An Efficient Approach for Approximating Multi-dimensional Range
Queries and Nearest Neighbor Classification in Large Datasets

Carlotta Domeniconi
Dimitrios Gunopulos

CARLOTTAQCS.UCR.EDU
DGQCS.UCR.EDU

Computer Science Department, University of California Riverside, Riverside, CA 92521 USA

Abstract

We propose a locally adaptive technique to
address the problem of setting the bandwidth
parameters optimally for kernel density esti-
mation. Our technique is efficient and can
be performed in only two dataset passes. We
also show how to apply our technique to
efficiently solve range query approximation,
classification and clustering problems for very
large datasets. We validate the efficiency and
accuracy of our technique by presenting ex-
perimental results on a variety of both syn-
thetic and real datasets.

1. Introduction

Classification and clustering (Bradley, Fayyad &
Reina, 1998) are key steps for many tasks in data min-
ing, whose aim is to dig out unknown relationships
and/or patterns from large set of data. A variety of
methods has been proposed to address such problems.
However, the inherent complexity of both problems is
high, and the application of known techniques on large
datasets can be time and resource consuming.

A simple and appealing approach to classification is
the K-nearest neighbor method (McLachlan, 1992): it
finds the K-nearest neighbors of the query point x¢ in
the dataset, and then predicts the class label of x(as
the most frequent one occuring in the K neighbors. It
produces continuous and overlapping neighborhoods,
and uses a different neighborhood for each individual
query. Therefore, it results in a highly stable proce-
dure with respect to perturbations of the data. How-
ever, when applied on large datasets, the time required
to compute the neighborhoods (i.e., the distances of
the query from the points in the dataset) becomes pro-
hibitive, making exact answers intractable.

Another relevant problem for data mining applica-
tions is the approximation of multi-dimensional range

queries. Answering range queries, in fact, is one of
the simpler data exploration tasks. In this context,
the user defines a specific region of the dataset that
is worth exploring, and asks queries to find the char-
acteristics of this region (like the number of points in
the interior of the region, the average value or the sum
of the values of attributes in the region). As such,
the problem of finding the K-nearest neighbors of a
given query point reduces to this problem. However,
when the number of dimensions increases, recent re-
sults (Webber, Schek & Blott, 1998) show that the
query time is linear to the size of the dataset. Thus
the problem of efficiently approximating the selectivity
of range queries arises naturally.

In general, only efficient approximation algorithms can
make data exploration tasks in large datasets interac-
tive. Our method relies on the observation that the
density of the dataset contains useful information for
both the classification and clustering tasks. For classi-
fication, the main point is that, given a query, the val-
ues of the class density functions over the space around
it quantify the contribution of the correspondent class
within the neighborhood of the query point. The
larger the contribution of a given class is, the larger
is the likelihood for the query to belong to that class.
As for clustering, local maxima of the density func-
tion of the dataset could represent cluster centers. A
hill-climbing procedure applied at a given point, would
identify its density attractor. Furthermore, the value
of the integral of the estimated density, computed over
the volume defined by the range query, will give an ap-
proximation of its selectivity.

For a compact representation of the density of a
dataset, we use kernel density estimation methods.
Kernel methods pose the problem of setting the band-
width parameters. Current work on this problem in
statistics has addressed only the one dimensional case
satisfactorily (Scott, 1992). Approximately optimal
bandwidth parameters in the multi-dimensional case
have been obtained only for the special case in which

the following conditions are all true: (i) the attributes
are independent, (ii) the distribution along each di-
mension is Gaussian and (iii) all bandwidths, for all
kernels and dimensions, are to be set to the same value
(Scott, 1992). For example, one solution to the prob-
lem of computing the bandwidths is given by Scott’s
rule (Scott, 1992), which estimates one bandwidth pa-
rameter per attribute, by setting its value to a quantity
proportional to the standard deviation of the sample
on that attribute. The rule assumes attribute inde-
pendence.

To achieve more accurate results we propose an adap-
tive bandwidth estimation technique that adapts the
bandwidth of the kernels using local information, and
does not assume independence between the attributes.
The setting of the bandwidth for each kernel is based
on the extention of the points in the neighborhood,
and each kernel uses the same bandwidth for all dimen-
sions. Our technique is efficient and can be performed
in only two dataset passes.

Using the range query approximation problem as a
benchmark, we show the performance improvement we
achieve with our method over Scott’s rule by using a
variety of both synthetic and real datasets. We then
show how to apply our technique to efficiently solve
classification and clustering problems. For space limi-
tation, we focus on classification and show the results
we obtained on synthetic datasets.

2. The Range Query Approximation
Problem

Let R be a dataset of n points, each with d real (nor-
malized) attributes. We consider range queries of the
form (a; < R.A; <by)A...A(ag < R.Ag < bg). The
selectivity of a range query @, sel(R,(Q), is the num-
ber of points in the interior of the hyper-rectangle it
represents. Since n can be very large, the problem of
approximating the selectivity of a given range query
arises naturally. Approaches proposed to address this
problem include multidimensional histograms (Ioanni-
dis & Poosala, 1999; Gunopulos et al., 2000), kernels
(Shanmugasundaram et al., 1999; Gunopulos et al.,
2000), and wavelets (Vitter et al. 1998; Chakrabarti
et al., 2000).

To formalize the notion of approximating the se-
lectivity of range queries, let f(z1,...z4) be a d-
dimensional, non-negative function, defined in [0, 1]%
and with the property f[O,l]d flxy,...xg)dey ... dog =
1. fis a probability density function. The value of f at
a specific point x = (1, ... x4) is the limit of the prob-
ability that a tuple exists in area U around x over the

volume of U, when U shrinks to x. Then, for a given
such f, to find the selectivity of a query, we compute
the integral of f in the interior of the given query Q:

S@l(f, Q) = f[a1,b1]><...><[ad,bd] f(.’lfl, - CUd)d.’IZl .. .d.’L’d.

Following Vitter et al. (1998), we define the abso-
lute error of a given query) to be simply the differ-
ence between the real value and the estimated value:
€ars(@Q, R, f) = |sel(R, Q) — n sel(f,Q)|- The relative
error of a query @ is generally defined as the ratio
of the absolute error over the selectivity of the query.
Since in our case a query can be empty, we follow Vit-
ter et al. (1998) in defining the relative error as the ra-

tio of the absolute error over the maximum of the selec-

tivity of Q and Li €, (Q, R, f) = AEQ Al L,

3. Multi-dimensional kernel density
estimators

All the proposed techniques for approximating the
query selectivity compute a density estimation func-
tion. Such function can be thought as an approxima-
tion of the probability distribution function, of which
the dataset at hand is an instance. It follows that
statistical techniques which approximate a probabil-
ity distribution (Scott, 1992; Wand & Jones, 1995),
such as kernel estimators, are applicable to address
the query estimation problem.

For a dataset R, let S be a set of tuples drawn from
R at random. Assume there exists a d dimensional
function k(z1,...,z4), the kernel function, with the
property f[O,l]d k(xy,...,xq)dzy ...dzg = 1. The ap-
proximation of the underlying probability distribution
of Ris f(z) = £ 3, co k(w1 —tiy,...,xq — t;,), and
the estimation of the selectivity of a d-dimensional
range query Q is sel(f,Q) = foy yang f(@1,- .-, 7a) =
% Eties f[a,b]dﬁQ k(a:l — iy ,wd—tid)dasl oodrg. Tt
has been shown that the shape of the kernel func-
tion does not affect the approximation substantially
(Cressie, 1993). The key feature is the standard de-
viation of the function, or, its bandwidth. There-
fore, we choose a kernel function that it is easy to
integrate, i.e. the d-dimensional Epanechnikov kernel
function (Cressie, 1993), whose equation centered at 0
is: k(z1,...,2q) = (%)dm ngigd(l — (%)2) if
< 1 for all i, and 0 otherwise.

The d parameters By, ..., By are the bandwidth of the
kernel function along each of the d dimensions. The
magnitude of the bandwidth controls how far from the
sample point we distribute the weight of the point.
As the bandwidth becomes smaller, also the non-zero
diameter of the kernel becomes smaller.

i
B;

To estimate the bandwidths, typically Scott’s rule
(Scott, 1992) is used: B; = /5 s; |S|7d+r4, where
s; is the standard deviation of the sample on the i-th
attribute. This rule is derived using the assumption
of Gaussian data distribution, therefore in general it
oversmoothes the actual underlying function. The rule
assumes attribute independence. Other approaches for
setting the bandwidths, such as one-dimensional least
squares cross-validation, also assume attribute inde-
pendence (Park & Turlach, 1992).

3.1 Computing the selectivity

In Gunopulos et al. (2000) we have shown how to
use multi-dimensional kernel density estimators to ef-
ficiently address the multi-dimensional range query se-
lectivity problem. We used Scott’s rule for setting
the bandwidths. We presented an experimental study
that shows performance improvements over traditional
techniques for density estimation, including sampling
(Haas & Swami, 1992), multi-dimensional histograms
(Poosala & Ioannidis, 1997), and wavelets (Vitter et
al., 1998). The main advantage of kernel density es-
timators is that the estimator can be computed very
efficiently in one dataset pass, during which we both
sample the dataset and approximate the standard de-
viation along each attribute.

Since the d-dimensional Epanechnikov kernel function

is the product of d one-dimensional degree-2 polyno-

mials, its integral within a rectangular region can be

computed in O(d) time: sel(f,[a1,b1]%...%x[aq,bq]) =

n J{a1,b1]x...x[aq,bq] 1<i<|S| Vil s bd 1 d

1 3\d 1

n J[a1,b1]x...x[ad,bd] Elgig\S\(Z) B1B>...Bg Hlﬁjﬁd(l_
i —Xij _

(%B—)Q)) dl’l N dl’d =

D5 Lici<ist e (T - (BF2)?) -
f[ambd](l - (%)2) dzg...dz,. Tt follows that, for
a sample of |S| tuples, sel(f,Q) can be computed in
O(d|S|) time.

4. Locally adaptive bandwidths

Kernel-based methods are nearest-neighbor-type algo-
rithms: to obtain the density estimate at a given point,
assuming far-off points have negligible contribution to
the sum, one has to consider only the kernel contribu-
tions of the nearest neighbors. It is therefore reason-
able to adapt the bandwidths of a kernel centered at a
specific point according to the extension of the neigh-
borhood of its center, so that the kernel will mainly
contribute to the density estimation of points within
that same local neighborhood. This allows us to take
into account local attribute correlations: kernels with

more points close to them (according to the Lo dis-
tance metric) will have smaller bandwidths than those
with fewer points close to them. Real life data often
present correlations among attributes, and therefore
performance benefits from this approach (Scott, 1992).

As a consequence, we develop a heuristic (ADAptive
BANDwidth) that locally adapts the bandwidths of
kernels, according to the extension of points within the
kernel neighborhood. AdaBand uses the same band-
width for all the dimensions of a given kernel, but
changes the bandwidth from kernel to kernel. The
heuristic works as follows.

A uniform random sample S of a given size, say |S], is
first produced. Let R be the original dataset, and |R|
its size. Each point in S distributes its weight over the
space around it. We want each kernel to distribute its
weight over an equal number of points in the dataset,
i.e. as many points as %. For each point s € S,
we compute its distance from the data points in R.
Among these |R| distances, we identify the one that
corresponds to the ﬁ—quantile, i.e. the distance at

position f%] in the sorted sequence of distances. Let

D be such quantile. D can be seen as the distance of
s from the vertex of the hypercube centered at s that
includes a neighborhood of f%] points. To set the
bandwidth B of a kernel centered at s, we compute
the projection of D along each dimension (and dou-
ble it to avoid possible uncovered areas), resulting in
B = 2D Fach kernel has one bandwidth value B
associated with it, valid for all the d dimensions. The
algorithm, therefore, stores (d + 1) numbers per ker-
nel: d values for the coordinates of the center, and one
value for the bandwidth. Figure 1 gives the outline of
the algorithm.

For comparison purposes, we have also performed ex-
periments in which we estimate a bandwidth value for
each dimension and each kernel by using a localized
standard deviation at the kernel’s center along each di-
mension. In this case we store 2d numbers per kernel,
and therefore the sample size is reduced to E%flize. We
have observed that the loss due to the reduced sample
size overcomes the gain achieved by storing a distinct
bandwidth value for each dimension. AdaBand, in-
stead, seems to capture sufficient local information by
storing one bandwidth per kernel, without over penal-
izing the sample size.

4.1 Running Time

Computing a kernel density estimator with |S| kernels,
as described above, can be done in two dataset passes.
During the first pass, a random sample of size |S| is

Given a d-dimensional dataset R with n points and
input parameter FstSize
(Estimator Size):

_ EstSize.
1. Set KCount = =524,

2. Take a random sample S of size K Count;

3. For each point s € S:

(a) Compute the n distances di, ..
the points in R;

., dy, of s from

(b) Compute the z-—-quantile D of the dis-
tances di, ..., dy;

(c) Set B; = % for i = 1,...,d, where B;
is the bandwidth along dimension i of the
kernel centered at s.

Figure 1. The AdaBand algorithm

taken. During the second pass, an approximation of
the ﬁ—quantiles for the points in S is computed.

In the implementation of AdaBand, to efficiently esti-
mate the quantiles we use the technique described in
Manku, Rajagopalan and Lindsay (1998), which guar-
antees arbitrarily tight error bounds and, for a given
desirable accuracy, allows the estimation of the opti-
mal space complexity.

5. Classification

Here we show how we can apply the AdaBand algo-
rithm to address classification problems. In a classifi-
cation problem we are given C classes and n train-
ing observations. The training observations consist
of d attribute measurements x = (x1,...,24) € R¢
and the known class labels: {(x;,v;)},, where y; €
{1,...,C}. The objective is to predict the class label
of a given query xg. The given training data are used
to obtain the estimates.

We assume, again, that the given dataset is large, and
we want to be able to perform our prediction effi-
ciently. The AdaBand algorithm, applied within the
data of each class, allows to efficiently compute an es-
timation of the class density distributions of the given
dataset. Formally, by denoting with S, the sample ex-
tracted from the n. training data of class ¢, the within
class density function estimate at a given point x is
fe(x) = nL Ziesc(%)dg%d H1§jgd(1 - (%};#)2))

For a given query point xo, we have then C' within
class density function estimates: fi(xo),-.., fc(Xo).
The class ¢* that gives the largest value [, fe(x0)dxo,

computed over an interval I centered at xg, is
our prediction for the class of xg, ie. ¢* =

argmaxi<c<c [; fc(xo)dxo.

We observe that the integrals can be computed effi-
ciently in O(d|S.|) time, as described in section 3.1.
The integral operation allows to smooth away the es-
timated density functions, thereby achieving more ac-
curate results than with a pointwise estimation. This
method, which we call DenClass, can be seen as an
attempt to approximate the optimal bayesian classifi-
cation error rate, where P(c|xo) = I; fe(x0)dxq is our
density based approximation of class posterior prob-
abilities at query points. We note that, for a correct
class assignment, the classifier f.(x) needs only to pre-
serve the order relation among the estimated quanti-
ties. This means that we can afford biased estimates,
as long as all are affected roughly in the same propor-
tion.

The experimental results indeed suggest that the inte-
gration operation conveys robustness to our method.
The length of the interval I is an input parameter of
the DenClass algorithm, which we optimize by cross-
validation in our experiments. Figure 2 gives the out-
line of the DenClass algorithm.

Classifier construction: Given a d-dimensional
dataset R with n points and C classes, and the input
parameter |S.| for each class ¢ € C:

1. Run AdaBand on R, and EstSize = |S¢|(d + 1)
(R, is the set of points in R with label c).

Output: fc(x), for ¢ = 1,...,C. Testing phase:
Given a query point xg:

1. Classify xq to class c* s.t.
¢* = argmaxi<.<c [} fe(%0)dxq.

Figure 2. The DenClass algorithm

6. Clustering

The method we present here is an extension of Hin-
neburg’s and Keim’s (1998) approach. Their technique
employs all data points and therefore is impractical for
large datasets.

The DenClass algorithm can be extended to address
clustering problems. In clustering, data are unlabelled,
and the density estimation is conducted for the whole
dataset. Local maxima of f(x), that are above a cer-
tain threshold ¢, can be considered cluster centers. A
hill-climbing procedure applied at a given point iden-

Density Estimation: Given a d-dimensional dataset
R with n points, and the input parameter |S|:

1. Run AdaBand on R and EstSize = |S|(d + 1).

Output: f(x). Clustering phase: Given a query
point xg, and the input parameter ¢:

1. Compute the gradient V f(xq);

2. Perform hill-climbing. Let x* be the resulting
density attractor;

3. If f(x*) > t, assign x¢ to the cluster identified by

x*;

4. If f(x*) < t,

(a) Use a grid to merge x¢ with a connected clus-
ter center x* ;

(b) Assign x¢ to the cluster identified by x* .

Figure 3. The DenClust algorithm

Table 1. Average classification error rates and standard de-
viation values.

METHOD Ex1 Ex2 Ex3

DeENCrLASsS 0.3+ 0.1 15.4 + 0.1 0.3 £ 0.6
K-NN 0.4+0.1 15.3+0.1 0.3 £ 0.6
C4.5 2505 17.0 4+ 0.4 0.6 £ 0.7
K-MEANS 0.4+0.1 156 £0.2 26.7 & 8.7

tifies its density attractor. Points that converge to
the same attractor belong to the same cluster. For
density attractors below ¢, we can use connectivity in-
formation (using a grid in input space, for example) to
merge them with connected cluster centers.

What is a good choice for t? If we assume that the
dataset R is noise-free, all density attractors x* for
S are significant and ¢ should be chosen in 0 < ¢t <
min,. { f(x*)}. In most cases the dataset will contain
noise. If the noise level can be modeled by taking into
account knowledge specific to the problem at hand,
then ¢ should be chosen above such level. As an alter-
native, the value of ¢ could be set above the average
value of the density function evaluated at the attrac-
tors: |x1—| > f(x*). In general, the smaller the value
of t is, the more sensitive the clustering algorithm will
be to outliers; the larger ¢ is, the less details will be
captured by the algorithm. Figure 3 gives the outline
of the method, which we call DenClust.

7. Experimental Evaluation

In our experiments we compare the performance of
AdaBand, Scott’s rule and Random Sampling on syn-
thetic and real-life datasets with real valued atributes.
For both AdaBand and Scott’s rule we use the formu-
las described in section 3.1 to compute the selectiv-
ity of range queries. We examine the behavior of the
methods as additional space for storing the estimator
becomes available. We also evaluate the accuracy of
the methods as the dimensionality of data increases.

To test the accuracy of the DenClass algorithm we use
synthetic datasets and compare its performance with
well known methods in the literature: K-NN, C4.5 de-
cision tree (Quinlan, 1993), and K-means. We include
K-means since it allows a compact representation of
the dataset, specifically the within class mean vectors.
Note that since we are applying K-means to classifica-
tion problems the value of K is equal to the number
of classes. Procedural parameters (|| for DenClass
and K for K-NN) are detemined empirically through
cross-validation.

7.1 Synthetic datasets

We have designed the following synthetic datasets for
the range query selectivity problem. In Figures 4-
5 the l-norm average relative errors computed over
five runs are reported. OneGaussian: This dataset
contains 105 5-dimensional points drawn according to
a Gaussian distribution with standard deviation set
to 5 along each dimension. In this situation Scott’s
rule finds the optimal bandwidth values. DiffGaus-
sian: This dataset contains 10® 10-dimensional points
equally drawn according to 25 Gaussian distributions
with mean values randomly chosen within the range
[25,74], and standard deviation values randomly cho-
sen within the set {0.1,0.2,0.3,...,1.0}. NoisyGaus-
sian: This dataset contains 10 10-dimensional points.
25% of the data (250,000 points) is uniformly dis-
tributed random noise. The remaining 750, 000 points
are equally generated according to 25 Gaussian dis-
tributions with mean values randomly chosen again
within the range [25, 74], and standard deviation val-
ues for all dimensions set to 0.25.

The following datasets are used for the classification
problem. For each of them, five independent training
data were generated. For each of these, an additional
test set (of size 2,000 for Ex1, 1,000 for Ex2, and 6,000
for Ex3) was generated. Error rates and standard devi-
ation values are computed over all such classifications
and reported in Table 1. Example 1: This dataset
has d = 5 attributes, n = 500,000 datapoints, and
C = 2 classes (250,000 points per class). The data for

both classes are generated from a bivariate normal dis-
tribution with standard deviation 8, and mean vector
(40, ...,40) in one case, and (60,...,60) in the other.
The sample size used for the DenClass algorithm is
|Sc| = 500 for both classes. By taking into account
both the sample points and the bandwidth values, the
resulting classifier fc(x), ¢ = 1,2, requires the stor-
age of 6,000 numbers. We therefore allow a sample of
600 points for both classes for the other three meth-
ods. Example 2: This dataset has d = 2 attributes,
n = 500,000 datapoints, and C = 2 classes (250,000
points per class). The data for this problem are gen-
erated as in the previous example, with the addition
of 25% uniformly distributed random noise. We use
|Sc| = 500 for DenClass, and accordingly a sample size
of 750 points for the other methods. Example 3: This
dataset has d = 2, n = 240,000, and C = 2 classes.
Each class contains six spherical bivariate normal sub-
classes, having standard deviation one. The means
of the 12 subclasses are chosen at random without re-
placement from the integers [25+ 2k]3% , x [25+ 2k]32,.
For each class, data are evenly drawn from each of the
six normal subclasses. We use |S.| = 1,000 for Den-
Class for this example, and accordingly a sample size
of 1,500 data points per class for the other methods.

7.2 Real datasets

We use three real datasets. The USCities and the
NorthEastern datasets contain, respectively, 1,300,000
postal addresses of cities in the US, and 130,000 postal
addresses of the North Eastern states. Each point has
two attributes. We also use the Forest Cover Dataset
from the UCI KDD archive. This dataset was ob-
tained from the US Forest Service (USFS). It includes
590,000 points, and each point has 54 attributes, 10
of which are numerical. In our experiments we use the
entire set of 10 numerical attributes. In this dataset
the distribution of the attributes is non-uniform, and
there are correlations between pairs of attributes. In
Figures 6-7 the 1l-norm average relative errors com-
puted over five runs are reported.

7.3 Query workloads

To evaluate the techniques on the range query ap-
proximation problem we generated workloads of two
types of queries. Workload 1 contains 10* random
queries with selectivity approximately 1%. Workload
2 consists of 20,000 queries of the form (R.4; <
a;) A ... A (R.Aq < aq), for a randomly chosen point
(ah ceey ad) € [07 l]d

For each workload we compute the average absolute
error || eqps ||1 and the average relative error || €04 ||1-

110 T T T T
AdaBand ——
100 - Scott’s rule ---x--- 4

20 b g

1-norm Average Relative Error (in %)

o L I I I I I I I I I I I I I I
200 500 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 3800 4100 4400

Number of Stored Values

Figure 4. OneGaussian dataset, query workload 2, 5-
dim.

T T
AdaBand —+—

140 *... Scott’s rule ---x---
Random Sampling ---*---

1-norm Average Relative Error (in %)
~
=]
T T T T T T T T T T T T
P T S R S N S S S S N N

| | | |
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Number of Stored Values

Figure 7. Forest Cover dataset, Query workload 1, 10-
dim.

7.4 Experimental Results for Query
Approximation

The OneGaussian dataset has been designed to test
Adaband performance under optimal conditions for
Scott’s rule. Scott’s rule finds optimal bandwidth val-
ues for this dataset. Figure 4 shows the results for
query workload 2. As expected, Scott’s rule shows the
best performance, but AdaBand is not too far from it.
This means that we don’t loose too much in perfor-
mance with our adaptive technique in the ideal case
for Scott’s rule.

The variance (spikes) observed in Figure 4 for smaller
estimator sizes may be due to the fact that the dataset
is 5-dimensional, and therefore larger sample sizes are
required to attain a smoother performance behavior.
Furthermore, workload 2 presents a higher degree of
difficulty since queries in this case have arbitrary sizes.
This characteristic may also have contributed to the
variance of the performance.

Figure 5 shows the results for both the DiffGaussian
and the NoisyGaussian datasets on query workload 1.

Xl ' Adaéand ‘—»—‘
~ A - Scott’s rule ---x---
T) X

1-norm Average Relative Error (in %)
L e
A A I A A A A A A A A SR A

I I I I I I I I I I I I I I I
200 500 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 3800 4100 4400
Number of Stored Values

Figure 5. (Left) DiffGaussian dataset, Query workload 1, 10-dim.

10-dim.

40 - T T
AN AdaBand —+—
Scott’s rule ---x---

w
o
T
L

@
o
T
L

N
a
T

o
T

1-norm Average Relative Error (in %)
- n
o o
T T
|

o
T
L

0 I I I I I I
200 500 800 1100 1400 1700 2000
Number of Stored Values

" AdaBand ——
Scott’s rule ---x---

1-norm Average Relative Error (in %)
5
LI e e e

I I I I I I I I I I I I I I I
200 500 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 3800 4100 4400

Number of Stored Values

(Right) NoisyGaussian dataset, Query workload 1,

30

AdaBand ——
Scott’s rule ---x---

25 | X B

20 I .

1-norm Average Relative Error (in %)
=
T

0 I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Number of Stored Values

Figure 6. (Left) USCities dataset, Query workload 2, 2-dim. (Right) NorthEastern dataset, Query workload 2, 2-dim.

AdaBand outperforms by far Scott’s rule in both cases.
Scott’s rule is not able to scale its performance as the
size of the estimator increases, whereas our technique
is capable of adapting the bandwidths according to
the number of kernels that become available. Figure 6
shows the results for the USCities and the NorthEast-
ern datasets on query workload 2. AdaBand shows
large improvements in performance over Scott’s rule in
both cases. Figure 7 shows the results for the Forest
Cover dataset on query workload 1. Here, we also use
Random Sampling for comparison; it gives the worst
performance. AdaBand performs slightly better than
Scott’s rule in this example.

7.5 Experimental Results for Classification

Table 1 shows the error rates obtained for classifica-
tion. We observe that DenClass outperforms both
C4.5 and K-means in all three cases. DenClass and K-
NN show similar performances in each problem. These
results provide evidence that we have successfully de-
signed an efficient approximation scheme for nearest
neighbor approaches to classification. Such approx-
imation makes K-NN techniques applicable in very

large datasets. Given that nearest neighbor methods
in many benchmark studies turn out to be competitive,
and often are among the best performers, an efficient
approximation that allows its usage for large datasets
is indeed highly desirable.

8. Related Work

Multi-dimensional histograms are particularly suited
as density estimators when each attribute has a finite
discrete domain. Efficient construction of accurate
histograms becomes a problem in high dimensional
spaces and when the attributes are real valued. In such
cases, in fact, histogram constructions become ineffi-
cient (Gunopulos et al., 2000). In contrast, our locally
adaptive kernel approach allows an efficient estimator
construction that requires only two dataset passes. Ef-
ficient query approximation can be performed in time
linear to the size of the estimator and to the dimen-
sionality. Furthermore, kernel density estimators have
sufficient expressive power, since any distribution can
be represented as the sum of a sufficient number of
kernel contributions. As a consequence, they are able
to provide accurate estimators.

In Bennett et al. (1999) the density function of the
data is estimated in order to build a clustered index
for efficient retrieval of approximate nearest neighbor
queries. Both our density estimation approach and the
clustering process in Bennett et al. (1999) work on all
dimensions simultaneously. The data density model-
ing is performed in the two cases for different purposes.
In Bennett et al. (1999), the model of the density is
used to reorganize the data on the disk, with the ob-
jective of minimizing the number of cluster scans at
query time. In our case it synthesizes the relevant in-
formation about the data to directly address the tasks.

Furthermore, the density estimation process itself is
different. In Bennett et al. (1999), the location in
space for placing the Gaussian kernels is detemined
by finding clusters in the data. We instead extract a
uniform random sample from the data, and center the
kernels at the sampled points. As a consequence, in
our case the number of kernels used is driven by the
estimator size we can afford. In Bennett et al. (1999),
the number of clusters used affects the amount of data
to be scanned at query time, and its “optimal” value
needs to be estimated.

9. Conclusions

We observe that our technique manifests a robust and
competitive behavior across all the datasets we have
considered in our experiments. Moreover, it has the
advantage of being simple and can be implemented
efficiently.

In the future, we plan to extend the AdaBand algo-
rithm for an on-line setting via efficient quantile up-
dates, and to conduct more extensive experiments with
real data in higher dimensions.

Acknowledgements

This research has been supported by NSF 11S-9984729,
the US Dept. of Defense, and AT&T. The authors
thank George Kollios for his contribution in developing
part of the code, and Joe Hellerstein for providing the
USCities and NorthEastern datasets.

References

Bennett, K. P., Fayyad, U., & Geiger, D. (1999). Density-
Based Indexing for Approximate Nearest-Neighbor
Queries. Proc. of the Intern. Conf. on Knowledge
Discovery and Data Mining.

Bradley, P. S., Fayyad, U., Reina, C. (1998). Scaling Clus-
tering Algorithms to Large Datasets. Proc. of the In-
tern. Conf. on Knowledge Discovery and Data Mining.

Chakrabarti, K., Garofalakis, M. N., Rastogi, R., &
Shim, K. (2000). Approximate Query Processing Us-
ing Wavelets. Proc. of the Intern. Conf. on Very Large
Data Bases.

Cressie, N. A. C. (1993). Statistics For Spatial Data. Wiley
& Sons.

Gunopulos, D., Kollios, G., Tsotras, V., & Domeniconi,
C. (2000). Approximating multi-dimensional aggregate
range queries over real attributes. Proc. of the ACM
SIGMOD Intern. Conf. on Management of Data.

Haas, P. J., & Swami, A. N. (1992). Sequential Sampling
Procedures for Query Size Estimation. Proc. of the
ACM SIGMOD Intern. Conf. on Management of Data.

Hinneburg, A., Keim, D. A. (1998). An Efficient Approach
to Clustering in Large Multimedia Databases with Noise.
Proc. of the Intern. Conf. on Knowledge Discovery and
Data Mining.

Toannidis, Y., & Poosala, V. (1999). Histogram-Based Ap-
proximation of Set-Valued Query-Answers. Proc. of the
Intern. Conf. on Very Large Data Bases.

Manku, G. S., Rajagopalan, S., & Lindsay, B. G. (1998).
Approximate Medians and other Quantiles in One Pass
and with Limited Memory. Proc. of the ACM SIGMOD
Intern. Conf. on Management of Data.

McLachlan, G. J. (1992). Discriminant Analysis and Sta-
tistical Pattern Recognition. New York: Wiley.

Park, B. V., & Turlach, B. A. (1992). Practical perfor-
mance of several data driven bandwidth selectors. Com-
putational Statistics, 7: 251-270.

Poosala, V., & loannidis, Y. E. (1997). Selectivity Esti-
mation Without the Attribute Value Independence As-
sumption. Proc. of the Intern. Conf. on Very Large
Data Bases.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan-Kaufmann Publishers, Inc.

Scott, D. (1992). Multivariate Density Estimation: The-
ory, Practice and Visualization. Wiley & Sons.

Shanmugasundaram, J., Fayyad, U., & Bradley, P. (1999).
Compressed Data Cubes for OLAP Aggregate Query
Approximation on Continuous Dimensions. Proc. of
the Intern. Conf. on Knowledge Discovery and Data
Mining.

Vitter, J. S., Wang, M., & Iyer, B. R. (1998). Data Cube
Approximation and Histograms via Wavelets. Proc. of

the ACM CIKM Intern. Conf. on Information and
Knowledge Management.

Wand, M. P., & Jones, M. C. (1995). Kernel Smooth-
ing. Monographs on Statistics and Applied Probability,
Chapman & Hall.

Webber, R., Schek, H. J., & Blott, S. (1998). A Quan-
titative Analysis and Performance Study for Similarity
Search Methods in High-Dimensional Spaces. Proc. of
the Intern. Conf. on Very Large Data Bases.

