the row and column cluster latent vari-
ables for each of the RC entries in the matrix.
The latent row cluster z1rc

for the entry in row r
and column c is drawn from the rth row cluster
membership probability vector $1r

. The latent
column cluster z2rc

for the entry in row r and
column c is drawn from the cth column cluster
membership probability vector $2c

.
6. Choose the entry xrc from the observation dis-

tribution for its latent row and column cluster,
that is, the distribution with parameter #z1rc z2rc

.

This sampling process generates a soft partition
over row and column clusters. For each cell (r, c) of the
data matrix, the entry xrc is drawn from a distribution
that depends on the row and column latent variables
z1rc

and z2rc
, which in turn are drawn according to

their respective cluster membership probabilities $1r

and $2c
. These cluster membership probability vectors

give greater preference to some clusters than others.
That is, more of the latent row cluster variables z1rc

for
the rth row of the matrix will, on average, have values
to which $1r

assigns higher probability. Thus, $1r

represents the strength of membership of row object
r in each of the row clusters. Similarly, $1c

represents
the strength of membership of column object c in each
of the column clusters.

The model of Figure 2 defines a joint probability
distribution

p (!, ",$, #, z,x)

= p (!) p (") p (#|")p ($|!) p (z|$)p (x|z) (1)

over parameters, latent variables, and data. This
distribution is a hierarchical Bayesian model in which
hyperparameters !, and " are drawn independently of
each other; # is drawn from a distribution that depends
on "; $ is drawn from a distribution that depends on !;
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z is drawn from a distribution that depends on ! and
"; and x is drawn from a distribution that depends on
z. The plate representation of Figure 2 is a convenient
visualization of the hierarchical model.

The following section describes how this model
is updated in the light of data to learn the row and
column cluster membership probabilities !1 and !2
and the cluster characteristics ", as well as to fill in
missing entries in the data matrix.

INFERENCE
After the data matrix is observed, the distributions
for hyperparameters, parameters and latent variables
are updated using Bayesian inference. The posterior
joint distribution of the hyperparameters (#, $), the
parameters (!, "), and the latent variables z, given the
observations x, is obtained by applying Bayes rule:

p (#, $,!, ", z|x)

= p (#) p ($)p ("|$)p (!|#) p (z|!)p (x|z)
p (x) (2)

Bayes rule is a principled means of combining
evidence with prior information. For the model of
Figure 2, the prior information includes the struc-
ture of the model and prior probability distributions
that specify vague information about the parame-
ters. After applying Bayes rule, the posterior distri-
bution becomes concentrated on configurations of
(#, $,!, ", z) that are consistent with the data matrix.
Thus, the posterior distribution will place high prob-
ability on latent row and column cluster assignments
z1rc

and z2rc
such that entries xrc within the same row

and column cluster are similar.
From the joint distribution, we can derive prob-

abilities for many hypotheses of interest. For example,
we can find the posterior probability !1r

that row
object r belongs to each of the row clusters. Similarly,
we can find posterior membership probabilities !2c

for
column objects in column clusters. We can also find the
a posteriori most likely value of "mn, the parameter
governing characteristics of matrix entries represent-
ing interactions between row objects in the mth row
cluster and column objects in the nth column clus-
ter. Other posterior quantities of interest might include
matrix blocks with the highest or lowest expected val-
ues, or differences in the expected value of entries in
different blocks. All these quantities can be obtained
from the joint probability distribution (2).

Another key problem is to predict missing entries
of the data matrix x. Missing entries are common in
many applications, as when each customer rates only

some products, or binding patterns are observed for
only some protein-molecule interactions. Equation (2)
can be modified to find the posterior distribution
of hyperparameters, parameters, latent variables, and
unobserved data matrix entries conditional on the
observed matrix entries. Clearly, the quality of the
results will depend on the pattern of coverage, e.g.,
if a row has almost no entries, then inferences about
its row cluster membership will be weak. Useful
inferences can be drawn for parameters or latent
variables for which there are sufficient data.

While the posterior distribution (2) is well-
defined in theory, calculating posterior estimates
of interest is very challenging computationally.
Although exact inference is generally intractable,
several approximate inference methods are available.
The two most common classes of approximate infer-
ence methods are model simplification and stochastic
approximation. The model simplification approach
finds a simpler distribution q(#, $,!, ", z) that is as
close as possible to the true posterior distribution
p(#, $,!, ", z|x) but can be solved exactly. Stochastic
approximation draws samples from the posterior
distribution p(#, $,!, ", z|x) and uses the samples to
estimate quantities of interest.

The most widely applied model simplification
approach is called variational Bayesian inference
(c.f., Ref 10). The key idea of variational inference
is to approximate p(#, $,!, ", z|x) by a distribution
q(#, $,!, ", z) chosen from a family of distribu-
tions with a simpler functional form. Generally,
q(#, $,!, ", z) has a product form, where each factor
in the product is a tractable distribution involving
a subset of the unobserved variables, and all these
subsets are disjoint. The variational algorithm then
iterates over the factors, adjusting each one so it more
closely matches the true posterior distribution given
the data and the current estimate of the other factors.
The algorithm cycles through the factors repeatedly
until the improvement is less than a threshold. Under
reasonable assumptions, this process is guaranteed
to converge to the member q*(#, $,!, ", z) of the
tractable family that is closest to p(#, $,!, ", z|x).

Finding an appropriate family of tractable fac-
tored distributions can be a challenge. Once a suitable
family has been identified, deriving the updating
equations typically involves tedious mathematical
manipulations. After the work of finding a family and
deriving updating equations has been accomplished,
however, execution of the resulting approximate infer-
ence algorithm is typically quite fast in comparison
with sampling based approaches.

The most common class of stochastic sam-
pling algorithms is called Markov chain Monte Carlo
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(MCMC; c.f., Refs 11, 12). The most straightfor-
ward MCMC method is Gibbs sampling. Like varia-
tional inference, Gibbs sampling is an iterative process
that repeatedly cycles through the unobserved vari-
ables. Unlike variational inference, the iterative step
is stochastic. Gibbs sampling begins by assigning an
arbitrary value to each unobserved variable. Then, at
each step of the iterative process, the unobserved vari-
able is replaced by a value sampled from its posterior
distribution conditional on all the other (observed and
unobserved) variables. Under reasonable assumptions,
this process is guaranteed to converge to a sample
from the joint posterior distribution, but convergence
can be very slow. In fact, for the model of Figure 2,
convergence is much too slow to be practical. How-
ever, a variant called collapsed Gibbs sampling brings
MCMC into the range of feasibility. Collapsed Gibbs
sampling works as follows. First, the hyperparameters
are set to fixed values. Once this has been done, we can
integrate over the parameters analytically, to obtain
conditional distributions for each latent variable given
the hyperparameters, the other latent variables, and
the elements of the data matrix. Then Gibbs sampling
can be performed over just the latent variables. If there
are missing data, collapsed Gibbs sampling can be per-
formed over both latent variables and missing obser-
vations. The values for the hyperparameters can be set
as a tuning step, or an additional Gibbs sampling step
over the hyperparameters can be added.

The standard variational Bayesian algorithm for
the model of Figure 2 can give inaccurate results
because it does not account for dependence between
the latent variables z1, z2 and the parameters !1,!2, ".
Inspired by collapsed Gibbs sampling, Wang et al.7

introduced a variational algorithm, called collapsed
variational Bayes, which operates in the collapsed
space where the parameters are integrated out of the
log likelihood function.

EXPERIMENTS
Wang et al.7 reported experiments using the model
of Figure 2. Their experiments compared variational
Bayesian inference, collapsed Gibbs sampling, and col-
lapsed variational Bayesian inference. They considered
two datasets. The first is MovieLens,a a movie rec-
ommendation dataset containing 100,000 ratings in
a sparse data matrix for 1682 movies rated by 943
users. The second is Jester,b a joke rating dataset.
The original Jester dataset contains 4.1 million rat-
ings of 140 jokes from 73,421 users. Following,8 a
dense sub-matrix was selected of 1000 users who rated
almost all jokes. The continuous ratings were trans-
formed to binary form by coding all non-negative

TABLE 1 Perplexity Comparison for Basic Co-Clustering Model

Gibbs

Sampling

Collapsed

Variational Bayes

Variational

Bayes

MovieLens 3.247 4.553 5.849

Binarized Jester 2.954 3.216 4.033

entries as 1 and all negative entries as 0. For both
datasets, 25% of the observations were held out for
testing.

The model was trained using the three inference
methods described in the previous Section. Results
were compared using perplexity, a standard compar-
ison metric for probabilistic methods. The perplexity
of the probability model p(x) on the data matrix x is
defined as:

Perp = exp

(
1
#rc

∑
rc

− log p
(
xrc

)
)

, (3)

where the sum is over the observed entries of the
data matrix and # rc denotes the number of observed
entries. The perplexity decreases as the likelihood of
the observations increases. A lower perplexity on the
training set means the model fits the training set well; a
lower perplexity on the test set means the model does
well at predicting unseen observations.

Table 1 shows perplexity results for the three
inference methods on the two data sets. On both
data sets, the worst performer is standard variational
Bayesian inference, followed by collapsed variational
Bayesian inference, followed by collapsed Gibbs sam-
pling. However, both variational Bayesian methods
converged after about 100 iterations, whereas col-
lapsed Gibbs sampling required about 5000 iterations
to reach convergence.

EXTENSIONS TO THE BASIC MODEL
We consider several extensions to the basic Bayesian
co-clustering model. First, we consider the case in
which the number of row and column clusters is not
known a priori. Next, we consider an extension in
which features of the row and column objects can be
leveraged to help predict observations for new, as yet
unobserved objects. Finally, we consider the case in
which row and column clusters are not independent
of each other.

Unknown Numbers of Clusters
The basic Bayesian co-clustering model requires that
the number of row and column clusters be specified
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in advance. Given that the aim of co-clustering is
to discover latent clusters, it seems unreasonable to
expect the number of clusters to be known. In practice,
this issue is often addressed by treating the number of
clusters as a tuning parameter and adjusting it to give a
good fit to the data set. A more principled approach is
to bring the number of clusters into the model, treating
it as an unknown quantity to be discovered from the
data. This can be achieved by replacing the Dirichlet
prior distributions for !1 and !2 in Figure 2 with
a distribution that places no bound on the number
of clusters. Models with infinitely many parameters
are called nonparametric models. A nonparametric
Bayesian co-clustering (NBCC) model was considered
by Meeds and Roweis.13 Their model is shown on
the left-hand side of Figure 3. In this model, the
number of replications of the indices m and n of
the co-cluster characteristics parameter "mn can grow
without bound. In the figure, this is indicated by
replacing the replication count MN in Figure 3 with
the symbol ∞ 2. Further, because the number of row
and column clusters is unbounded, the parameters !1r

and !2c
are infinite-dimensional probability vectors.

These vectors are drawn from a parametric family
for sampling infinite-length non-negative real vectors
whose entries sum to 1. For this purpose, Meeds
and Roweis used the Pitman–Yor process, which
generalizes the Dirichlet distribution used by the
basic co-clustering model to sample finite-dimensional
probability vectors.

The NBCC model of Figure 3 also differs from
the basic co-clustering model in that each row or
column object is assigned to a single row or column
cluster, whereas the model of Figure 2 samples distinct
row and column cluster latent variables for each entry
of the matrix. The latter approach is a more flexible
soft partitioning, but the former model is more easily
extended to incorporate features, as described in the
following section.

Incorporating Object Features
Thus far, we have considered models in which clus-
ter discovery is based solely on the entries of the data
matrix. Such methods are incapable of handling row
or column objects that have not been seen before. For
example, neither the basic model nor its nonparamet-
ric extension would be capable of predicting purchases
for a customer with no prior purchases or a product
that is new on the market. In many applications, addi-
tional information could be used to help predict data
for new objects. In our recommendation example, we
might have customer information such as age, gen-
der, or occupation, as well as product information

such as category, brand, or price. Such ancillary infor-
mation can provide useful recommendations for new
customers who have not yet made purchases, or for
products that have not yet appeared on the market. A
system that can incorporate this additional informa-
tion can give useful generic initial recommendations
that gradually become more tailored as more purchase
data is obtained for the new customer and/or product.

The infinite hidden relational model (IHRM)14

can be viewed as an extension of the NBCC model13

to incorporate features. As shown on the right-hand
side of Figure 3, IHRM adds feature variables y1r

and y2c
, as well as parameters #1m

and #2n
governing

the feature distributions. The feature variables y1r

and y2c
represent features associated with row and

column objects. According to this model, the row
feature vector y1r

for the rth row object is drawn
from a parametric distribution with parameter #1m

,
where m = z1rc

is the row cluster of the rth row
object. Similarly, the column feature vector y2c

for the
cth column object is drawn from a distribution with
parameter #2n

that depends on the column cluster of
the cth column object.

Wang et al.15 performed simulation experiments
to assess the impact of incorporating features into
co-clustering. To emphasize the similarity to the
NBCC model and to highlight the key difference, the
models are called NBCC and feature-enriched NBCC,
or FE-NBCC. The two models were compared using
four data sets: the previously described MovieLens
and Jester data sets, as well as two protein-molecule
interaction data sets. For these experiments, the Jester
joke ratings were uniformly discretized into 10 bins.
The first protein interaction data set (MP1) contains
data on 4051 interactions between 166 G-protein
coupled receptor (GPCR) proteins and 2687 small
molecules.16 The second protein interaction data set
(MP2) contains data on 7146 positive interactions
between 154 proteins (this data set was not restricted
to GPCR proteins) and 2876 molecules. Each of the
data sets was divided into training and test data sets
by first removing a randomly chosen subset of the row
and column objects, to allow the algorithms to be eval-
uated on previously unseen objects, and then removing
an additional randomly chosen set of entries in the
matrix that remained. Each experiment was repeated
five times. For inference, Wang et al. applied collapsed
Gibbs sampling. Further details on how the experi-
ments were conducted can be found in Ref 15.

Table 2 shows results from the experiment
reported by Ref 15. The table shows average per-
plexity across the five runs, with standard deviations
shown in parentheses. Not surprisingly, the algorithms
performed similarly on previously seen objects, and
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FIGURE 3 | Generative models for
nonparametric Bayesian co-clustering (NBCC)
(a) and feature-enriched nonparametric
Bayesian co-clustering (FE-NBCC) (b).

TABLE 2 Perplexity Comparison for Basic Co-Clustering Model

NBCC FE-NBCC

MovieLens Row and column observed 3.327 (0.020) 3.344 (0.021)

Row or column unseen 4.427 (0.047) 3.892 (0.026)

Jester (10 bins) Row and column observed 17.111 (0.031) 17.125 (0.040)

Row and column unseen 19.322 (0.025) 17.836 (0.053)

MP1 Row and column observed 1.430 (0.011) 1.435 (0.024)

Row and column unseen 8.845 (0.011) 1.453 (0.026)

MP2 Row and column observed 1.484 (0.013) 1.489 (0.023)

Row and column unseen 7.987 (0.011) 1.509 (0.024)

incorporating feature data resulted in substantially
better performance for previously unseen objects.

Representing Non-Grid Co-Cluster Patterns
Most co-clustering algorithms assume that co-clusters
are formed as the product of row and column clusters.
This assumption of variation independence is not
appropriate in many domains. For example, there
might be a cluster of movies that elicits similar
rating patterns from a wide variety of viewers, while
another group of movies might have several clusters
of users with distinct rating patterns. That is, how
to cluster movies might depend on the user, and how
to cluster users might depend on the movie. Thus,
the rectangular block pattern exhibited by the basic
co-clustering model might not capture all the useful
structure in the data.

(a) (b)

FIGURE 4 | Hierarchical axis-aligned partition (a) and
corresponding grid partition (b).

We can incorporate more structure into the
learned co-clusters if our prior distribution over
co-clusters relaxes the requirement that co-clusters
form a rectangular grid pattern. The Mondrian
process,17 named after the Dutch abstract painter Piet
Mondrian, samples the kind of axis-aligned matrix
partitions shown in Figure 4. As shown to the right
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TABLE 3 Perplexity Comparison for Co-Clustering Ensembles

Base Co-Clustering Co-Clustering Ensembles

MovieLens Grid Partition 2.908 (0.055) 2.707 (0.060)

Axis-Aligned Partition 2.553 (0.057) 2.436 (0.072)

Discretized Jester Grid Partition 20.174 (0.219) 18.092 (0.458)

Axis-Aligned Partition 16.144 (0.227) 14.036 (0.409)

of the figure, we can create a rectangular grid to
represent these clusters, but this creates an unneces-
sary proliferation of clusters and fails to exploit key
aspects of the problem structure.

The Mondrian process is a nonparametric
model, in that the number of co-clusters is unbounded.
The generative process begins with a rectangular
matrix. A random choice is made whether to termi-
nate sampling without further sub-division, to make a
horizontal cut between two randomly chosen rows, or
to make a vertical cut between two randomly chosen
columns. If a cut is made, the process then repeats for
each of the newly formed sub-rectangles.

The full generative model for Mondrian process
co-clustering first randomly reorders the row and col-
umn objects, applies the Mondrian process to generate
an axis-aligned partition of the reordered data matrix,
chooses a parameter for the data distribution in each
block of the matrix, and finally generates data accord-
ing to the parameterized data distribution.

Inference for a Mondrian process consists of
reconstructing the row and column ordering that
reveals the axis-aligned partition, discovering the
axis-aligned partition, and then learning the param-
eters of the data distribution for each block of the par-
tition. Gibbs sampling cannot be used for Mondrian
process inference because the required conditional dis-
tributions cannot be obtained in closed form. Instead,
a generalization of Gibbs sampling called reversible
jump Metropolis–Hastings (MH) sampling is used.
Like Gibbs sampling, MH sampling proceeds through
the variables one by one, sampling each in a way
that depends on the values of the other variables. But
whereas Gibbs sampling uses the conditional distribu-
tion of the sampled variable given the other variables,
MH uses any distribution from which samples can
be easily drawn. Then the sampled value is randomly
either accepted or rejected according to a rule con-
structed to ensure convergence to the correct posterior
distribution.

CO-CLUSTERING ENSEMBLES
Ensemble methods have become increasingly popu-
lar in machine learning and data mining as a way of

improving robustness and increasing predictive perfor-
mance. Ensemble clustering methods take as input a
set of base clusterings and produce a consensus clus-
tering. Recent work has shown that ensemble meth-
ods can identify robust consensus clusterings (e.g.,
Refs 18–20). Because they require only the clustering
results and not the raw data, clustering ensembles pro-
vide a convenient approach to knowledge reuse.

There are two components involved in clustering
ensemble techniques: how to generate diverse parti-
tions (base clusterings), and how to combine the input
base clusterings into a consensus clustering. Diverse
partitions are typically generated by using different
clustering algorithms,21 or by applying a single algo-
rithm with different parameter settings, possibly in
combination with data or feature sampling. One way
in which multiple clusterings can arise is through dif-
ferent local optima of a single base clustering algo-
rithm. Rather than selecting a single local optimum,
the ensemble approach recognizes that each local opti-
mum may contribute its own distinct perspective, and
that all local optima should contribute to the forma-
tion of the consensus clustering.

For the co-clustering problem, Wang et al.22

considered two nonparametric Bayesian models, one
based on the NPCC model and the other based on the
Mondrian process. For each model, an ensemble of
co-clusterings was generated by starting the inference
algorithm at multiple initial points, thus generating
a set of local optima of the base co-clustering algo-
rithm. These base co-clusterings were used as input to
the co-clustering ensemble algorithm. The algorithms
were evaluated on the MovieLens and discretized
Jester data sets. 25% of the observations were held out
for testing. Results are shown in Table 3. The left-hand
column shows the average perplexity for each of the
base co-clusterings; the right-hand column shows per-
plexity for the ensemble method. Each result is aver-
aged over multiple trials, with standard deviations
shown in parentheses. Clustering ensembles perform
better than the average of the base clusterings, and the
Mondrian process model with its axis-aligned parti-
tioning performs better than the standard axis-aligned
partitioning. These differences are greater than can be
accounted for by sampling error.
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CONCLUSION
Co-clustering, or simultaneously finding natural
clusters in different kinds of objects, has important
applications in diverse fields such as text mining,
computational biology, and recommender systems.
This paper focuses on a Bayesian perspective to the
problem of co-clustering and discusses a variety of
models that capture important characteristics of
real-world scenarios. A basic Bayesian model was first
presented and applied to several data sets. The model
was then extended to enable the number of clusters
to be discovered from data. A further extension
used features to allow co-clustering and prediction

of observations for previously unseen objects. The
introduction of the Mondrian process enabled mod-
eling the inter-dependencies between row and column
clusters. Finally, ensemble methods were integrated
for learning a consensus co-clustering from a set of
base co-clusterings, thereby achieving better local
optima. Empirical results were presented for the basic
model and its extensions.

NOTES
a http://www.grouplens.org/node/73
b http://goldberg.berkeley.edu/jester-data/

ACKNOWLEDGMENTS
This work was in part supported by NSF CAREER Award IIS-0447814.

REFERENCES
1. Everitt BS, Landau S, Leese M, Stahl D. Cluster Analy-

sis. 5th ed. Chichester, UK: Wiley; 2011.

2. Hartigan JA. Direct clustering of a data matrix. J Am
Stat Assoc 1972, 67:123–129.

3. Madeira SC, Oliveira AL. Biclustering algorithms for
biological data analysis: a survey. IEEE/ACM Trans
Comput Biol Bioinform 2004, 1:24–45.

4. Dhillon IS. Co-clustering documents and words using
bipartite spectral graph partitioning. In: Proceedings of
the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’01.
New York: ACM; 2001, 269–274.

5. Bin X, Jiajun B, Chen C, Cai D. An exploration
of improving collaborative recommender systems
via user-item subgroups. In: Proceedings of the
21st International Conference on World Wide
Web, WWW ’12. New York, NY: ACM; 2012,
21–30.

6. Dhillon IS, Mallela S, Modha DS. Information-theoretic
co-clustering. In: KDD ’03: Proceedings of the Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. New York: ACM;
2003, 89–98.

7. Wang P, Domeniconi C, Laskey K. Latent Dirichlet
Bayesian co-clustering. In Proceedings of the European
Conference on Machine Learning and Principles and
Practise of Knowledge Discovery in Databases, Bled,
Slovenia, September 2009.

8. Shan H, Banerjee A. Bayesian co-clustering. In: IEEE
International Conference on Data Mining (ICDM).
Washington DC: IEEE Press; 2008.

9. Shafiei MM, Milios EE. Latent Dirichlet co-clustering.
In: Sixth International Conference on Data Mining,
2006. ICDM ’06. Washington DC: IEEE Press; 2006,
542–551.

10. Fox CW, Roberts SJ. A tutorial on variational Bayesian
inference. Artif Intell Rev 2012, 38:85–95.

11. Green PJ. Reversible jump Markov chain Monte
Carlo computation and Bayesian model determination.
Biometrika 1995, 82:711–732.

12. Andrieu C, de Freitas N, Doucet A, Jordan MI. An
introduction to MCMC for machine learning. Mach
Learn 2003, 50:5–43.

13. Meeds E, Roweis S. Nonparametric Bayesian bicluster-
ing. Technical Report UTML TR 2007–001, Depart-
ment of Computer Science, University of Toronto,
2007.

14. Xu Z, Tresp V, Yu K, Kriegel H-P. Infinite hid-
den relational models. In Proceedings of the 22nd
International Conference on Uncertainty in Arti-
ficial Intelligence (UAI), MIT, Cambridge, MA,
2006.

15. Wang P, Domeniconi C, Rangwala H, Laskey KB. Fea-
ture enriched nonparametric Bayesian co-clustering. In:
Tan P-N, Chawla S, Ho CK, Bailey J, eds. Advances in
Knowledge Discovery and Data Mining. Lecture Notes
in Computer Science, vol. 7301. Berlin/Heidelberg:
Springer; 2012, 517–529.

16. Jacob L, Hoffmann B, Stoven V, Vert J-P. Virtual screen-
ing of GPCRs: an in silico chemogenomics approach.
BMC Bioinform 2008, 9:363.

Volume 7, September/October 2015 © 2015 Wiley Per iodica ls, Inc. 355



Advanced Review wires.wiley.com/compstats

17. Roy DM, Teh YW. The Mondrian process. In: Advances
in Neural Information Processing Systems (NIPS), vol.
21. Cambridge, MA: MIT Press; 2008.

18. Topchy A, Jain AK, Punch W. Clustering ensembles:
models of consensus and weak partitions. IEEE Trans
Pattern Anal Machine Intell 2005, 27:1866–1881.

19. Strehl A, Ghosh J. Cluster ensembles—a knowledge
reuse framework for combining multiple partitions.
J Mach Learn Res 2003, 3:583–617.

20. Kuncheva LI. Experimental comparison of cluster
ensemble methods. In: International Conference on

Information Fusion. Washington DC: IEEE Computer
Society; 2006, 1–7.

21. Greene D, Tsymbal A, Bolshakova N, Cunningham P.
Ensemble clustering in medical diagnostics. In: IEEE
Symposium on Computer-Based Medical Systems.
Washington DC: IEEE Computer Society; 2004,
576–581.

22. Wang P, Laskey KB, Domeniconi C, Jordan M. Non-
parametric Bayesian co-clustering ensembles. In: SIAM
International Conference on Data Mining, 2011,
331–342.

356 © 2015 Wiley Per iodica ls, Inc. Volume 7, September/October 2015


